Erik Bernhart, Marvin Röhrle, Vijay Pal Singh, Ludwig Mathey, Luigi Amico, Herwig Ott
🔓arXiv:2409.03340 (2024)
The current-voltage characteristic of a driven superconducting Josephson junction displays discrete steps. This phenomenon, discovered by Sydney Shapiro, forms today's voltage standard. Here, we report the observation of Shapiro steps in a driven Josephson junction in a gas of ultracold atoms. We demonstrate that the steps exhibit universal features, and provide key insight into the microscopic dissipative dynamics that we directly observe in the experiment. Most importantly, the steps are directly connected to phonon emission and soliton nucleation. The experimental results are underpinned by extensive numerical simulations based on classical-field dynamics and represent the transfer of the voltage standard to the realm of ultracold quantum gases.