Arbeitsgruppe Prof. Hillebrands

Junior Research Group Nanoscaled Magnonic Hybrids

Group leader: Jun.-Prof. Dr. Philipp Pirro

Scientific objectives

Spin waves, the elementary low energy excitations of an ordered spin system, and their bosonic quanta, magnons, carry energy and angular momentum in the form of spin. The field of magnonics aims to create devices for sensing, data processing and logic which are based on spin waves and their outstanding properties like intrinsic nonlinearity and nanometer wavelengths at GHz frequencies.

Our scientific aim is to explore and combine emerging physical phenomena which can be used to realise novel magnonic hybrid systems with novel and superior characteristics. We have a particular focus on:

  • Nonlinear spin-wave phenomena in micro- and nanostructures
  • Nanoscaled magnonic devices for unconventional data processing
  • Novel materials for magnonics including low-damping Heuler compounds
  • Hybrid systems combining magnonics with spintronic and phononic systems
  • Amplification and control of coherent spin-waves in micro-and nanostructures using parametric processes
  • Nonreciprocal magnonic systems based on dipole-dipole and DMI interactions
  • To achieve our goals, we investigate magnonics systems experimentally by Brillouin light scattering spectroscopy and inductive techniques. To study and optimize magnonic systems before fabrication, we employ massively parallelized micromagnetic simulations. These simulations are run and analysed by our home-made AITHERICON software platform with the aim to use artificial intelligence, neural networks and inverse design methods to create magnonic systems with designed and superior properties for wave-based transport and data processing.

    Selected recent publications and accepted submissions

    Full publication list
    1. Control of the Bose-Einstein condensation of magnons by the spin-Hall effect
      M. Schneider, D. Breitbach, R. Serha, Q. Wang, A. A. Serga, A. N. Slavin, V. S. Tiberkevich, B. Heinz, B. Lägel, T. Brächer, C. Dubs, S. Knauer, O. V. Dobrovolskiy, P. Pirro, B. Hillebrands and A. V. Chumak
      Physical Review Letters (2021)

    2. Advances in coherent magnonics
      P. Pirro, V. I. Vasyuchka, A. A. Serga, B. Hillebrands
      Nat Rev Mater (2021)

    3. Nonlinear dynamics of topological ferromagnetic textures for frequency multiplication
      D.R. Rodrigues, J. Nothhelfer, M. Mohseni, R. Knapman, P. Pirro, and K. Everschor-Sitte
      Phys. Rev. Applied 16, 014020 (2021)

    4. Fully Resonant Magneto-elastic Spinwave Excitation by Surface Acoustic Waves under Conservation of Energy and Linear Momentum
      M. Geilen, A. Nicoloiu, D. Narducci, M. Mohseni, M. Bechberger, M. Ender, F. Ciubotaru, A. Müller, B. Hillebrands, C. Adelmann, P. Pirro

    5. Stimulated-Raman-adiabatic-passage mechanism in a magnonic environment
      Q. Wang, T. Brächer, M. Fleischhauer, B. Hillebrands, P. Pirro
      Appl. Phys. Lett. 118, 182404 (2021)

    6. Inverse-design magnonic devices
      Q. Wang, A. V. Chumak, and P. Pirro
      Nat. Commun. 12, 2636 (2021)

    7. Long-range spin-wave propagation in transversely magnetized nano-scaled conduits
      B. Heinz, Q. Wang, M. Schneider, E. Weiß, A. Lentfert, B. Lägel, T. Brächer, C. Dubs, O. V. Dobrovolskiy, P. Pirro, and A. V. Chumak
      Appl. Phys. Lett. 118, 132406 (2021)

    8. Controlling the nonlinear relaxation of quantized propagating magnons in nanodevices
      M. Mohseni, Q. Wang, B. Heinz, M. Kewenig, M. Schneider, F. Kohl, B. Lägel, C. Dubs, A. V. Chumak, and P. Pirro
      Phys. Rev. Lett. 126, 097202 (2021)

    9. A nonlinear magnonic nano-ring resonator
      Q. Wang, A. Hamadeh, R. Verba, V. Lomakin, M. Mohseni, B. Hillebrands, A. V. Chumak, and P. Pirro
      npj Comput Mater 6, 192 (2020)

    10. Interference of co-propagating Rayleigh and Sezawa waves observed with micro-focussed Brillouin light scattering spectroscopy
      M. Geilen, F. Kohl, A. Nicoloiu, A. Müller, B. Hillebrands, and P. Pirro
      Appl. Phys. Lett. 117, 213501 (2020)

    11. A magnonic directional coupler for integrated magnonic half-adders
      Q. Wang, M. Kewenig, M. Schneider, R. Verba, F. Kohl, B. Heinz, M. Geilen, M. Mohseni, B. Lägel, F. Ciubotaru, C. Adelmann, C. Dubs, S. D. Cotofana, O. V. Dobrovolskiy, T. Brächer, P. Pirro, and A. V. Chumak
      Nat. Electron. 3, 765 (2020)
      Additional material:arXiv:1905.12353arXiv:1902.02855

    12. Opportunities and challenges for spintronics in the microelectronics industry
      B. Dieny, I. L. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. O. Demokritov, J. Åkerman, A. Deac, P. Pirro, C. Adelmann, A. Anane, A. V. Chumak, A. Hirohata, S. Mangin, S. O. Valenzuela, M. C. Onbaşlı, M. d’Aquino, G. Prenat, G. Finocchio, L. Lopez-Diaz, R. Chantrell, O. Chubykalo-Fesenko, and P. Bortolotti
      Nat. Electron. 3, 446 (2020)

    13. Slow-wave based magnonic diode
      M. Grassi, M. Geilen, D. Louis, M. Mohseni, T. Brächer, M. Hehn, D. Stoeffler, M. Bailleul, P. Pirro and Y. Henry
      Phys. Rev. Applied 14, 024047 (2020)

    Zum Seitenanfang