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Chapter 5.12: Scale Invariance near critical points 
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Scaling dimension:   

near critical point, each quantity changes with a characteristic powerlaw under rescaling with λ 
 
 
Free energy is self-similar function of  cTTt   and  cBBh   

 
 
 
 
 
 

 

 
 
 
 
 
 
 
Scaling for 0h  and/or 0t   
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Hence: 
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Mathematical tool for scale invariance: The renormalization group (RG) 
 
 

- Changing length or energy scales will result in self-similar model 
 
 
 
- Microscopic details become less important as length scales are increased 

 
 
 

- At very long length scales, short wave length excitations are “lost” 
 
 
 
 

- Integrating out:  partial sum over lost degrees of freedom gives new effective model  
 
 
 
 
Renormalization group equations:  rescaling of parameters under change of “cut-off” 
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Example:  The 2D Ising model at B=0    
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Ansatz 
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Solution 
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Critical point  )4ln(cosh
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Flow near fixed point: Linearization
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Generalized description of the RG approach: 
  

- rescale energy, momentum or distance cutoff:   
 
 

- Scale invariant functions are rescaled according to scaling dimension 
 
 

- All coupling constant are redefined under rescaling.    

- Repeated transformation form are possible (“group”)  
 

- Finally, find RG flow equations   where         

 


