Zur Hauptnavigation / To main navigation

Zur Sekundärnavigation / To secondary navigation

Zum Inhalt dieser Seite / To the content of this page

Sekundärnavigation / Secondary navigation

Inhaltsbereich / Content

Nano-Magnonics Group

Junior Research Group - Group Leader: Jun.-Prof. Dr. habil. Andrii Chumak


On photo from left to right: Jun.-Prof. Dr. habil. Andrii Chumak (head of the group), Qi Wang (PhD student), Michael Schneider (PhD student), Martin Kewenig (PhD student), Björn Heinz (PhD student), Tobias Fischer (PhD student), Viktor Lauer (PhD student), Dr. Thomas Brächer (co-supervisor).


Aims and scientific goals

A spin wave is a collective excitation of the electron spin system in a magnetic solid. Spin-wave characteristics can be varied by a wide range of parameters which, in combination with a rich choice of linear and non-linear spin-wave properties, renders spin waves excellent objects for the studies of general wave physics. Nowadays, spin waves and their quanta, magnons, are attracting much attention also due to another very ambitious perspective. They are being considered as data carriers in novel computing devices instead of electrons in electronics [Nature Physics 11, 453 (2015)]. The field of science that refers to information transport and processing by spin waves is known as magnonics.


The strategic goal of the Nano-magnonics Group is to make a transformative change in the data processing paradigm from traditional electronics to magnonics. A set of recent groundbreaking physical discoveries in the field of magnonics and spintronics form a solid base for this. Moreover, the recent revolutionary progress in the growth of high-quality nanometer-thick Yttrium-Iron-Garnet (YIG) films, the material with the smallest known magnetic losses in nature, and in the patterning of these films, opened a way to the practical development of nano-scale magnonic computing systems.


The main aims of the Nano-Magnonics Group are:

- Development of magnonic conduits and two dimensional magnonic circuits with lateral sizes below 100 nm made of magnetic insulators and metals.

- Development of the methodology for excitation, manipulation and detection of fast short-wavelength exchange spin waves in these structures.

- Employment of novel spintronics phenomena like Spin Pumping (SP), Spin Transfer Torque (STT), Spin Hall Effect (SHE), Spin Seebeck Effect (SSE) for the excitation, amplification, and detection of spin waves.

- Realization of proof-of-concept prototypes of nano-scaled magnonic logic circuits.



  1. Reconfigurable nano-scale spin-wave directional coupler
    Q. Wang, P. Pirro, R. Verba, A. Slavin, B. Hillebrands, and A. V. Chumak
    Sci. Adv. 4, e1701517 (2018)
  2. Voltage-controlled nano-scale reconfigurable magnonic crystal
    Q. Wang, A. V. Chumak, L. Jin, H. Zhang, B. Hillebrands, and Z. Zhong
    Phys. Rev. B 95, 134433 (2017)
  3. Experimental prototype of a spin-wave majority gate
    T. Fischer, M. Kewenig, D. A. Bozhko, A. A. Serga, I. I. Syvorotka, F. Ciubotaru, C. Adelmann, B. Hillebrands, and A. V. Chumak
    Appl. Phys. Lett. 110, 152401 (2017)
  4. Temporal evolution of auto-oscillations in a YIG/Pt microdisc driven by pulsed spin Hall effect-induced spin-transfer torque
    V. Lauer, M. Schneider, T. Meyer, T. Braecher, P. Pirro, B. Heinz, F. Heussner, B. Laegel, M. C. Onbasli,
    C. A. Ross, B. Hillebrands, and A. V. Chumak
    IEEE Magn. Lett. 8, 3104304 (2017)

Book chapters and review articles

  1. Magnon spintronics: Fundamentals of magnon-based computing
    A. V. Chumak
    In: Spintronics Handbook: Spin Transport and Magnetism, Second Edition, edited by E. Y. Tsymbal and
    I. Žutić (CRC Press, Boca Raton, Florida), 2018 (submitted)
  2. Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale
    T. Brächer, P. Pirro, and B. Hillebrands
    Physics Reports 699, 1 (2017)
  3. Magnonic crystals for data processing
    A. V. Chumak, A. A. Serga, and B. Hillebrands
    J. Phys. D: Appl. Phys. 50, 244001 (2017)
  4. Magnonics: spin waves connecting charges, spins and photons
    A. V. Chumak and H. Schultheiss
    J. Phys. D: Appl. Phys. 50, 300201 (2017)
  5. Magnon spintronics
    A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands
    Nat. Phys. 11, 453 (2015)
  6. Magnetische Materialien nach Maß für die Spintronik
    M. Vogel, A. V. Chumak, B. Hillebrands, and G. von Freymann
    Physik in unserer Zeit 46, 217 (2015)
  7. Magnon spintronics
    A. D. Karenowska, A. V. Chumak, A. A. Serga, and B. Hillebrands
    In: Handbook of Spintronics, Y. Xu, D. D. Awschalom, J. Nitta (eds.),
    Springer, pp. 1505-1549 (2015)
  8. Magnonen für den Computer von Übermorgen
    B. Leven, A. V. Chumak, B. Hillebrands
    Physik in unserer Zeit 46 , 34 (2015)
  9. Topical Review: The 2014 Magnetism Roadmap
    R. L. Stamps, S. Breitkreutz, J. Åkerman, A. V. Chumak, Y. Otani, G. E. W. Bauer, J.-U. Thiele, M. Bowen,
    S. A. Majetich, M. Kläui, I. L. Prejbeanu, B. Dieny, N. M. Dempsey, and B. Hillebrands
    J. Phys. D: Appl. Phys. 47, 333001 (2014)
  10. The dynamic magnonic crystal: New horizons in artificial crystal based signal processing
    A. V. Chumak, A. D. Karenowska, A. A. Serga, and B. Hillebrands
    In: Topics in Applied Physics, Vol.125: Magnonics From Fundamentals to Applications, S. O. Demokritov, and A. N. Slavin (eds.), pp. 243-255
    Springer, Berlin (2013)
  11. YIG magnonics
    A. A. Serga, A. V. Chumak, and B. Hillebrands
    J. Phys. D: Appl. Phys. 43, 264002 (2010)