Christopher D. Mink, Michael Fleischhauer:
🔓 SciPost Phys. 15, 233 (2023)
Interfaces of light and matter serve as a platform for exciting many-body physics and photonic quantum technologies. Due to the recent experimental realization of atomic arrays at sub-wavelength spacings, collective interaction effects such as superradiance have regained substantial interest. Their analytical and numerical treatment is however quite challenging. Here we develop a semiclassical approach to this problem that allows to describe the coherent and dissipative many-body dynamics of interacting spins while taking into account lowest-order quantum fluctuations. For this purpose we extend the discrete truncated Wigner approximation, originally developed for unitarily coupled spins, to include collective, dissipative spin processes by means of truncated correspondence rules. This maps the dynamics of the atomic ensemble onto a set of semiclassical, numerically inexpensive stochastic differential equations. We benchmark our method with exact results for the case of Dicke decay, which shows excellent agreement. For small arrays we compare to exact simulations, again showing good agreement at early times and at moderate to strong driving, and to a second order cumulant expansion. We conclude by studying the radiative properties of a spatially extended three-dimensional, coherently driven gas and compare the coherence of the emitted light to experimental results.