3.9-1 Debye Model

Chapter 3.9: The Debye Model

Debye (1911): Consider (known) vibrational eigenmodes in a solid, but use Einstein quantization
Then: Approximate dispersion for small energies.

Classical vibrational eigenmodes of a 3D monoatomic solid:

2 transverse and one longitudinal modes




3.9-2 Debye Model

Independent distinguishable modes: =% > &, => > ho (0, + %)
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3.9-3 Debye Model

Debye approximation:

1.) The dispersion is linear and isotropic for all modes with an average velocity v

2.) The total number of modes is limited to 3N. This determines a cutoff wavevector Ko .

3.) There is only one parameter for both the average velocity and the cutoff: @y =VKg
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3.9-4 Debye Model

Debye density of (frequency) states: o, VK
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3.9-5 Debye Model

Debye energy and specific heat
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Specific heat data (points) for silver. The lines are the fits from the

Einstein and Debye results.

The Debye curve goes through the data points.



