RPTU researchers develop motor with quantum mechanical drive

Quantum physics deals with the laws of nature in the atomic and subatomic range. Findings gained from this research have, for example, enabled the development of computer chips, nuclear magnetic resonance tomographs or navigation systems. At the University of Kaiserslautern-Landau (RPTU), Professor Dr. Artur Widera and his research group do research on quantum physics. In a current research paper, they present a quantum motor that cannot be described in the classical sense with thermodynamic principles. The drive is based on quantum mechanics, not on heat transfer. The associated paper has been published in the journal “Nature”.  

Classical engines are heat engines and follow the laws of thermodynamics. They convert thermal energy released during the combustion of fuel into mechanical or kinetic energy through combustion in a piston. The idea of bringing an engine into the quantum world is not new. Professor Artur Widera had already shown in a past research paper that it is possible to operate a quantum heat engine in a stable and efficient manner. Now, together with colleagues from the University of Stuttgart and the Okinawa Institute of Science and Technology in Japan, he and his research group have succeeded in developing a quantum motor that uses a different, purely quantum mechanical phenomenon as its drive.

https://rptu.de/en/newsroom/detail/news/studie-forschende-der-rptu-entwickeln-motor-mit-quantenmechanischem-antrieb

https://www.nature.com/articles/s41586-023-06469-8

https://www.spektrum.de/news/ein-motor-mit-quantenmechanischem-antrieb/2185032