Chapter 5.9: The Ising model in one dimension with magnetic field

$$
H_{\text {ling }}=-J \sum_{J} S_{j} S_{j+1}-B \sum_{j} S_{j}
$$

Definition of the transfer matrix

$$
Z=\sum_{\left\{S_{j}\right\}} e^{-\beta H}=\sum_{\left\{S_{j}\right\}} e^{\beta \sum_{j}\left(J S_{j} S_{j+1}+B S_{j}\right)}=\sum_{\left\{S_{j}\right\}} \prod_{j} e^{\beta J S_{j} S_{j+1}+\beta \frac{B}{2}\left(S_{j}+S_{j+1}\right)}
$$

$$
Z=\operatorname{tr} T^{N} \quad \text { where } \quad T=\left(\begin{array}{cc}
e^{\beta(J+B)} & e^{-\beta J} \\
e^{-\beta J} & e^{\beta(J-\beta)}
\end{array}\right)
$$

5.9-2 The Ising model in one dimension with magnetic field

Eigenvalues of the Transfer matrix

$$
\begin{aligned}
U^{T} T U & =\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \text { where } \\
\lambda_{1 / 2} & =e^{\beta J} \cosh \beta B \pm \sqrt{e^{-2 \beta J}+e^{2 \beta J}} \sinh ^{2} \beta B
\end{aligned}
$$

Exact partition function
$Z=\operatorname{tr} T^{N}$
5.9-3 The Ising model in one dimension with magnetic field

Magnetization and susceptibility

$$
M=-\frac{\partial F}{\partial B}=N \frac{\sinh \beta B}{\sqrt{\sinh ^{2} \beta B+e^{-4 \beta J}}}
$$

$$
C_{H}=-T \partial^{2} f / \partial T^{2}
$$

