Arbeitsgruppe Prof. Hillebrands

News archive

03-2022

ERC Starting Grant to investigate magnonic hardware for neuromorphic computing

Our group member Junior professor Dr. Philipp Pirro has been awarded a 1.5 million euro ERC Starting Grant by the European Research Council (ERC) for five years.

In the ERC-funded project "CoSpiN - Coherent Spintronic Networks for Neuromorphic Computing," spin waves will be used to enable linking and information transfer. The goal is to develop physical building blocks for a novel spintronic network on the nanoscale. In this way, we want to lay the foundation for an artificial brain that is as close as possible to the natural model. The research will take place in the new research building LASE (Laboratory for Advanced Spin Engineering) on the TUK campus.

24-02-2022

We as the AG Magnetismus are shocked by the Russian invasion of Ukraine. Our partnership with Ukrainian science, and with scientists in and from Ukraine, is very strong. Our thoughts are in Ukraine and with our colleagues there, especially those with whom we have direct scientific and personal contacts. Our full solidarity goes to our Ukrainian colleagues. 

Kaiserslautern, February 24, 2022 
Burkard Hillebrands

02-2022

“Roadmap on spin-wave computing” edited by A. V. Chumak, P. Kabos, and M. Wu has been accepted for publication in IEEE Transactions on Magnetics and is available under the "Early Access" area on IEEE Xplore.

This roadmap is a product of the collective work of leading experts from different fields that covers versatile spin-wave computing approaches, conceptual building blocks, and underlying physical phenomena. We are happy to contribute to the following sub-sections of this roadmap:

  • Single-mode sub-100 nm YIG magnonic nano-conduits;
  • Magnonic Stimulated Raman Adiabatic Passage (STIRAP);
  • Spin-wave directional coupler for magnonic half-adder;
  • Inverse-design magnonics;
  • Magnonic neuromorphic computing;
  • Computing with magnonic macroscopic quantum states.

View accepted manuscript online

01-2022

Our Spin-off "AIthericon" is funded by the "EXIST" Program of the European Social Fund and Bundesministerium für Wirtschaft und Klimaschutz

The mission of our spin-off is to provide a user-friendly cloud platform to conduct, analyze and archive numerical studies, e.g. micromagnetic simulation in combination with optimization algorithms on a large scale. The project takes its roots in a research project at the group of Jun. Prof. Philipp Pirro and grew to a successful in-house software, greatly supporting our numerical research. Now, he is actively mentoring the team behind the project.

The grant helps the team members, B.Sc. Milan Ender, Dipl. Phys. Pascal Frey and M.A. Jan Morbach to bridge the gap between a prototype and a commercial product.
The spin-off is now funded by the EXIST Gründerstipendium until end of the year.

AIthericon

01-2022

Congratulations to Anna Maria Friedel!

Anna was awarded the first Franco-German University Award (“Prix Universitaire Franco-Allemand”) in the category "Science and Technology - Computer Science - Engineering" on January 21st by the president of the university Reims-Champagne-Ardenne, Guillaume Gellé. The prize has been awarded to Anna in recognition for her master thesis work titled “Thin film materials with ultralow damping for novel magnonic phenomena”, which Anna conducted jointly between the TU Kaiserslautern (TUK) and Université de Lorraine (UL) supervised by Philipp Pirro (TUK), Stéphane Andrieu (UL) and Sébastien Petit-Watelot (UL) as co-directors.

Currently, Anna is pursuing a double degree PhD work between the magnetism group at TUK and the spin team at UL, focusing on Heusler compounds for magnonic and spintronic applications.

12-2021

Our paper "Control of the Bose-Einstein condensation of magnons by the spin Hall effect" has been selected as a highlight in Physical Review Letters

The authors demonstrate that the rapid-cooling induced magnon Bose-Einstein condensate formation can be controlled by combining the spin Hall effect and spin-transfer torque effect. Driven by the additional spin Hall effect mediated magnon injection or annihilation during the application of the dc heating pulse, the threshold voltage of the rapid-cooling induced condensation process is observed to be changed by up to 8%. Notably, it is demonstrated that the spin Hall effect allows for a complete suppression or enhancement of the condensation for voltages close to the threshold.

Physical Review Letters

 

09-2021

Best Poster Award

Our PhD student David Breitbach was awarded the poster prize at ESM 2021 (European School on Magnetism 2021) for his poster entitled ‘Amplification of Propagating Spin Waves by Stimulated Condensation’. The ESM is organized annually by the European Magnetism Association and was hosted this year in Cluj-Napoca, Romania, from September 6-17, 2021.

The European Magnetism Association

 

07-2021

Our paper "Double accumulation and anisotropic transport of magnetoelastic bosons in yttrium iron garnet films" has been selected as a highlight in Physical Review B

The authors use the avoided crossing region created via magnetoelastic coupling between the magnonic and phononic dispersion in yttrium iron garnet films as a thermalization gateway for an artificially populated magnon gas. Magnons thermalizing through the hybridization region become hybrid quasiparticles that mix magnon and phonon properties. Due to the varying magnon-phonon interaction, they experience bottleneck accumulation near the bottom of the magnon spectrum, forming two quasiparticle groups with different propagation directions and velocity values.

Phys. Rev. B 104, 014420 (2021)

 

07-2021

Our review "Advances in coherent magnonics" has been published in Nature Reviews Materials

In this Review, we address specifically coherent spin waves. Coherency enables, for instance, the design of interference-based, wave processing spin-wave devices. We show that the field of magnonics is well suited for the implementation of wave-based computing devices, combining the excellent versatility, smallness, nonlinearity and external control it affords. Novel coherent states of matter, such as magnon Bose–Einstein condensates, enable a broad range of additional applications.

Nature Reviews Materials (2021)

 

05-2021

Magnonic devices have the potential to revolutionize the electronics industry

Qi Wang and Andrii Chumak of the University of Vienna and Philipp Pirro of TU Kaiserslautern, have significantly accelerated the design of versatile magnonic devices using an optimization algorithm. Their "inverse design" of magnonic devices is now published in Nature Communications.

View publication

View press release

03-2021

“The 2021 Magnonics Roadmap” has been accepted for publication in Journal of Physics: Condensed Matter

This is a topical review paper in which world’s leading experts in the field of magnonics review and discuss the current status, as well as present their vision of future perspectives of this rather young research field.

View accepted manuscript online

10-2020

"A magnonic directional coupler for integrated magnonic half-adders" is published in Nature Electronics
In a collaboration with our former group member Prof. Andrii Chumak (now at the University of Vienna), we have succeeded in constructing the basic building block for a novel computer circuit: Instead of electrons, magnons in nanoformat take over the transfer of information. The so-called "magnonic half adder", which is described in the journal Nature Electronics, requires only three nanowires and much less energy than modern computer chips.
[Nature Electronics (2020)]
[Open Access link to full text]
[View press release (eng)]
[Deutsche Pressemitteilung]

08-2020

Review: "Opportunities and challenges for spintronics in the microelectronics industry“ is published in Nature Electronics
Together with many colleagues from all over Europe, we review recent developments in spintronics that could soon have an impact on the microelectronics and information technology industry. We highlight and explore four key areas: magnetic memories, magnetic sensors, radio-frequency and microwave devices, and logic and non-Boolean devices. We also discuss the challenges—at both the device and the system level—that need be addressed in order to integrate spintronic materials and functionalities into mainstream microelectronic platforms. [View paper online]

07-2020

Magnonic nano-fibers opens the way towards new type of computers
A critical advancement in the field of ultralow power computation using magnetic waves is reported by a joint team from Kaiserslautern, Jena and Vienna in the journal Nano Letters. [Press Release]

06-2020

Unconventional spin currents in magnetic films
Our paper "Unconventional spin currents in magnetic films" by D. A. Bozhko,
H. Yu. Musiienko-Shmarova, V. S. Tiberkevich, et al., freshly published in Physical Review Research, has been selected as an Editors’ Suggestion.
Traditionally, it was assumed that a spin wave in a magnetic film with spin-sink-free surfaces can transfer energy and angular momentum only along its propagation direction. In this work, we show, that also a transverse spin current, perpendicular to the film plane, can be generated without any corresponding transverse transport of energy. We used wavevector-resolved Brillouin light scattering spectroscopy in combination with a theory of dipole-exchange spin-wave spectra.
We especially acknowledge the contribution of our former group member,
Dr. Dmytro A. Bozhko, currently Assistant Professor at Colorado State University at Colorado Springs (USA).
Open access paper link: Phys. Rev. Research 2, 023324 (2020)

04-2020

Cool down fast to advance quantum nanotechnology
Rapidly cooling magnon particles proves a surprisingly effective way to create an elusive quantum state of matter, called a Bose-Einstein condensate. The discovery can help advance quantum physics research and is a step towards the long-term goal of quantum computing at room temperature. [more]

10-2019

Burkard Hillebrands receives the acatech certificate of membership

On October 15, 2019, during the annual member assembly of the National Academy of Science and Engineering (acatech) in Berlin, Burkard Hillebrands received the certificate of membership from the acatech Presidents, Prof. Dieter Spath (left) and Prof. Karl-Heinz Streibich (right). (picture: acatech/D)

08-2019

Burkard Hillebrands is President of EMA

The General Council of the European Magnetism Association (EMA) held its annual meeting in August 2019. Consistent with the statutes of EMA, the mandate of President Dino Fiorani came to an end. Dino Fiorani has been President for three years, since the very creation of EMA. Burkard Hillebrands, so far Vice-President, has been confirmed to become President of the association for the three years ahead. He will be assisted by Dino Fiorani, who will remain active in international networking, and Olivier Fruchart, who is the newly-elected Vice-President.[more]

06-2019

Best Poster Award

Our poster "Separation of the two-magnon scattering contribution to damping for the determination of the spin mixing conductance", presented by Dr. Andrés Conca, has received a Poster Award at the Symposium of Magnetic Multilayers (MML 2019) in Madrid.

05-2019

2018 Chinese Government Student Award

Our PhD student Qi Wang was awarded the “2018 Chinese Government Award for Outstanding Self-financed Students Abroad" which is considered as one of the highest student awards given by the Chinese government. The award ceremony took place at the Chinese Embassy in Berlin on Sunday, May 05, 2019.

01-2019

SCIENCE AWARD of the GREATER REGION for the "MAGNETISM in the GREATER REGION NETWORK"

Our group together with the group of Dr. Martin Aeschlimann and our partners from the network "Magnetism in the Greater Region" have received the Interregional Science Award of the Greater Region 2018. The aim of the network, which includes also partners from France, Luxembourg and Belgium is to research magnetic phenomena in order to make them usable for industry. The 35,000 Euro prize is awarded to research teams from the Greater Region who profitably use the cross-border context to implement their research projects. The funds will be used to enhance the collaboration within magnetism research and outreach in the Greater Region.[more]

Zum Seitenanfang