Arbeitsgruppe Prof. Hillebrands

Junior Research Group Nanoscaled Magnonic Hybrids

Group leader: Jun.-Prof. Dr. Philipp Pirro

Scientific objectives

Spin waves, the elementary low energy excitations of an ordered spin system, and their bosonic quanta, magnons, carry energy and angular momentum in the form of spin. The field of magnonics aims to create devices for sensing, data processing and logic which are based on spin waves and their outstanding properties like intrinsic nonlinearity and nanometer wavelengths at GHz frequencies.

Our scientific aim is to explore and combine physical phenomena which can be used to realise novel magnonic hybrid systems with novel and superior characteristics. To achieve this goal, we investigate magnonics systems experimentally and using micromagnetic simulations with a special focus on:

  • Nonlinear spin-wave phenomena in micro- and nanostructures

  • Nanoscaled magnonic devices for unconventional data processing

  • Novel materials for magnonics including low-damping Heuler compounds

  • Hybrid systems combining magnonics with spintronic and phononic systems

  • Amplification and control of coherent spin-waves in micro-and nanostructures using parametric processes

  • Nonreciprocal magnonic systems based on dipole-dipole and DMI interactions

  • Recent Publications and Submissions

    Full publication list
    1. Temperature dependence of spin pinning and spin-wave dispersion in nanoscopic ferromagnetic waveguides
      B. Heinz, Q. Wang, R. Verba, V. I. Vasyuchka, M. Kewenig, P. Pirro, M. Schneider, T. Meyer, B. Lägel, C. Dubs, T. Brächer, O. V. Dobrovolskiy, and A. V. Chumak
      Ukr. J. Phys. 65, 1094 (2020)

    2. A nonlinear magnonic nano-ring resonator
      Q. Wang, A. Hamadeh, R. Verba, V. Lomakin, M. Mohseni, B. Hillebrands, A. V. Chumak, and P. Pirro
      npj Comput Mater 6, 192 (2020)

    3. Interference of co-propagating Rayleigh and Sezawa waves observed with micro-focussed Brillouin light scattering spectroscopy
      M. Geilen, F. Kohl, A. Nicoloiu, A. Müller, B. Hillebrands, and P. Pirro
      Appl. Phys. Lett. 117, 213501 (2020)

    4. A magnonic directional coupler for integrated magnonic half-adders
      Q. Wang, M. Kewenig, M. Schneider, R. Verba, F. Kohl, B. Heinz, M. Geilen, M. Mohseni, B. Lägel, F. Ciubotaru, C. Adelmann, C. Dubs, S. D. Cotofana, O. V. Dobrovolskiy, T. Brächer, P. Pirro, and A. V. Chumak
      Nat. Electron. 3, 765 (2020)
    5. Additional material: arXiv:1905.12353 arXiv:1902.02855

    6. Bose-Einstein condensation of nonequilibrium magnons in confined systems
      M. Mohseni, A. Qaiumzadeh, A. A. Serga, A. Brataas, B. Hillebrands, and P. Pirro
      New J. Phys. 22, 083080 (2020)

    7. Controlling the propagation of dipole-exchange spin waves using local inhomogeneity of the anisotropy
      M. Mohseni, B. Hillebrands, P. Pirro, and M. Kostylev
      Phys. Rev. B 102, 014445 (2020)

    8. Opportunities and challenges for spintronics in the microelectronics industry
      B. Dieny, I. L. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. O. Demokritov, J. Åkerman, A. Deac, P. Pirro, C. Adelmann, A. Anane, A. V. Chumak, A. Hirohata, S. Mangin, S. O. Valenzuela, M. C. Onbaşlı, M. d’Aquino, G. Prenat, G. Finocchio, L. Lopez-Diaz, R. Chantrell, O. Chubykalo-Fesenko, and P. Bortolotti
      Nat. Electron. 3, 446 (2020)

    9. Slow-wave based magnonic diode
      M. Grassi, M. Geilen, D. Louis, M. Mohseni, T. Brächer, M. Hehn, D. Stoeffler, M. Bailleul, P. Pirro and Y. Henry
      Phys. Rev. Applied 14, 024047 (2020)

    10. Optical elements for anisotropic spin-wave propagation
      M. Vogel, P. Pirro, B. Hillebrands and G. von Freymann
      Appl. Phys. Lett. 116, 262404 (2020)

    11. Propagation of spin-wave packets in individual nanosized yttrium iron garnet magnonic conduits
      B. Heinz, T. Brächer, M. Schneider, Q. Wang, B. Lägel, A. M. Friedel, D. Breitbach, S. Steinert, T. Meyer, M. Kewenig, C. Dubs, P. Pirro, and A. V. Chumak
      Nano Lett. 20, 4220 (2020)

    12. Bose–Einstein condensation of quasiparticles by rapid cooling
      M. Schneider, T. Brächer, D. Breitbach, V. Lauer, P. Pirro, D. A. Bozhko, H. Yu. Musiienko-Shmarova, B. Heinz, Q. Wang, T. Meyer, F. Heussner, S. Keller, E. Th. Papaioannou, B. Lägel, T. Löber, C. Dubs, A. N. Slavin, V. S. Tiberkevich, A. A. Serga, B. Hillebrands, and A. V. Chumak
      Nat. Nanotechnol. 15, 457 (2020)

    13. Review on spintronics: Principles and device applications
      A. Hirohata , K. Yamada, Y. Nakatani, L. Prejbeanu, B. Diény, P. Pirro, B. Hillebrands
      J. Magn. Magn. Mater. 509, 166711 (2020)

    14. Propagating magnetic droplet solitons as moveable nanoscale spin-wave sources with tunable direction of emission
      M. Mohseni, Q. Wang, M. Mohseni, T. Brächer, B. Hillebrands, and P. Pirro
      Phys. Rev. Applied 13, 024040 (2020)

    15. Parametric generation of propagating spin waves in ultrathin yttrium iron garnet waveguides
      M. Mohseni, M. Kewenig, R. Verba, Q. Wang, M. Schneider, B. Heinz, F. Kohl, C. Dubs, B. Lägel, A. A. Serga, B. Hillebrands, A. V. Chumak, and P. Pirro
      Phys. Status Solidi RRL 14, 2000011 (2020)

    16. Experimental realization of a passive GHz frequency‐division demultiplexer for magnonic logic networks
      F. Heussner, G. Talmelli, M. Geilen, B. Heinz, T. Brächer, T. Meyer, F. Ciubotaru, C. Adelmann, K. Yamamoto, A. A. Serga, B. Hillebrands, and P. Pirro
      Phys. Status Solidi RRL 14, 1900695 (2020)

    Zum Seitenanfang