Arbeitsgruppe Prof. Hillebrands

ERC Starting Grant 678309 MagnonCircuits:
"Nano-Scale Magnonic Circuits for Novel Computing Systems"

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 678309)

Principal investigator:

Jun.-Prof. Dr. habil. Andrii Chumak

Magnons – quanta of spin waves – propagating in magnetic materials having nano-scale wavelengths and carrying information in the form of a spin angular momentum, can be used as data carriers in next-generation nano-sized low-loss information processing systems. The low losses of magnonic systems can be reached due to the absence of translational electron motion associated with Joule heating and extremely low magnetic damping in the dielectric Yttrium-Iron-Garnet (YIG) material used.

The recent revolutionary progress in the growth of high-quality YIG films with nanometer thickness, and in the patterning of these films, opened a way to the practical development of nano-scale magnonic computing systems. However, the decrease in sizes of YIG structures to sub-100 nm requires the development of the physical knowledge base for understanding linear and nonlinear magnetization dynamics in nanostructures. The strategic goal of the proposed MAGNONCIRCUITS research program is to make a transformative change in the data processing paradigm from traditional electronics to magnon spintronics.

 

An example of future magnon circuit: A spin-wave XOR logic gate based on two magnon transistors

 

 

Publications

Submitted

  1. Realization of a nanoscale magnonic directional coupler for all-magnon circuits
    Q. Wang, M. Kewenig, M. Schneider, R. Verba, B. Heinz, M. Geilen, M. Mohseni, B. Lägel, F. Ciubotaru, C. Adelmann, C. Dubs, P. Pirro, T. Brächer, A. V. Chumak
    arXiv:1905.12353
  2. Nanoscale spin-wave wake-up receiver
    Q. Wang, T. Brächer, M. Mohseni, B. Hillebrands, V. I. Vasyuchka, A. V. Chumak, P. Pirro
    arXiv:1905.03006
  3. Integrated magnonic half-adder
    Q. Wang, R. Verba, T. Brächer, P. Pirro, A. V. Chumak
    arXiv:1902.02855
  4. Bose-Einstein Condensation of Quasi-Particles by Rapid Cooling
    M. Schneider, T. Brächer, V. Lauer, P. Pirro, D. A. Bozhko, A. A. Serga, H. Yu. Musiienko-Shmarova, B. Heinz, Q. Wang, T. Meyer, F. Heussner, S. Keller, E. Th. Papaioannou, B. Lägel, T. Löber, V. S. Tiberkevich, A. N. Slavin, C. Dubs, B. Hillebrands, A.V. Chumak
    arXiv:1612.07305

In Press

    Published

    1. Spin pinning and spin-wave dispersion in nanoscopic ferromagnetic waveguides
      Q. Wang, B. Heinz, R. Verba, M. Kewenig, P. Pirro, M. Schneider, T. Meyer, B. Lägel, C. Dubs, T. Bräche, and A. V. Chumak
      Phys. Rev. Lett. 122, 247202 (2019)
    2. Backscattering immunity of dipole-exchange magnetostatic surface spin waves
      M. Mohseni, R. Verba, T. Bracher, Q. Wang, D. A. Bozhko, B. Hillebrands, P. Pirro
      Phys. Rev. Lett. 122, 197201 (2019)
    3. The SpinTronicFactory roadmap: a European community view
      B. Dieny, L. Prejbeanu, K. Garello, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. Demokritov, J. Akerman, P. Pirro, C. Adelmann, A. Anane, A. Chumak, A. Hiroata, S. Mangin, M. d’Aquino, G. Prenat, G. Finocchio, L. Lopez Diaz, O. Chubykalo-Fesenko, P. Bortolotti
      SciTech Europa (2019)
    4. Magnon-Fluxon interaction in a ferromagnet/superconductor heterostructure
      O. V. Dobrovolskiy, R. Sachser, T. Brächer, T. Fischer, V. V. Kruglyak, R. V. Vovk, V. A. Shklovskij, M. Huth, B. Hillebrands, and A. V. Chumak
      Nat. Phys. 15, 477 (2019)
    5. Optical determination of the exchange stiffness constant in an iron garnet
      K. Matsumoto, T. Brächer, P. Pirro, D. Bozhko, T. Fischer, M. Geilen, F. Heussner, T. Meyer, B. Hillebrands, T. Satoh
      Jpn. J. Appl. Phys. 57, 070308 (2018)
    6. An analog magnon adder for all-magnonic neurons
      T. Brächer and P. Pirro
      Editors pick in the special issue New physics and materials for neuromorphic computation
      J. Appl. Phys. 124, 152119 (2018)
    7. Reconfigurable nano-scale spin-wave directional coupler
      Q. Wang, P. Pirro, R. Verba, A. Slavin, B. Hillebrands, and A. V. Chumak
      Sci. Adv. 4, e1701517 (2018)
    8. Magnonics: spin waves connecting charges, spins and photons
      A. V. Chumak and H. Schultheiss
      J. Phys. D: Appl. Phys. 50, 300201 (2017)
    9. Magnonic crystals for data processing
      A. V. Chumak, A. A. Serga, and B. Hillebrands
      J. Phys. D: Appl. Phys. 50, 244001 (2017)
    10. Voltage-controlled nano-scale reconfigurable magnonic crystal
      Q. Wang, A. V. Chumak, L. Jin, H. Zhang, B. Hillebrands, Z. Zhong
      Phys. Rev. B 95, 134433 (2017)
    11. Experimental prototype of a spin-wave majority gate
      T. Fischer, M. Kewenig, D. A. Bozhko, A. A. Serga, I. I. Syvorotka, F. Ciubotaru, C. Adelmann, B. Hillebrands, and A. V. Chumak
      Appl. Phys. Lett. 110, 152401 (2017)
    12. Temporal evolution of auto-oscillations in a YIG/Pt microdisc driven by pulsed spin Hall effect-induced spin-transfer torque
      V. Lauer, M. Schneider, Th. Meyer, Th. Braecher, P. Pirro, B. Heinz, F. Heussner, B. Laegel, M. C. Onbasli, C. A. Ross, B. Hillebrands, A. V. Chumak
      IEEE Magn. Lett. 8, 3104304 (2017)

    Book chapters

    1. Magnon spintronics: Fundamentals of magnon-based computing
      A. V. Chumak
      In: Spintronics Handbook: Spin Transport and Magnetism, Second Edition, edited by E. Y. Tsymbal and
      I. Žutić (CRC Press, Boca Raton, Florida), 2018 (submitted)
      arXiv:1901.08934

    Nach oben

    Zum Seitenanfang