Zur Hauptnavigation / To main navigation

Zur Sekundärnavigation / To secondary navigation

Zum Inhalt dieser Seite / To the content of this page

Sekundärnavigation / Secondary navigation

Inhaltsbereich / Content

Sortiere nach: Autor, Jahr, Titel

Literaturliste

  • Low-velocity collisions of chondrules. How a thin dust cover helps enhance the sticking probability.
    Nina Gunkelmann, Akimasa Kataoka, Cornelis Dullemond und Herbert Urbassek
    A&A, Vol. 599, S. 4. (2017)
    DOI: 10.1051/0004-6361/201630155
  • Nanoscratching of iron. A novel approach to characterize dislocation microstructures.
    Nina Gunkelmann, Iyad Alhafez, Dominik Steinberger, Herbert Urbassek und Stefan Sandfeld
    Computational Materials Science, Vol. 135, S. 181 - 188. (2017)
    DOI: 10.1016/j.commatsci.2017.04.008
  • Compaction and plasticity in nanofoams induced by shock waves. A molecular dynamics study.
    Nina Gunkelmann, Yudi Rosandi, Carlos Ruestes, Eduardo Bringa und Herbert Urbassek
    Comput. Mater. Sci., Vol. 119, S. 27 - 32. (2016)
    DOI: 10.1016/j.commatsci.2016.03.035
  • Influence of C concentration on elastic moduli of α’-Fe_(1-x)C_x alloys.
    Jan Janßen, Nina Gunkelmann und Herbert Urbassek
    Philos. Mag., Vol. 96, S. 1448 - 1462. (2016)
    DOI: 10.1080/14786435.2016.1170224
  • Influence of porosity on collisions between dust aggregates.
    Nina Gunkelmann, Christian Ringl und Herbert Urbassek
    Astron. Astrophys., Vol. 589, S. 30. (2016)
    DOI: 10.1051/0004-6361/201628081
  • Instationary compaction wave propagation in highly porous cohesive granular media.
    Nina Gunkelmann, Christian Ringl und Herbert Urbassek
    Comp. Part. Mech., Vol. 3, S. 429 - 434. (2016)
    DOI: 10.1007/s40571-016-0110-y
  • Compaction of highly porous granular matter by impacts on a hard wall.
    Christian Ringl, Nina Gunkelmann, Eduardo Bringa und Herbert Urbassek
    Phys. Rev. E, Vol. 91, Nr. 4, S. 042205. (2015)
    DOI: 10.1103/PhysRevE.91.042205
  • Influence of phase transition on shock-induced spallation in nanocrystalline iron.
    Nina Gunkelmann, Eduardo Bringa und Herbert Urbassek
    J. Appl. Phys., Vol. 118, Nr. 18, (2015)
    DOI: 10.1063/1.4935452
  • Morphological changes in polycrystalline Fe after compression and release.
    Nina Gunkelmann, Diego Tramontina, Eduardo Bringa und Herbert Urbassek
    J. Appl. Phys., Vol. 117, Nr. 8, (2015)
    DOI: 10.1063/1.4913622
  • Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron.
    Nina Gunkelmann, Diego Tramontina, Eduardo Bringa und Herbert Urbassek
    New J. Phys., Vol. 16, Nr. 9, S. 093032. (2014)
    http://stacks.iop.org/1367-2630/16/i=9/a=093032
  • Molecular-dynamics study of the $α \leftrightarrow γ$ phase transition in Fe-C.
    Binjun Wang, Emilia Sak-Saracino, Nina Gunkelmann und Herbert Urbassek
    Comput. Mater. Sci., Vol. 82, S. 399 - 404. (2014)
    DOI: 10.1016/j.commatsci.2013.09.069
  • Shock waves in polycrystalline iron. Plasticity and phase transitions.
    Nina Gunkelmann, Eduardo Bringa, Diego Tramontina, Carlos Ruestes, Matthew Suggit, Andrew HigginbothActa Mater., Justin Wark und Herbert Urbassek
    Phys. Rev. B, Vol. 89, Nr. 14, S. 140102. (2014)
    DOI: 10.1103/PhysRevB.89.140102
  • Experimental and atomistic study of the elastic properties of α’ Fe-C martensite.
    Nina Gunkelmann, Hassel Ledbetter und Herbert Urbassek
    Acta Mater., Vol. 60, S. 4901 - 4907. (2012)
    DOI: 10.1016/j.actamat.2012.05.038
  • Polycrystalline iron under compression. Plasticity and phase transitions.
    Nina Gunkelmann, Eduardo Bringa, Keonwook Kang, Graeme Ackland, Carlos Ruestes und Herbert Urbassek
    Phys. Rev. B, Vol. 86, Nr. 14, S. 144111. (2012)
    DOI: 10.1103/PhysRevB.86.144111