Dynamical Variational Approach to Bose Polarons at Finite Temperatures (B2)

David Dzsotjan, Richard Schmidt, and Michael Fleischhauer:

Phys. Rev. Lett., 124, 223401 (2020)

🔓 arXiv:1909.12856 (2019)

We discuss the interaction of a mobile quantum impurity with a Bose-Einstein condensate of atoms at finite temperature. To describe the resulting Bose polaron formation we develop a dynamical variational approach applicable to an initial thermal gas of Bogoliubov phonons. We study the polaron formation after switching on the interaction, e.g., by a radio-frequency (rf) pulse from a noninteracting to an interacting state. To treat also the strongly interacting regime, interaction terms beyond the Fröhlich model are taken into account. We calculate the real-time impurity Green’s function and discuss its temperature dependence. Furthermore we determine the rf absorption spectrum and find good agreement with recent experimental observations. We predict temperature-induced shifts and a substantial broadening of spectral lines. The analysis of the real-time Green’s function reveals a crossover to a linear temperature dependence of the thermal decay rate of Bose polarons as unitary interactions are approached.