Chapter 4.3 Indistinguishable Quantum particles

Indistinguishable particles are not independent
Bosons: superposition of states is symmetric under exchange

Fermion: superposition of states is antisymmetric under exchange
4.3-2 Indistinguishable quantum particles

Example: two particles in three states
4.3-3 Indistinguishable quantum particles

We expect significant quantum effects if the number of accessible states is not large compared to the number of parcticles

Classical

Quantum
4.3-4 Indistinguishable quantum particles

For ideal gas of independent quantum particles:

Number of accessible states is given by single particles states up to temperature $k_{B} T$
$\int_{0}^{k_{B} T} d \varepsilon g(\varepsilon)$
Single particle density of states
$g(\varepsilon)=\sum_{r} \delta\left(\varepsilon_{r}-\varepsilon\right)=\frac{m^{3 / 2} V}{\sqrt{2} \pi^{2} \hbar^{3}} \sqrt{\varepsilon}$

Thermal wave length $\lambda_{T}=\hbar \sqrt{\frac{2 \pi}{m k_{B} T}}$
4.3-5 Indistinguishable quantum particles

Canonical probability $P_{r}=\frac{e^{-\beta \varepsilon_{r}}}{Z_{1}}$ to find a single particle in the microstate r is related to probability that this state is occupied.
4.3-6 Indistinguishable quantum particles

Summary: Each basis state is fully symmetrized/anti-symmetrized superposition.
Impossible to specify which particle is in which state. Instead specify
occupation numbers n_{r} = number of particles in state $|r\rangle$

Basis states:

Bosons
$\left|n_{r_{1}}, n_{r_{2}}, n_{r_{3}}, n_{r_{4}}, \ldots \ldots\right\rangle_{B}$

Fermions
$\left|n_{r_{1}}, n_{r_{2}}, n_{r_{3}}, n_{r_{4}}, \ldots . . .\right\rangle_{F}$

