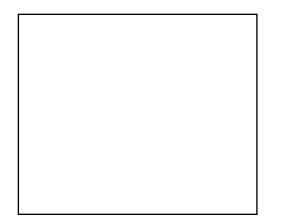
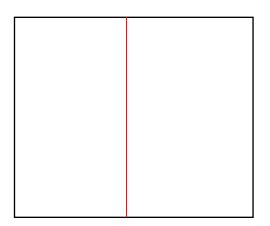
Chapter 3.2: The Ideal classical Gas in the Canonical Ensemble

Independent particles $\{\vec{r}_1, \vec{p}_1, \vec{r}_2, \vec{p}_2, \vec{r}_3, \vec{p}_3, ..., \vec{r}_N, \vec{p}_N\}$

$$\varepsilon(\{\vec{r}_j, \vec{p}_j\}) = \sum_j \frac{\vec{p}_j^2}{2m}$$

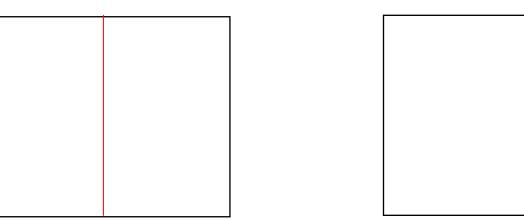

 $Z = (Z_1)^N$


Summary

Summary: Microcanonical vs. Canonical Ensemble

Microcanonical ensemble	Canonical ensemble	

Entropy


Gibbs paradox and Gibbs factor

For indistinguishable particles avoid overcounting by exchanging indices:

$$\int \prod_{j} d^{3} \vec{r}_{j} d^{3} \vec{p}_{j} \rightarrow \frac{1}{N!} \int \prod_{j} d^{3} \vec{r}_{j} d^{3} \vec{p}_{j}$$

.

Entropy of mixing

