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For several decades it has been known that divergences arise in the ground-state energy and chemical potential
of unitary superfluids, where the scattering length diverges, due to particle-hole scattering. Leading textbooks
and research articles recognize that there are serious issues but ignore them due to the lack of an approach that
can regularize these divergences. We find a solution to this difficulty by proposing a general method, called
the weighted Hartree-Fock-Bogoliubov theory, to handle multiple decomposition channels originating from the
same interaction. We distribute the interaction in weighted channels determined by minimization of the action,
and we apply this idea to unpolarized Fermi superfluids. Using our method, we solve a long-standing difficulty
in the partitioning of the interaction into Hartree, Fock, and Bogoliubov channels for Fermi superfluids, and
we obtain a phase diagram at the saddle-point level, which contains multichannel nonperturbative corrections.
In particular, we find a previously overlooked superfluid phase for weak interactions, which is dominated by
particle-hole processes, in addition to the usual superfluid phase only containing particle-particle physics.
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I. INTRODUCTION

The subject of ultracold Fermi gases is of great interest
to the atomic, condensed matter, and nuclear physics com-
munities because it can explore the evolution from weakly
to strongly correlated regimes by tuning interaction strengths
via Fano-Feshbach resonances [1-6] or modifying the density
[7-10]. In condensed matter physics, the effective interac-
tions between fermions (electrons and/or holes) in a solid are
largely unknown, and for each material one has to rely on
guesses of the type and range of the Fermi-Fermi interactions
to establish the phase diagrams of solids [11-17]. In nuclear
physics, the interactions between fermions (neutrons and/or
protons) are typically short-ranged, and their effective range
is known to play a role in determining the phase diagram of
nuclear matter [18-25]. In atomic physics, the interactions
between neutral ultracold fermions (atoms) are also short-
ranged, and for experimental systems such as °Li and *°K it
is commonly believed that the effective range plays no role in
determining the phase diagram of Fermi gases [26].

Despite a substantial amount of experimental work in °Li
and “°K [27-38], there is no reliable thermometry that can
be used to determine, with good precision, the critical tem-
perature of the superfluid phase of these ultracold fermions,
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as interactions are tuned from the Bardeen-Cooper-Schrieffer
(BCS) to the Bose-Einstein condensation (BEC) regimes. This
experimental difficulty arises for both harmonic traps [27-39]
and for the more recent box traps [40-42]. However, some
regions of the phase diagram are accessible to direct thermom-
etry; most prominently is the unitary region, believed to have
universal thermal behavior [43-45]. In the BCS regime, the
method of adiabatic sweeping to the BEC side is commonly
used as an indirect method of thermometry [29,30,46,47].
However, in the BCS regime, a direct method was suggested
recently, allowing us to unravel interaction and thermal con-
tributions in the measured densities of unpolarized trapped
fermionic atoms [48]. Furthermore, some creative techniques,
using machine learning, were used to attempt the determina-
tion of the critical temperature for superfluidity of ®Li [49,50]
in three dimensions. Nevertheless, precise and reliable direct
thermometric experimental methods over the entire BEC-BCS
crossover are still lacking.

Early functional integral theoretical efforts provided a ba-
sic understanding of the phase diagram of ultracold fermions
with short-ranged s-wave interactions, but they only included
the effects of the Bogoliubov (pairing) channel [51,52], that
is, only particle-particle fluctuations were investigated, and
particle-hole effects were neglected. However, it is known
theoretically that particle-hole fluctuations renormalize the
critical temperature in the weak-coupling BCS regime, as
demonstrated by Gorkov-Melik-Bakhudarov (GMB) [53].
Other early theoretical investigations, using diagramatic
methods [54-56], only include the pairing channel and its
fluctuations. In a homogeneous system, the typical argument
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for ignoring Hartree contributions is that they can be absorbed
into the chemical potential; however, for a fixed number
of particles, the actual value of the chemical potential with
respect to the band minimum can determine whether the
Fermi system is degenerate or not, and thus it has physical
consequences. Furthermore, as GMB showed, particle-hole
fluctuations can reduce the BCS critical temperature by a
factor of 2.2, which is a substantial effect. We note that GMB
did not include Hartree corrections to the BCS mean-field
state, rather they computed particle-hole fluctuations on top
of the BCS theory, meaning that their approach is incomplete.

Some authors neglect Hartree contributions for simplicity
[57-59]; others include them by partitioning half of the inter-
action energy into the Bogoliubov (particle-particle) channel
and the other half into the Hartree (particle-hole) channel
[48,60]. In both cases, there is a degree of arbitrariness that
needs to be addressed, because different choices can lead
to different qualitative and quantitative answers. Since the
physics associated with s-wave pairing cannot depend on the
choice of the decomposition, a higher principle needs to be
invoked to decide how much of the interaction energy goes
into each channel. Furthermore, the equally or arbitrarily
weighted inclusion of Hartree (particle-hole) and Bogoliubov
(particle-particle) channels for short-ranged interactions leads
to divergent Hartree energy and chemical potential at unitarity
[6,58-60], a difficulty that cannot be ignored in the context of
short-ranged or zero-ranged interactions, as applied to ultra-
cold gases.

In this paper, we present a general solution to the arbitrari-
ness of separation between Hartree (direct), Fock (exchange),
and Bogoliubov (pairing) channels for interacting fermions.
We introduce a method that weights the Hartree, Fock, and
Bogoliubov partitions, in which the interaction can be de-
composed, with the constraint that the sum of the respective
weights is 1. The contribution of each partition is obtained
by minimizing the action with respect to the weights, thus
eliminating the arbitrary separation of the channels, and dis-
tributing the interaction energy into each sector without bias.
We apply this idea to the case of short-ranged interactions,
where our method also provides a solution to the unphysi-
cal divergence of the Hartree energy and chemical potential
at unitarity [6,61], when the interaction energy is equally
distributed between the Hartree and Bogoliubov channels.
Our method eliminates the miscounting or double-counting of
states that contribute to each channel in standard approaches,
and thus removes the aforementioned unphysical results.

We emphasize that our approach can, in principle, be used
for any type of interactions, where two or more channels
compete for the partitioning of the same interaction term,
potentially leading to two or more order parameters describing
spontaneously broken symmetries. The method can be used
irrespective of the underlying type of interaction, which could
be s-wave, p-wave, d-wave, Coulomb, dipolar, or spin-spin.
However, we illustrate our technique in the simplest possible
case: Fermi systems with s-wave short-ranged attractive in-
teractions, identical masses, and equal populations. There are
two important consequences of introducing weighting factors
in the partitioning of interactions. The first consequence is
that the simultaneous regularization of order-parameter equa-
tions, for the Bogoliubov and Hartree channels, requires the

introduction of a many-body effective range. The second con-
sequence is that the Hartree shift acquires the status of an
order parameter, which vanishes before the unitarity regime
is reached, thus removing the unphysical (singular) behavior
in the Hartree energy or the chemical potential at unitarity,
as described in textbooks [6]. The vanishing of the Hartree
shift leads to the emergence of a new phase that we call the
Hartree superfluid, where the Hartree and Bogoliubov order
parameters are nonzero, in contrast to the standard superfluid
where the Hartree order parameter is zero and the Bogoliubov
order parameter does not vanish.

The remainder of the paper is organized as follows. In
Sec. II, we present our weighted Hartree-Fock-Bogoliubov
theory for the case of contact s-wave interactions. We de-
compose the interaction into Hartree, Fock, and Bogoliubov
channels, then we particularize to equal masses and balanced
populations, where only the Hartree and Bogoliubov channels
are important. In addition, we introduce Hartree and Bogoli-
ubov Hubbard-Stratonovich fields and derive the system’s
effective action. In Sec. III, we perform a saddle-point analy-
sis of the weighted Hartree-Bogoliubov theory and obtain the
corresponding self-consistency relations for the Hartree and
Bogoliubov order parameters. Furthermore, when the Hartree
and Bogoliubov channels are considered simultaneously, we
show that a many-body effective range is required to regular-
ize the theory. Moreover, we demonstrate that the Hartree and
Bogoliubov channels are nonperturbatively coupled already
at the saddle-point level. In Sec. IV, we discuss the resulting
ground-state properties in detail. First, we describe the phase
diagram in the interaction range versus interaction parameter
plane revealing the Hartree and the standard superfluid phases.
Second, we analyze the behavior of the order parameters, the
chemical potentials, and the ground-state energies in each of
the phases. In particular, we determine asymptoptic behaviors
in both weak and strong coupling, as well as at unitarity. In
Sec. V, we obtain an analytic expression for the pair size,
which serves as an indicator of the evolution from weak
to strong coupling. We also describe the various asymptotic
limits of the pair size with respect to the interaction param-
eter and range. In Sec. VI, we reveal the finite-temperature
phase diagram at the saddle-point approximation, as well
as the behaviors of the Hartree and Bogoliubov order pa-
rameters, and of their weighting factors. Finally, we make
a quick comparison between the pairing temperature calcu-
lated at the saddle-point with Hartree corrections and the
pairing temperature without the Hartree term, but including
particle-hole fluctuations, as performed by GMB. In Sec. VII,
we concisely summarize our findings. Finally, in Sec. VIII,
we outline important next steps for simultaneously including
both particle-hole and particle-particle fluctuations, which are
essential for determining the finite-temperature phase diagram
throughout the evolution from weak to strong coupling.

II. WEIGHTED HARTREE-FOCK-BOGOLIUBOV THEORY

In the following discussion, we present the weighted
Hartree-Fock-Bogoliubov (WHFB) theory to describe Fermi
superfluids with contact s-wave interactions. We use the func-
tional integral method to introduce the weighting constraint
and to determine the contribution of each channel via a
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minimization procedure of the system’s action. The devel-
opment of such a theory is important because it solves
long-standing theoretical issues regarding channel decompo-
sitions [62,63] and divergences [6]. Moreover, the utilization
of our method is motivated by the increasing number of
experimental platforms that allow for more precise com-
parisons between theory and experiment in three spatial
dimensions [48,64]. Furthermore, our methodology has also
important ramifications in addressing related issues in two-
dimensional systems that were experimentally investigated
recently [65-67].

A. Interaction decomposition

We discuss the pairing theory of fermionic superfluidity,
from BCS to BEC for two fermionic species or states labeled
by s = (1, |) representing, for instance, two hyperfine states
of ®Li or °K. We explore the three-dimensional (3D) dilute
regime of this system using the Hamiltonian density

Hx) =D T 0K (x) + V(x), (0

where ¥, i are anticommuting Grassmann fields. Here, the
kinetic energy operator is
VZ

Ks=—
s 2my

— s @

with respect to the chemical potential ug, and mg stands for
the mass characterizing the species or state s. The interaction
term

V(x) = —g¥, (O | (), ()94 (x) 3)

corresponds to an s-wave contact attractive interaction, where
the strength g is considered to be positive, i.e., we assume
g > 0. The interaction in Eq. (3) is SU(2) invariant with
respect to the label s = (1, |) and is written in normal or-
der using the four-vector notation x = (X, t), where X is the
real-space position and t denotes imaginary time. The corre-
sponding action associated with the Hamiltonian in Eq. (1) is

Sy, vl= f dx[zm(xmfwsuwmm} )

Here, we used the notation [ dx = fo’g dr [dx, where B =
T-! is the inverse temperature in natural units, that is, & =
kg = 1.

Up to now, theories of interacting fermions have explored
one of the following options: (a) particle-hole channel only,
(b) particle-particle channel only, or (c) an equal mixture of
the two, where the particle-hole and particle-particle chan-
nels have equal weights. In (a), one explores instabilities
driven by the particle-hole channel when direct and exchange
interactions are present [68]. In (b), one investigates in-
stabilities driven by particle-particle (hole-hole) interactions
resulting in pairing [51,52,54,56,69-72]. In (c), one ana-
lyzes instabilities with equal weights in the particle-hole and
particle-particle channels [48,73,74]. Although this last option
includes Hartree, Fock, and Bogoliubov terms, it treats the
channels using equal weights. As a result of this arbitrary

choice, the equal weight method miscounts contributions by
overestimating one channel and underestimating another.

To remove the arbitrariness of the choices (a), (b), or (c),
and the miscounting that they introduce, we use a weighted
Hartree-Fock-Bogoliubov theory by partitioning the interac-
tion into the Hartree, Fock, and Bogoliubov channels with
weights {h, f, b}, respectively, satisfying the constraint & +
f 4+ b=1. We implement this procedure by partitioning the
interaction V(x), shown in Eq. (3), into

V(@) = Vu(x) + Ve(x) + Vg (x), &)

where the Hartree (H), Fock (F), and Bogoliubov (B) terms
are

Vh(x) = —gu¥ )Y ()Y | ()Y (x), (6a)
VE(x) = +ge ¥, ()Y, ()Y | ()4 (x), (6b)
VB(x) = —g¥, (¥, ()Y, (X)9r4 (x). (6¢)

Notice that the interactions written in terms of the Grass-
mann fields satisfy the constraint g = gy + gr + gg. This is
equivalent to attributing weights to each interaction channel
through the relations gy = hg, gr = fg, and gg = bg, with
h+ f+b=1and {h, f, b} € [0, 1]. With these constraints,
the weights {h, f, b} represent the probability of participation
of each channel in the interaction decomposition. Using this
partitioning, we rewrite the action in Eq. (4) as

SV, ¥ = SV, ¥1+ Sulvr, 1+ Selvr, v1+ Selv, 1,
)

where the kinetic contribution reads
Scinl V. Y] = f dx Y Y@@ + K)gx)  (8)
N
and the interaction corresponding to each separate channel is

S 9] = / dr Vi), ©)

with J = {H, F, B} labeling the the Hartree, Fock, and Bo-
goliubov channels, respectively. The specific value of the
weights {h, f, b} is obtained via the minimization of the action
S[¥, ¥] given in Eq. (7).

To understand the impact on thermodynamic properties,
when including all three channel simultaneously, we need to
analyze the grand-canonical partition function

zZ= fww exp(~SIT. ). (10)
where the symbol ¢ represents functional integration over
the Grassmann fields, which are antiperiodic with respect to
imaginary time. This yields the grand-canonical potential

QV,T,u)=-T InZ. (11)

Therefore, the weights {h, f, b} are determined either by min-
imizing the action in Eq. (7) or the grand-canonical potential
in Eq. (11), according to the principle of minimal sensitivity
[75,76].

The discussion above shows that our approach treats the
Hartree, Fock, and Bogoliubov channels without biases and at
a nonperturbative level, unlike earlier attempts of including
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particle-hole effects via the Hartree and Fock channels as
perturbations about the Bogoliubov channel [53,77]. Further-
more, our procedure removes the arbitrariness of assigning
equal weights to different channels, which leads to a mis-
counting (overcounting or undercounting) of contributions of
different states to each interaction sector. Next, we introduce
the Hubbard-Stratonovich fields separately in the different
channels to decouple the interaction terms.

B. Hubbard-Stratonovich transformations

In investigating the functional integral (10), the next step
relies on factorizing the integrand into different exponen-
tials corresponding to the respective interaction channels.
For this purpose, we apply to each exponential factor a
specific Hubbard-Stratonovich transformation (HST), which
decomposes the interaction with four fermionic fields into an
auxiliary bosonic and two fermionic fields. In this section, we
concentrate on the Hartree and Bogoliubov decompositions,
because our main interest in this manuscript is the application
of our method for equal mass and balanced populations, as
discussed in Sec. II C and beyond.

To tackle the Hartree channel we decompose the interac-
tion as

V() = —gu.ry o1 (00, (0) — grpr oy (001 (x), - (12)

where both contributions are weighted independently by gy 1
and gy, |4 with the constraint gy = gu, 4+, + guy+. For Hermi-
tian and reciprocal systems, the two interactions gy 4+, and
gu,+ are indeed the same quantity, that is, equal to g /2. Even
though non-Hermitian and nonreciprocal interactions are not
considered in this paper, we kept a more general notation to
allow for future research in this direction. In addition, we use
this notation as a bookkeeping device for the matrix elements
shown below in Eq. (17).

Further, we set the spin-resolved density to ps(x) =
Ws (x)¥s(x) and introduce a real valued bosonic field

Aj(@) = (Apy () App(x) (13)

coupling to the Hartree channel source term
. _ (Pt 14
JH(X) (,Ol(x)>, ( )

which is associated with particle-hole processes for the dif-
ferent densities. The Hubbard-Stratonovich transformation for
the Hartree channel action in Eq. (9) then reads

e_SH[E-‘/f] =Ny f DAHe_S:“[AH;E’W, (15)
where the auxiliary action is
Sl A ¥ V]

1
= /dx [5 AL (OMyAg(x) + AEI(x)jH(x)]. (16)

Here the matrix that couples Aﬁ(x) and Ay (x) is

_Ifo 1/gu.1)
M = 2 <1/8H,¢¢ 0 ’ an

Thus, the auxiliary action in Eq. (16) is explicitly given by
evaluating the scalar products

SH [Am: ¥, ¥l

= /dx {AHw(X)AH,T(x) N
4gH.11

Ag 4 (x)Ag, ()
48H, |1

+ An gy ()Y ()Y (x) + AH,¢(X)WT(X)%(X)}- (18)

This transforms the direct contribution of the interaction, after
which we will focus on the pairing terms. As the Bogoliubov
channel is represented by complex scalar fields, we rewrite
its action in Eq. (9) by means of the Hubbard-Stratonovich
transformation

6*313[%1//1 — NB f DZBDABE*SLIXB,AB,E,W_ (19)
The explicit form of the auxiliary action is
SanlAp. Ap. Y. Y] = / dx[Ap()MpAp(x) + jp(¥) Ap(x)

+ jp(X)Ap(x)], (20)

when expressed in terms of the auxiliary fields Ag(x), Ap(x)
and the source term jg(x). The Bogoliubov channel source
term

JB(x) = ¥ ()¢ (x) @

is associated with singlet pairing, and we identify Mp = ggl.
Defining Zy[, ¥] = e~S4l¥-¥] and using Eq. (15), as well as
defining Zg[¥, ] = eS8V V] and using Eq. (19), we rewrite
the grand-canonical partition function shown in Eq. (10) in
terms of the auxiliary fields {Ay s, Ap, A} as

z- ?{DEW exp(—Snl ¥, YD Zw[T. ¥1,  (22)

where the decomposition into the two interaction channels is
described by the product

Zusly, ¥1 = Zuly, v12s[¥, ¥]. (23)

As a consequence, using Eq. (23), the Hubbard-Stratonovich
transformations in Eq. (15) for the Hartree sector and in
Eq. (19) for the Bogoliubov channel, transform the partition
function in Eq. (22) to

z— fpapw 7§ DIA)exp(—Sia[ . ¥: (A}, (24)

Here, the notation {A} abbreviates the set {AH,S,ZB, Ag}
of auxiliary fields, and D{A} represents their combined
functional integral measure DAH,SDKBDAB. The resulting
Hartree-Bogoliubov action

Sus[¥, V3 (AN = Sanl¥, ¥+ Sp[Aws ¥, ]
+ So[Bs, Ag; ¥, ] (25)

contains the Kinetic contribution Sy, [J, Y] given in Eq. (8)
for equal masses and balanced populations, the auxiliary
Hartree action SH [Ans, ¥, ¥] described in Eq. (16), and

aux

the auxiliary Bogoliubov action SB [Ag, AB,E, Y] from

aux
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Eq. (20). Writing the Hartree-Bogoliubov (HB) action explic-
itly,

Susl¥, ¥; {A}]
= / dx{ D T @AY () + A (OF | ()Y (x)

+ An (DY ()Y (X) + Ap(0)Y) ()4 (x)

_ _ A A
T ARG (0T () + 220280
8B
LA @A) | A ()AR, ) 26)
4gu.py 4gu 1

reveals that it is quadratic in the fermionic as well as in
the bosonic auxiliary fields. We emphasize that the Hartree-
Bogoliubov action in Eq. (27), expressed in terms of the
Hubbard-Stratonovich fields, represents a generalization of
the cases, where either only the Hartree sector [68] or only the
Bogoliubov channel [21,51,52,54,56,69-72] occurs and for
now does not have any restrictions to the two spin-populations
ns = (¥, (x)¥s(x)). A similar approach can be applied also for
the Fock term in Eq. (6b), but since we focus next on the case
of equal masses and balanced populations, the Fock terms are
not relevant, as explained in Sec. IIC. Now, we are ready to
use the method outlined above to investigate nonperturbative
effects of the Hartree (particle-hole) sector on the Bogoliubov
(particle-particle) channel. These nonperturbative effects re-
flect the coupling between the Hartree and Bogoliubov fields
that result from integrating out the fermionic degrees of free-
dom and keeping track of the interaction partitioning between
the two channels via gy 4y, gn, |4, and gg. These steps lead to
an effective action, which only includes the bosonic auxiliary
fields and the weighting parameters.

Thus, we discuss next the example of balanced populations
and equal masses, as the simplest example of the appli-
cation of general weighted Hartree-Fock-Bogoliubov theory
discussed above.

C. Balanced populations and equal masses

To understand the effects of the competing channels
{H,F,B} in systems of balanced populations and equal
masses, we notice that the interaction term of the Hamiltonian
density given in Eq. (1) is local, includes only the singlet
s-wave component, and preserves SU(2) symmetry. Also the
kinetic energy term is spin-diagonal and proportional to the
identity matrix in spin space, and thus is also SU(2) invariant.
Due to these symmetries, no spin-flip processes are allowed
and the Fock source field is absent. The irrelevance of the
Fock term is not directly connected to the range of the sin-
glet s-wave interaction used, but rather to the preservation of
SU(2) symmetry. For balanced populations and equal masses,
we consider only the case of spontaneously broken U(1) sym-
metry, but SU(2) symmetry is preserved. Fock channel source
terms involve spin flips, breaking SU(2) symmetry explicitly,
and thus they do not appear for spontaneously broken U(1) but
preserved SU(2) symmetry. On the other hand, for imbalanced
populations and equal masses, when U(1) is spontaneously

broken and SU(2) is explicitly broken, a nontrivial solution for
the Fock order parameter may exist, because the system can
develop a magnetization. However, in the limit of balanced
populations and equal masses, the Fock order parameter is
identically zero, because it is proportional to the population
imbalance. The generalization of our theory to include pop-
ulation and/or mass imbalances will be the topic of our next
publication. In the present paper, our intention is to discuss the
simplest example possible, where the weighted Hartree-Fock-
Bogoliubov method needs to be applied.

Thus, for balanced populations and equal masses, the Fock
contribution does not emerge at a saddle-point level, that is,
gr = 0. Since we focus on the example of a single atomic
species with balanced populations, that is, u4 =, = n and
my = m, = m, the kinetic terms simplify to /4y = K|, = K =
—V?/(2m) — . Furthermore, equal populations implies that
Ay = An,y = An and using that gg+y = gu,y+ = gu/2
leads to two contributions: one originating from the Hartree
channel with weight A, yielding gy = hg, and the other from
the Bogoliubov channel with weight b included in gg = bg,
such that we have h+b =1 or gy + gg = g Under those
simplifications, the overall HB action from Eq. (26) becomes

Supl¥. ¥: {A}]
= / dx! D V@)@ + K (x) + Ap)Y, ()P4 (x)

+ Ap ()Y ()| (%) + Ap(o)[Y | () (x)
Ap(x)Ap(x) n Ag(x)An(x)

8B 8H

+ U Y (0] +

3

27

covering contributions from the Hartree and Bogoliubov
channels. The action in Eq. (27) is the starting point for
investigating the effects of particle-hole fluctuations not
only in the BCS regime [53] but throughout the BCS-BEC
crossover. Thus, we construct the effective action of the
Hartree-Bogoliubov sector by integrating out the fermions, as
discussed next.

D. Effective action

To obtain the effective action of our system, we write the

fermion fields as a Nambu spinor W (x) = (ET x) Y,(x)
and express the HB action from Eq. (27) as
_ _ Ap(X)Ap(x
Supl T, W, (A)] = / dx[w(xmwx) + %
B
A A
n H(X) H(x)i|’ 28)
8H
where matrix A has the structure
(0 + K+ Aup(x) Ag(x)
A= ( Ap(x) b —K—Anw) P
with I = —V2 /2m — ., as discussed earlier for equal masses

and balanced populations. The integration over fermionic
Grassmann fields is performed by converting the measure
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DyDyr into DWDW leading to the effective action
Serr({A}) = — In[Det(BA)]

2 2
+/£|:’3V|AB(X)| +ﬂVAH(X) ] (30)
BV 8B gH

where Det(8A) means the product of the eigenvalues of the
operator matrix SA, including spins. This represents the exact
effective action for the Hartree-Bogoliubov decomposition.
Therefore, integration over fermion fields in Eq. (24) leads
to the grand-canonical partition function

z= f@{A}exp(—Seff[{Am. 31)

To make progress towards a saddle-point description, we
write Ag(x) = A+ ne(x) for the superfluid order pa-
rameter and Ag(x) = Ap + nu(x) for the Hartree order
parameter. Here, Ap ¢ and Ay o represent saddle points, while
np(x) and ny(x) correspond to fluctuations. Such a represen-
tation leads to two contributions to the effective action. The
first one is the saddle-point action Sy[{A}] discussed below
in detail and the fluctuation action Sqyu[{Ao}; {n}] discussed
briefly in Sec. VIII, which represents the outlook of the paper.

For the rest of this section, we ignore fluctuations and
consider only the saddle-point contribution leading to the
grand-canonical partition function

2y = exp(—=Sol{Ao}]) (32)

with the saddle-point action

dx
Sol{Ao}] = — / 2 Infdet (8

Apol?  A?
+ﬂv<—| ;”' +—gH’°>. (33)
B H

The notation det (8Ay) refers to the determinant in the spin
subspace only, while the space-time part of the determinant
was converted into the integral f dx, and

_ (0 + K+ Anyp Ag o
Ao = ( Agy 9 — K — AH,O) (34)

represents the inverse propagator matrix. Performing a Fourier
transformation into momentum (k) and Matsubara (ik, ) space
with the fermionic Matsubara frequencies k, = 2n + 1) /8,
where 7 is an integer, we obtain

Sol{Ao}] = = > In[det(BAo )]
k

Apol? A?
+ﬂv<—| ;d +—gj{‘°>. (35)

Here, we use the four-momentum notation k = (ik,, k), as
well as the transformation 9, — —ik,, —iV — Kk, and K —
k?/2m — u, to write the Fourier transform of Eq. (34) as

Aox = —iked + (& + Apo)o-
+ Ap ot + Ap oo, (36)

where & = k?/(2m) — p is the kinetic energy with respect
to the chemical potential u, o; stands for the Pauli matrices

with j = {x,y,z}, and 6% = (0, £ ioy)/2 represent the spin
raising and lowering operators. In Eq. (35), the determinant

det(BAox) = B (iky — Ex)(iky + Ex) (37

is the product of the eigenvalues of ﬂgo,k, with the quasipar-
ticle dispersion being

Ei = i+ Aol + 18n . (38)

Notice that Sp in Eq. (35) contains a branch cut due to the log-
arithm, which needs to be carefully handled when recovering
the correct zero-point energy and the saddle-point equations to
be discussed next.

III. SADDLE-POINT ANALYSIS

In this section, we discuss the saddle-point equations de-
rived from our WHFB approach. We show that the Hartree
and Bogoliubov channels exhibit a nonanalytic and nonpertur-
bative coupling, and that the inclusion of both contributions
requires a many-body renormalization scheme to regularize
the order parameter equations. Our approach also solves a
long-standing issue with the Hartree contribution near uni-
tarity [6]. So, let us start our analysis by discussing next the
self-consistency relations.

A. Self-consistency equations

To establish self-consistency for Agy and Ap o, we ex-
tremize the action Sy given in Eq. (35), that is, we set
080/ Ano = 0 and 0S5p/9dAp o = 0. Evaluating these partial
derivatives leads to the saddle-point conditions
8H

Anyp = ~28v ; [en+ (k) — cu—(K)],  (39a)
__88
Apo =~y ;cB(k) (39b)

The relation given in Eq. (39a) represents the order param-
eter for the Hartree (particle-hole) channel, while Eq. (39b)
refers to the order parameter in the Bogoliubov (particle-
particle) channel. The functions appearing on the right-hand
side of Egs. (39a) and (39b) are given by

- lkn + (gk + AH,O)eikn()i

e, (k) = (k) — E2 , (40a)
_ App
cp(k) = —(ikn)2 = E]g (40b)

Note that the exponentials ki0* capture the existence of
a branch cut in the logarithm of Eq. (35) due to the ana-
lytical structure of det(8Ag ) shown in Eq. (37). This extra
care is necessary for recovering the zero-point energy in the
action Sy and the grand-canonical thermodynamic potential
Qo(V, T, ) = —B~"In 2. This is a well-known point that
can be found in textbooks [76,78,79].

In Eq. (39a) the interaction gy = hg appears, while in
Eq. (39b) the interaction gg = bg emerges. As highlighted
below in Sec. IV, we remove the arbitrariness of assigning
equal weights to the particle-hole and to the particle-particle
channels by preventing the miscounting of states involved in
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the Bogoliubov (particle-particle) and Hartree (particle-hole)
partitions. For this purpose, we extremize the action Sy with
respect to b, that is, set 3S5y/db = 0, subject to the constraint
h+b=1 (gu+ gs = g) and the physical requirement that
0 < b < 1, which guarantees that Sy is minimal with respect
to b, that is, 32Sy/8%b > 0. This procedure leads to the saddle-
point solution

A
o= —— ool (41
|Agol + [An,ol
A
o= ——omol__ (41b)
|Agol + [An,ol

where Ay and Agg are defined by Eqgs. (39a) and (39b),
respectively. Notice that sy + by = 1.

At the saddle point, we have checked that the global min-
imum always occurs for b = by and h = hy between [0, 1],
when variables like temperature, effective range, and scat-
tering parameter change. When the minimum occurs at end
points of the domain, the derivative of the action with respect
to b is still zero.

In general, given that we have a constrained system where
b+ h = 1, the minimization of the action with respect to any
value of b gives always a global minimum between [0, 1].
This result provides the mathematical basis for the physical
interpretation that b and & are distribution weights of the in-
teraction, meaning that both b and 4 are always in the interval
[0, 1] and thus can be viewed as the probability of partici-
pation of each interaction channel. For instance, minima of
the action with b <0 (h > 1) or b > 1 (h < 0) do not arise
mathematically in our problem, and if they did, these types of
solutions would be considered unphysical, since they would
change the nature of the interaction in one of the channels
from attractive to repulsive.

The evaluation of the Matsubara sums in Eqs. (39a) and
(39b) is performed by using Cauchy’s residue theorem [80],
leading to

_ _8mo & o (BB
Ano=—2 Zk:|:l i tanh( 5 )} (42a)
tanh (%)

42b
oE. (42b)

1
Ago = A o=
B.0 = 8B.0ABOY Xk:

Here, the shifted free particle dispersion Ek =&+ Anpo
was used. The expression in Eq. (42a) is the Hartree or-
der parameter equation, and the expression in Eq. (42b)
describes the Bogoliubov order parameter equation. We ad-
ditionally used the optimized interaction strengths gy o = hog
and gp o = bog with gu o + gs.0 = &

To obtain the number equation that fixes the chemical
potential u, we perform the Matsubara sums in Eq. (35) and
calculate the saddle-point grand-canonical potential

2
Qo _ Aol | Afo

1 ~
v = + — vXk:(Ek_Ek)

8B.,0 8H,0

1 2
N - —BEk
v Ek i In(1 + e7P5¥), 43)

where we used Q¢ = B'Sy. The particle density n =
N/V, where N is the number of particles, is obtained
from the thermodynamic relation N = —9/0du|r,v. Thus,
at the saddle-point level, the number of particles is Ny =
—02 /0|,y giving

(44)

for the saddle-point number density equation.
The saddle-point Hartree order parameter equation results
from combining Eq. (39a) with Eq. (44), yielding

&H,0M0
5
where the factor 1/2 arises from two spin states, in contrast
with the Hartree shift for spinless bosons, where the factor of
2 is absent [6].
Notice that Ag g is proportional to ng, and is always non-

positive since g > 0. Substituting the expression for Ay from
Eqg. (41a) into Eq. (45) leads to

_ |Anol  gno
[Anol + |Apol 2

Since the interaction is attractive or zero (g > 0), the only
physically acceptable solutions for Ay o are negative or zero,
that is, Ao < 0. Using Ao = —|Ap.o| we see that Eq. (46)
has two possible solutions. The first is the trivial solution
Ap,o = 0, and the second is

Apo = — 45)

Ano = (46)

8No
Ay = - + |Apol <0.
Notice that as soon as |Ap| = gno/2, Ap,o must vanish,
meaning that when the interaction strength g is sufficiently
strong, that is, g > 2|Ag o|/ng, there are no Hartree correc-
tions. Therefore, we arrive at the closed analytical form for
the Hartree order parameter

(47)

. 8no
Ao =min (0: = Z2 + | Agl). (48)

2

Next, we turn our attention to the superfluid order param-
eter given in Eq. (42b). Restricting ourselves to three spatial
dimensions (d = 3), where the saddle-point solutions are a
reasonable starting point, we take the thermodynamic limit
{N,V} — oo with finite density n = N/V, and we transform
the summations over k into three-dimensional integrals us-
ing the prescription Y, — V [ d*k/(2m). This procedure

leads to
1
Ago| — —
&B,0

Naturally, there are two types of solutions for this equation.
The first is the trivial one with Ag ¢ = 0 and the second is the
solution of

d*k tanh (£L¥)
(Qm)  2Ex

] =0. (49)

1 d3k tanh (%)

— =0.
2E;

—| 5= (50)
88,0 2m)}

This order parameter equation is similar to the standard one
where the Hartree term is ignored [51], and in that case we
have g0 — g since by — 1. However, in the presence of
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the Hartree term gp o = bpg additional care is necessary. The
integral over momenta has an ultraviolet divergence that needs
to be regularized, but the regularization procedure is slightly
different from the standard one, because the interaction in
the pairing channel gg is no longer the bare interaction g.
Thus, we outline next the standard regularization procedure
and show how it needs to be modified to regularize Eq. (50).

B. Two-body scattering renormalization

For ggo — g (bp — 1), the ultraviolet (UV) divergence
in Eq. (50) is resolved by taking advantage of two-body
scattering theory. Since we are considering contact interac-
tions, we can use the Lippmann-Schwinger equation (LSE)
[3,51,52,73] to obtain the scattering phase shift

4 2k
gceotd(q) = = +
mg

2 5 4
qg-+0(@q"), ()

ke

where q is the center-of-mass momentum of the scattering

fermions, and k. plays the role of the UV cutoff. A direct

comparison of Eq. (51) with the phase shift

1 Te o 4
geotd(q) =—-——+ —¢q"+0(q") (52)
as 2
for spherically symmetric potentials, where ay denotes the s-
wave scattering length and 7. stands for the effective range
[81,82], leads to the relation
1 m m

— ke 53
t3a (33)

gke)  4ma

for the leading ¢° term. This is the well-known renormal-
ization condition for the bare coupling strength g [3,51,52].
Comparing the coefficients of the g* term in Eqs. (51) and
(52) provides a direct connection between the UV cutoff k.
and the effective range r. [83] given by

4
ke(re) = —. (54)
TTre
Introducing the resonance value of the coupling strength
g.(re) = m3r./(2m), we use Egs. (53) and (54) to rewrite the
s-wave scattering length as

2
as = n_re—g/g*(re) . (55)
8 "g/gx(re) —1

This shows a finite background scattering length for infinite
attractive interactions g — 0o, that is, a,(g — 00) = r.m>/8.
In Fig. 1, we visualize the behavior of the scattering
length ag versus the rescaled coupling strength g/g.(r.) in
two panels. In Fig. 1(a), we show that ag, in units of the
Bohr radius agep, versus g/g.(r.) strongly depends on the
effective range r.; see plots for effective ranges r. = 200 agonr
(solid blue line), 87 agon (solid red line), and 50 aggn, (solid
green line). In Fig. 1(b), we display the universal behavior of
the inverse scattering parameter kpas in units of the effective
range kgre, versus g/g.(r.). Here, kg = (37%n)!/3 is the Fermi
momentum defined by the particle density n. The analytical

expression for the universal behavior is

2

77_ 8/8x+(re)
8

kFas _
8/8i(re) — 1

= 56
. (56)

kFas(re)/(kFre)
o

2t ]
—4f . ‘ ]
1072 107! 100 10! 102
9/9 « (re)

FIG. 1. Relation between scattering length a, and bare interac-
tion strength g in units of the resonance interaction strength g, (7).
Panel (a) shows ay, in units of the Bohr radius agep, VS g/8x«(7e)
for different effective ranges . = 200 agon, (solid blue line), 87 agop,
(solid red line), and 50 agp, (solid green line). The dashed lines indi-
cate the asymptotes for infinite interactions (g — 00) corresponding
to the background scattering length associated to that effective range.
Panel (b) displays the universal behavior of the inverse scattering
parameter kgas, in units of the effective range kgre, Vs g/g.(7e).

For gg o — g, thatis, by — 1, the UV cutoff k. and the zero-
ranged interaction strength g can be directly eliminated in
favor of the s-wave scattering length as only. However, for
gB.0 # & thatis, by # 1, we cannot simultaneous eliminate in
Eq. (50) both g and k. in favor of a.

Since we are interested in scattering processes simultane-
ously involving particle-particle (Bogoliubov) and particle-
hole (Hartree) channels, it is necessary to modify standard
scattering theory, described above, to provide a suitable reg-
ularization when both sectors are present. Thus, next, we
discuss how to implement such a procedure within our ap-
proach.

C. Effective many-body scattering renormalization

Since the interaction gg ¢ = bpg is a fractionalization of the
bare interaction g into the Bogoliubov channel due to the exis-
tence of the Hartree order parameter, we need to renormalize
Eq. (50) to reflect this many-body effect. This is achieved by
using the LSE equation for gg ¢ as

1 _ m m
g8,0(ke,B) drwas  2m?
and writing the many-body UV cutoff
4

TTre B

kes, (57)

ke = (58)
in terms of the many-body effective range r. g, in analogy to
Eq. (54). Using gp,o = bog and the expression for 1/g from
Eq. (53), we obtain the many-body cutoff

kc T h()

kep = — — ——,
B b() 2as b()

(59)
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which must be used to remove the UV divergence in Eq. (50).
We can rewrite the expression in Eq. (59) as

k 1 h 1 2 k
B _ L 1 T ho L _hoﬂ_ Fle ’ (60)
kc b()

chas b() 8 kpas

where k., from Eq. (54), was used on the right-hand side.
Since we have 0 < /g <1 and 0 < by < 1 with the con-
straint iy + by = 1, it is immediately apparent that k. g > k.,
when the interaction parameter lies in the interval —oco <
1/(kpas) < 0. Physically this means that the interaction gg has
shorter effective range than the bare interaction g, that is, the
many-body effective range r. g is shorter than the two-body
effective range re. The ratio between the effective ranges is

Te,B _ bO

SE. L —
re 1 —hof

(61)

Note that 7. g/re < 1 in the interval —oo < 1/kpas < 0,
becoming 1 only when iy — 0, i.e., by — 1. Further insight
into this behavior is gained by analyzing the first two terms on
the right-hand side of Eq. (43), as we shall see next.

D. Nonanalytic coupling between Bogoliubov
and Hartree channels

The first two terms on the right-hand side of Eq. (43)
involve the order parameters Ap o and Ap ¢ and the weighted
interaction strengths gg o = bog and gu,o = hog representing
the Hartree and Bogoliubov channels, respectively. Using the
expressions for /g and by in Eqs. (41a) and (41b), we get

Aol | Aho _ 1880l | Ad

&H,0 8

0 4+ 2| AnollAnal. (62

8B.0 4
where we used the identity | Ay o |2 = AIZ{‘O, whenever needed,
since Ay is real. The result in Eq. (62) shows explicitly
a nonanalytic and a nonperturbative coupling between the
Hartree and Bogoliubov channels already at the saddle-point
level via the term 2| Ag o||Anol/g.

Considering the non-analytic coupling and the effective
many-body scattering renormalization, the Hartree’s order pa-
rameter in Eq. (48) becomes

2 -1
Ao = min (0;@[ﬁ— ’”} +|AB,0|>, (63)

2 |4ma, 731,

while the Bogoliubov’s order parameter in Eq. (49) reduces to

m d*k [m tanh (§Ek)
- — - =0, (64
4mag ; 2m)3 | k2 2Ex

where I = {|k| < k. g} defines the integration volume. A di-
rect consequence of the analysis above is that the expressions
for the Hartree and Bogoliubov order parameters shown in
Egs. (63) and (64), together with the particle density in
Eq. (44), elliminate a well-known divergence that emerges
when these channels are not properly considered. Ignoring
particle-hole effects and a divergence at unitarity, as is done
in textbooks [6], is not a solution for the difficulty but rather
an avoidance of the issue.

Without considering the proper counting (partitioning) of
states and regularization introduced here, prior attempts of

AB,O{

including the simultaneous effects of particle-particle and
particle-hole channels led to ultraviolet divergences in the
Hartree order parameter Eq. (42a) [6,48,62]. Thus, next,
we discuss results that explicitly show the fixing of this
well-known issue while including simultaneously properly
partitioned and regularized particle-particle (Bogoliubov) and
particle-hole (Hartree) sectors.

E. Self-consistency and implications
of many-body renormalization

All the relations derived above, Egs. (63) and (64) for the
order parameters, Eq. (44) for the number density, Egs. (41a)
and (41b) for the weight parameters, and Eq. (58) for the
effective many-body range, form a set of transcendental equa-
tions that has to be solved self-consistently. For instance, the
many-body effective range rg . depends explicitly not only
on the two-body effective range r. and the s-wave scattering
length ay, but also on the weights Ay and by as seen in Eq. (61).
However, hy and by also dependent on the order parame-
ters, which are explicit functions of rg . and r, thus closing
the self-consistency conditions. To obtain the full solution,
we solve all those equations simultaneously by a numerical
algorithm, where a standard iterative procedure is applied.
Among the solutions obtained there are two distinct families
of quantities determined. The first are auxiliary quantities, that
is, the many-body effective range rg . and the weight factors
ho and bg, which are discussed below in this section, and the
second are thermodynamic quantities, that is, Ag g, Ay g, and
wu discussed in Sec. IV.

In Fig. 2, we plot auxiliary quantities, that is, the many-
body UV cutoff k. in units of the two-body cut-off i,
the many-body effective range r. g in units of the two-body
effective range r., and the Hartree (hy) and Bogoliubov ()
weights calculated at T = 0 versus the scattering parameter
1/kpas. The effective range parameters used are kpr. =0
(black line), 0.0625 (blue line), and 0.1535 (red line). Further
discussions about the effective range parameter kgr, are found
at the beginning of Sec. IV.

In Fig. 2(a), we display k. p/k. (main figure) and r. /7
(inset) versus 1/kpas in a semilog plot. Note that k. p/kc
(reB/re) decreases (increases) exponentially towards 1, as
1/kras grows. In the weakly interacting regime, an expo-
nential behavior occurs because the Hartree and Bogoliubov
channels are competing for the interaction energy. However,
beyond a critical value of 1/kpas, where the Hartree weight
factor hg vanishes, the many-body k. and the two-body &,
UV cutoffs coincide, that is, the system is fully determined by
two-body properties.

In Fig. 2(b), we show the Hartree %y (dashed lines) and
Bogoliubov by (solid lines) weights versus 1/kgas for effective
range parameters kpre = O (black lines), 0.0625 (blue lines)
and 0.1535 (red lines). Note that hy (bg) converges to 0 (1)
beyond a critical value of 1/kgas, which moves closer to uni-
tarity (1/kpas = 0) with increasing effective range parameter
krre. Beyond this critical value, the physical properties are
determined by the particle-particle channel (by = 1, hy = 0),
while for weaker interactions the particle-hole and particle-
particle channels compete for the interaction energy (by #
0, hy # 0).
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FIG. 2. The many-body UV cutoff k. in units of the two-body
cutoff k., the many-body effective range r. g in units of the two-body
effective range r. and the Hartree (hy) and Bogoliubov (by) weights
are plotted vs the scattering parameter 1/kgas. The effective range
parameters used are kgr. = 0 (black lines), 0.0625 (blue lines) and
0.1535 (red lines). In panel (a), k. 5 /k. (main figure) and r. /7. (in-
set) vs 1/kgag are shown, where the y-axis is scaled logarithmically.
In panel (b), the weights £, (dashed lines) and by (solid lines) versus
1/kgag are displayed.

Having discussed this general behavior at 7 = 0, we dis-
cuss next ground state properties including phase diagrams,
order parameters, chemical potential and ground-state energy.

IV. GROUND-STATE PROPERTIES

In this section, we specialize our theory to zero temperature
and discuss a few ground-state properties based on the self-
consistency relations mentioned in the previous section. Even
though quantum fluctuations are known to play a large role,
ground-state analysis, especially in the weakly interacting
limit, is a suitable first approximation already at the saddle-
point level. Our results are expressed in Fermi units, that is,
our unit of energy is er = kZ/2m and our unit of momentum is
kr = (3m*n)'/3, since we are using /i = kg = 1. For instance,
the dimensionless scattering parameter is given by 1/krag and
the dimensionless effective range is kg7e.

The two-particle effective range r is a property of the inter-
action potential. For a specific particle species, r. is a constant
over a broad Feshbach resonance [84]. All dimensionless ther-
modynamic quantities depend on the dimensionless effective

range kgr., which describes the ratio between the two-particle
effective range r. and the typical interparticle spacing kg :
fixed by the density n. Quite naturally, the larger kgre the
stronger is the deviation from universality of ultracold Fermi
gases at unitarity.

In what follows, we discuss first the emergence of a new
phase in the ground state (Sec. IV A) before we analyze ther-
modynamic properties of this new phase as well as the effects
of the interaction partitioning on the standard superfluid phase
(Secs. IVB-IVE).

In Sec. IVA, we show a plot of our T = 0 phase dia-
gram, and in Secs. IV B-IV E, the main plots depict results
using our partitioning method, while the insets show the stan-
dard approach [6,62] that weights both channels by a factor
of 1: guo = g = gp.o- In these figures we use the effective
range kpr. = 0 (black line), kgr. = 0.0625 (blue line), and
kpre = 0.1535 (red line). As the effective range is a quan-
tity fixed by the interaction potential, one can change the
dimensionless effective range by adjusting the density of the
system. For example, °Li has a two-body effective range
re = 87 ay throughout the broad s-wave Feshbach resonance
centered at 832 Gauss [84], with a( being the Bohr radius.
For SLi, the value of kgr. = 0.0625 (blue line) corresponds
to the density n =8 x 10'3/cm?, while for kgr, = 0.1535
(red line) the density is n = 1 x 10'3/cm?. The latter value
represents an exaggerated density, which has not yet been
realized experimentally. However, for an effective range of
re = 214 ap the value kgpr. = 0.1538 (red line) corresponds
to the realistic density of n ~ 8 x 10'3/cm?. The same color
code holds also for the insets, where we additionally visualize
the approach used in Refs. [6,48,62]. There the replacement
g X ag is shown by the magenta line.

A. Phase diagram

The main consequence of the WHFB theory is the emer-
gence of the nonanalytic coupling between Hartree Ag
and Bogoliubov Ag ( order parameters, which allows for the
possibility of a vanishing Ay o, which otherwise would be
impossible, if we had chosen an arbitrary partitioning as done
in standard theories. In other words, if the WHFB theory
is not used, Ay becomes simply a nonvanishing Hartree
shift due to an arbitrary partitioning of the interactions. Thus,
the WHFB theory exposes the existence of two superfluid
phases at T = 0, where Ag ¢ # 0. In one phase, which we call
the Hartree superfluid (HSF), the Hartree order parameter is
nonzero, that is, Ay o # 0; while in the other phase, which we
call the standard superfluid (SSF), the Hartree order parameter
vanishes, that is, Ay = 0.

In Fig. 3, we show the resulting ground-state phase dia-
gram (T = 0) in the plane of kgr. versus 1/kpas. The dashed
black line describes the numerical phase boundary between
the HSF phase (gray region) and the SSF phase (red region).
This phase boundary is established via the condition given in
Eq. (63), which can be expressed as

1 dep r

_t 65
keas | 37|Apol 65)

8
(kpre). = ;[

when written in Fermi units. The dash-dotted line represents
an analytic result for the phase boundary, derived later in
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FIG. 3. The ground-state (' = 0) phase diagram in the plane
of kgre vs kpas, showing Hartree superfluid (HSF) and standard
superfluid (SSF) phases. The dashed line indicates the numerically
determined phase boundary, and the dash-dotted line represents an
analytical asymptotic result.

Eq. (78). Note that, when the scattering parameter 1/kgas is
very negative (weak coupling), it is easier to reach the HSF
phase at fixed interactions since the critical kgr. is smaller.
However, for larger 1/kpas, towards unitary and beyond,
reaching the HSF phase requires larger kgr.. In summary, for
fixed 1/kgas, the SSF phase is favored at lower effective range
parameter kpr., while the HSF phase is energetically more
favorable at larger kgre.

Before discussing the quantitative differences between the
HSF and the SSF phases, we briefly outline the general
characteristics of the two order parameters to create an all-
encompassing picture about the general trends.

In Fig. 4, we show the dimensionless modulus of the order
parameters |Ay ol/er and |Ap o|/ep versus 1/kgag for differ-
ent theories. The main figures show the results from WHFB
method, while the insets reveal the behavior predicted by the-
ories with equally weighted Hartree and Bogoliubov channels
[6,61,62]. The parameters used are kpr, = 0 (solid black line),
and 0.0625 (solid blue line) and 0.1535 (solid red line). The
dash-dotted purple line represents the results without proper
many-body scattering renormalization, while the solid black,
blue and red lines include the many-body scattering renormal-
ization within the equally-weighted approach.

In Fig. 4(a), the main plots describes |Apo|/ep versus
1/kgag using our WHFB method. Note the factor of 5 (five)
on the vertical scale both in the main and inset plots. As
seen in the main plot, |Ag o|/er vanishes for kgr. = 0 (solid
black line) for all values of 1/kgas, but it is nonzero in some
region of 1/kpag as kpr, increases. Notably, for each value of
1/kgas, it is straightforward to read out the value of (kgre).
(see phase diagram in Fig. 3) beyond which |Ay|/¢p van-
ishes. Physically this means that there is no Hartree shift of
the chemical potential at the saddle-point level and that the
pairing (Bogoliubov) channel fully controls the saddle-point
physics when kgr. < (kpre)c. In other words, below (kgre).,
any renormalization of the chemical potential must arise from
fluctuations.

In Fig. 4(a), the main plots also reveal that the Hartree
order parameter |Ayo|/ep vanishes continuously, indicating

/er
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FIG. 4. Order parameters |Ap o|/er and |Ago|/eF vs 1/kgas, for
various effective range parameters: kgre = 0 (solid black line), and
0.0625 (solid blue line) and 0.1535 (solid red line). Panel (a) shows
the Hartree order parameter |Apg|/er and panel (b) depicts the
superfluid order parameter |Ag |/¢r. The main figures display the
results from our WHFB method, while the insets reveal the behavior
predicted by theories with equally-weighted Hartree and Bogoliubov
channels. The dash-dotted purple line represents the results without
proper many-body scattering renormalization, while the solid black,
blue and red lines include the many-body scattering renormalization
within the equally weighted approach.

that the saddle-point description predicts a continuous HSF-
SSF phase transition. Defining n = 1/kra;, the Hartree order
parameter behaves near the transition point 7. as |Ago| ~
(ne — n)P, for n < n., where B = 1. This exponent is dif-
ferent from the standard Gaussian fixed point (8 = 1/2) of
the conventional Ginzburg-Landau ¢* theory, because of the
non-analytic term 2| Ag || A 0|/g that arises in the thermody-
namic potential € of Eq. (43) using the relation in Eq. (62).
Furthermore, a detailed analysis reveals that, the isothermal
compressibility kp = (dn/ 8,u)/n2|7y exhibits a discontinu-
ity, thus producing a critical exponent y = 0, thermody-
namically confirming the existence of a continuous phase
transition. This discontinuity confirms that this transition be-
longs to a different universality class than the conventional
Ginzburg-Landau ¢* theory, where the corresponding suscep-
tibility diverges (y = 1). A renormalization-group analysis
is necessary to obtain critical exponents beyond the saddle-
point approximation, but we leave this effort for a future
publication.
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In Fig. 4(a), the inset shows results using standard methods
where equal weights hy = byg = 1 (gg = g = g) are arbitrar-
ily chosen [6,62,63]. The dash-dotted magenta line represents
the solution without proper effective range renormalization
[6], leading to a divergence in | Ay o| at unitarity (1/kpas = 0).
The results shown by the solid black, blue and red lines
use a variational perturbation theory [62,63] and include the
proper effective range renormalization, but still produce diver-
gences in the Hartree contribution, now located at 1/kpas =
(8/n2)(1/kpre). By comparing Fig. 4(a) main and inset, it is
evident that the self-consistent partitioning and regularization
method within our WHFB approach solves this long-standing
divergence in |Ap | and provides physically acceptable re-
sults with clear interpretations.

In Fig. 4(b), the main plot shows |Ag o|/ep versus 1/kgas.
At fixed 1/kgpas, increasing the effective range parameter
kgre reduces |Agp o|/er by a small amount for 1/kpas < 0.55.
In contrast, increasing kgr. enhances |Ag|/er by a small
amount for 1/kpas > 0.55. In Fig. 4(b), the inset reveals re-
sults for |Ag o|/ep versus 1/kgas using the standard method,
where gy = gg = g (hp = by = 1). For |Ap o|/eF, the results
of the two methods differ only by a few percent, because
|Agol/er is much less sensitive to the renormalization of
the chemical potential p associated with the Hartree order
parameter Ay g, as is discussed in the next two sections.

From Fig. 4(b), we can also extract important information
in the weak-coupling regime. For instance, the semilog plots
show the exponential behavior of |Apo|/er versus 1/kpas,
that is, |Apgl|/er ~ e~ /%l when 1/kpag < —1. In this
regime, the HSF-SSF phase boundary, given in Eq. (65), satis-
fies the condition (kgre). <K |kgas|. When kgre < (kgre). (see
Fig. 3), the SSF phase gives rise to the hierarchy of dimen-
sionless length scales kpr. < (kpre). < |kpas|. Therefore, in
weak coupling, the standard superfluid phase only exists when
kpre < |kpas| < 1. However, for kgr. > (kpre). (see Fig. 3),
the HSF phase allows for two hierarchies of dimensionless
length scales: either kpre < |kpas| < 1 or |kpag| < kpre < 1.
This distinction between hierarchies of dimensionless length
scales is useful for our discussion of asymptotic limits in
Secs. IVB and IV C.

Having identified a major issue in the literature and pro-
vided a physical solution to the problem, next we take a
closer look at the two different phases that emerge from the
regularization and the WHFB theory: the Hartree superfluid
and the standard superfluid.

B. Hartree superfluid

The main characteristic of the Hartree superfluid (HSF)
phase is the occurrence of a Hartree order parameter reg-
ularizing the chemical potential by applying the so called
Hartree shift, ultimately lowering the chemical potential for
weak interactions. Analyzing the many-body effective range,
we can see that the Hartree order parameter captures the short
distance physics of the system as it is strongly dependent
on kgre. In contrast, the superfluid order parameter Ag g is
independent of kpr, due to cancellations in the many-body
effective range. For effective ranges obeying kgre > (kpte)e,
the many-body UV cutoff in Eq. (60) can be simplified using

Eq. (63). This procedure leads to

kc,B _ % EF _ T 7 ( 6 6)
ke 3|Apol  2l|kgas]

which is independent of the two-body effective range r.. Due
to Eq. (66), the corrections to the superfluid order parameter
are only due to their coupling to the Hartree order parame-
ter. In the HSF phase, the superfluid order parameter can be
asymptotically solved for |kras| < 1 by cutting out the Fermi
surface of the integral in Eq. (64) and using a constant density
of states near eg. This yields

Beol _ 8 (2 i exp (=), (67)
_SF 62 62 2|k}:(ls|

which gives an additional exponentially weak correction to
the standard superfluid order parameter. Depending on the
proximity of the effective range parameter kgr. to the criti-
cal effective range parameter (kpr.)., we have two different
asymptotic limits. The one close to the phase boundary, gov-
erned by kpre K |kras| < 1, shows that the Hartree order
parameter depends on kgr. and |kga;| as follows:

AH.() T 7'[2 kFre kFl’e 2
L P 0

e 6 F’{ 8 <|1<Fas|)+ <|kFas|)

L P id (68)
—|1— —e el Jexp | — )
e? e? P 2|kgas|

As the interaction gets weaker, Ay o looses its sensitivity
to kpre, as now the scattering parameter becomes the smallest
length scale in the gas. In this regime, we enter the region
lkras| < kpre < 1, leading to the asymptotic expansion

A 4 8 k s k s 2
H,0 = Y 1__| Fa‘l—i—O |kpas|
ep 37 72 kpre kgre

L A il (69)
—|1—- —e s — .
e2 e? P 2|kras|

The results in Egs. (68) and (69), arise from a series expan-
sion of Eq. (63) in kgpr./|kpas| and |kgas|/kgre, respectively.

Since the Hartree order parameter contributes to the shift
of the chemical potential p from the Fermi energy ep, we
analyze next u/¢ep in general, and in the two asymptotic limits
discussed above.

In Fig. 5, we show the dimensionless chemical potential
w/ep versus 1/kgag for effective range parameters kpr, = 0
(solid black line), and 0.0625 (solid blue line) and 0.1535
(solid red line). The main figures show the results from WHFB
method, while the insets reveal the behavior predicted by the-
ories with equally weighted Hartree and Bogoliubov channels
[6,61,62]. The parameters used are krr. = 0 (solid black line),
and 0.0625 (solid blue line) and 0.1535 (solid red line). The
dash-dotted purple line represents the results without proper
many-body scattering renormalization, while the solid black,
blue and red lines include the many-body scattering renormal-
ization within the equally weighted approach. The dash-dotted
magenta line represents the solution without proper effective
range renormalization [6], leading to a divergence in p at uni-
tarity (1/kras = 0). The results shown by the solid black, blue
and red lines use a variational perturbation theory [62,63] and
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FIG. 5. Chemical potential t/ep vs scattering parameter 1/kgas
for different effective range parameters kgr. = 0 (solid black line),
0.0625 (solid blue line), and 0.1535 (solid red line). In panel (a),
the region from the weakly interacting regime 1/kpa; < —1 up to
the unitary point 1/krpas, = 0 is shown. In panel (b), the region from
the unitary point towards the BEC regime, around 1/kga, = 0.55 is
emphasized. In both panels, the insets show the standard approach
(equal weights), highlighting the unphysical divergence of u (dash-
dotted magenta line).

include the proper effective range renormalization, but still
produce divergences in the chemical potential, now located
at 1/kpas = (8/m%)(1/kgre).

In Fig. 5(a), we show w/ep versus 1/kgag for 1/kgas < O,
that is, from the weakly interacting regime to the unitary
point. The regions of more negative scattering parameters are
identified with the HSF phase shown in Fig. 3. Within the
HSF phase there are two asymptoptic limits depending on the
relative strengths of kgr. and kras. In the asymptotic limit of
krre K |kpas| < 1, the chemical potential is

BT 72 kpre +0< kgre )2 (70)
— =1——kpre|l — ——— —_— .
eF 6" 8 |kpas| |kpa|

However, when |kras| < krre < 1, the chemical potential

becomes
1 4]kras| 8 |kpay| Ikpag| )
—=1- 1—— 0] . 71
eR 3 w2 kgre + kgre D

Having discussed the behavior of the zero-temperature order
parameters and the chemical potential as a function of the

scattering length and effective range, we analyze next the
Helmbholtz free energy F = Q2 4 uVn, where Q stands for
the thermodynamic potential, V represents the sample vol-
ume, and n is the particle density. At T = 0, the Helmholtz
free energy F becomes the ground-state energy & for fixed
n, meaning that 7 — £. The grand-canonical potential €2
contains the non-analytic coupling term, shown in Eq. (62).
However, the Legendre transformation, using the equation of
state ((n), eliminates this term leading to

£ 3m|l|Apol  Af[ 1 8 1
eeN 8 | ekpas et \kpas 72 kere

um) — Apo 3 /mdeﬁ(E_g), (72)
0

+ —
EF 4815:/ 2

after writing the explicit expressions for the weight param-
eters hy and by given in Eqs. (41a) and (41b). Here, we

used £ =€ — pu(n) + Apo and E =/ )2+ |Ag,o|? for the
Bogoliubov dispersion.

In Fig. 6, we show the ground-state energy per particle
E(T = 0)/(epN) versus the scattering parameter 1/kgag for
effective range parameters, kpr. = 0 (solid black line), and
0.0625 (solid blue line) and 0.1535 (solid red line). In the
insets, we depict the equally weighted (hy = by = 1) theories
just like discussed in Figs. 4 and 5.

In Fig. 6(a), we show E(T = 0)/(egN) versus 1/kga;
for 1/kpas < 0, covering the region from weak interactions
through the unitary point 1/kgas = 0. In the HSF phase, where
kgre > (kpre)c, the ground state energy per particle is reduced
due to the presence of the Hartree order parameter Ay o. The
reduction of the ground state energy is stronger for larger
values of kgr. and becomes zero at the HSF to SSF transition
boundary (kpre)c, where Ay o = 0.

For kgre < (kpre)e, Am,o is strictly zero and the system is
in the SSF phase, where the ground state energy is slightly
enhanced with increasing effective range. This small increase
is caused by a reduction in the negative contribution connected
to |Agpl|/er in Eq. (72). The inset shows the results for
equally weighted theories (hy = by = 1) with the same kgre
as discussed in Figs. 4 and 5, producing similar divergences
like those for Ay o and p.

In Fig. 6(b), we display £(T = 0)/(egN) versus 1/kgag in
the neighborhood 1/kgas = 0.55 where the chemical potential
vanishes. For scattering parameters 1/kras > 0.55 the effec-
tive range causes a slight decrease of the ground-state energy
per particle as the chemical potential becomes negative. The
inset shows the results for equally weighted theories (hy =
by = 1) with the same kg7, parameters as the main figure.

For weak interactions (|kpas| < 1), we use the asymp-
totic expression p/eg = 1 4+ Ap o/€r, evaluate the integral in
Eq. (72), and use the many-body effective range r. g, identi-
fied in Eq. (58), to obtain

E 3 3n( 1 +8 1\ Aol
eeN 5 8 \lkpas|  mlkere) €2

3 T |Ag,ol*
- 5(1= Jheen) =5 7
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FIG. 6. Ground-state energy per particle £(T = 0)/(egN) vs the
scattering parameter 1/kra, for different effective range parameters
kpre = 0 (solid black line), 0.0625 (solid blue line) and 0.1535 (solid
red line). In panel (a), the weakly interacting BCS region 1/kgas <
—1 is shown as well as the approach to unitarity (1/kras = 0)
from the BCS side. In panel (b), the region around 1/kpas, = 0.55,
where u = 0, is displayed and a glimpse of the strong coupling
regime 1/kras > 1 is also shown. The insets in both panels illustrate
the equally weighted standard theory, highlighting the unphysical
behavior (dash-dotted magenta line) it produces by neglecting the
many-body effective range renormalization.

which is valid for both HSF and SSF phases. The factor 3/5
is the energy of the free Fermi gas, while the second term
represents the Hartree shift, which lowers the energy. The last
term shows the energy gain due to pairing with an altered
prefactor, associated with kpre .

Focusing on the HSF phase, we obtain next analytical
expressions for £ in two asymptotic regimes. Using k. g/kr
from Eq. (66), and the weak-coupling limit expression of the
superfluid order parameter in Eq. (67), we obtain

3 2k k 2
€ _[3_=m o T e N | o S
eeN |5 12 8 |kras| |kpas|

24 12 e
— 11— 5 kea))" " ¢ f(keas), 74

et e

in the asymptotic regime kgr. < |kpas| < 1, where the ex-
pression for Ay o given in Eq. (68) is valid. Here, the function
f(kgas) = exp(—‘kf—a_‘) describes an exponential correction.

Using Eq. (69) for the Hartree order parameter, instead of
Eq. (68), we obtain a different expression for the second
hierarchy of scales, that is, |kras| < kpre < 1, leading to

< 32 6 |kpay| |kpas| \*
—_— =1 - — k S o\ ——
egN |:5 371( 7w kgre )' v l] * ( kgre )
24 12 3
- —{1 — e—z[ﬂkFas)]W} f(kpay). (75)

et

The analytical results displayed in Eqs. (74) and (75) agree
very well with the numerical evaluations.

In summary, the HSF is a superfluid phase characterized
by two separate order parameters, the Hartree order parameter
An,o, responsible for the renormalization of the chemical po-
tential and the superfluid order parameter Ag o, representing
Cooper pairs that are responsible for fermionic superfluidity.
The Hartree order parameter reduces the energy by lowering
the chemical potential and, thus, this phase corresponds to a
stable minimum of the underlying grand-canonical potential.
The non-analytic coupling of the two order parameters gives
rise to the mechanism that allows the Hartree shift to vanish,
converting Ay o into a true order parameter that characterizes
the HSF to SSF transition.

C. Standard superfluid

The standard superfluid phase is the region in the phase
diagram where the interaction strength becomes sufficiently
strong such that particle-hole contributions are suppressed and
all interaction energy is used to form Cooper pairs. There-
fore, this phase is characterized by a vanishing Hartree order
parameter Ag o =0 and nonzero superfluid order parame-
ter Ago # 0. The vanishing of the Hartree order parameter
causes the many-body UV cutoff k. g in Eq. (59) to converge
to the two-body UV cutoff k. in Eq. (54) resulting in

kg 4
kF - HkFVe.

(76)

Therefore, in the standard superfluid (SSF) phase, Agg is
directly affected by kgr.. Since, the SSF phase exists only
for kgr. < (kpre)e, the only asymptotic regime reachable is
krre < |kpas| < 1, leading to

|Ag ol 8 ( T T
12800 _ 2 oxp (= Zk ) - NGO
er 2 P\ T R T a7

The relation above tells us that kgr. reduces the superfluid
order parameter exponentially when considering weak inter-
actions, in contrast to the results of Eq. (67) for HSF phase,
where |Ag o|/¢F is independent of kg7, in the same asymptotic
regime. Using Eq. (77), we approach the HSF-SSF phase
boundary from the right (see Fig. 3) and use the continuity
of Ap o to obtain

48 _ 1
(kpre). = i Hhgasl (78)

describing an analytical approximation for the numerical
phase boundary shown in Fig. 3. The analytical expres-
sion in Eq. (78) is represented by the dash-dotted line in
Fig. 3. This shows that the phase boundary (kgr.). has an
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exponential dependence on 1/|kpas| in the weakly interacting
limit |kpag| < 1.

Since there is no Hartree shift in the SSF phase, the
only correction to the weak-coupling chemical potential arises
from the superfluid order parameter and hence is exponen-
tially small, that is, = er — O(|Ap o|*/er). Using Eq. (77),
it is clear that deviations from ep are exponential in kgre
and 1/|kpas| separately, in sharp contrast with the polynomial
corrections in the ratios kgpre/|kpas| or |kpas|/kgr. found for
the HSF phase [see Egs. (70) and (71)].

Lastly, we use the same general expression for the ground-
state energy derived in Eq. (73) and insert the SSF asymptotic
behavior of the superfluid order parameter resulting in

& 3 _ i_f(l — %kl:re) exp (—%kFre>f(kFas)v (79)

SFN o 5
where the function f(kgas) = exp(—m) describes an expo-
nential correction. Here, the energy is only lowered due to
pairing, which is slightly suppressed by the finite effective
range, as can be seen in Fig. 6(a).

In summary, in the weak-coupling |kpas| < 1 regime, the
SSF phase possesses a superfluid order parameter that is more
affected by the effective range in comparison to the HSF
phase. Furthermore, the SSF phase has a higher ground-state
energy and a larger chemical potential when compared to the
HSF phase. These differences in sensitivity to the effective
range and scattering parameters, allow for experiments that
can distinguish the two phases.

D. Unitary gas

The unitary point (1/kpas = 0) is a place of great the-
oretical and experimental interest due to the concept of
universality, which is well known in the realm of ultracold
dilute gases. A main difference between standard theories of
superfluidity for ultracold fermions and theories of superflu-
idity for nuclear matter is that the interaction range plays just
a minor role in ultracold fermions because they are dilute,
while the densities in nuclear systems are sufficiently large
for the interaction range to be at least of the same order of the
interparticle spacing.

The standard approach outlined in Refs. [6,48,60] investi-
gates the role of particle-hole interactions by using the weak
coupling relation g = 4mwas/m, leading to unphysical singu-
larities at unitarity. Such divergences occur not only in the
Hartree order parameter, but also in the chemical potential
and the ground-state energy (see dash-dotted magenta line in
the insets of Figs. 4-6). Note that after unitary (1/kpas > 0),
the dash-dotted magenta lines approach the zero-range curve
(solid black line) from above. This results in a chemical poten-
tial u and a ground-state energy £ which have no lower bound
when 1/kgas — 0~ and no upper bound when 1/kgas — 07.

Our approach resolves the issues discussed above, because
it considers the proper renormalization of the interaction by
taking into account the effective range and introduces a self-
consistent weighting of the interaction channels. Both steps
are necessary, because when only the effective range renor-
malization is considered for non-self-consistent weights of the
Hartree and Bogoliubov channels then a singular point still oc-
curs at kpas = (2 /8)kgr.. This value of the kras corresponds

to the infinite attraction limit in Eq. (55), which cannot be
exceeded. The introduction of self-consistent weights solves
this problem at unitary and beyond.

For example, at unitarity, instead of a diverging Hartree
order parameter, one gets a result that is fully determined by
the effective range

A b4 A
HO _ min(O;——kFre n | B,0|>’
EF 6 EF

(80)

as described in Eq. (63). A nontrivial solution for Ay ¢ at uni-
tarity only occurs for sufficiently large values of kgr., which
do not occur in SLi or “°K for experimentally achievable
densities. As a consequence of these experimental constraints,
the only possible solution of Eq. (80) is Ay, = 0 yielding a
SSF phase at unitarity. Since the effective range is essential
in resolving singular issues, its effects are real in spite of the
smallness of kgre.

For dilute unitary Fermi gases, as suggested by Zhang and
Leggett in 2009 [26], kgre is too small for its effects to be
detected by current experimental setups, however kgr. is very
relevant for higher densities such as for nuclear matter or
neutron stars near and away from unitarity. Therefore, for
dilute Fermi gases at unitarity, where kgr. < 1, one finds
the concept of quasi-universality, that is, all gases behave the
same way, irrespective of the atomic species.

E. Towards strong coupling

After crossing the unitary point, starting from weak in-
teractions, the scattering length switches sign from negative
to positive, that is, beyond unitarity the relation kgas > 0 is
satisfied. As seen in the phase diagram of Fig. 3, the SSF
phase exists at unitarity (1/kras = 0) and beyond for any kgr,.
Furthermore, from Fig. 1, we can see that there is only one
asymptotic regime (kpre < kras < 1), because the scattering
length a, can only approach the background scattering length
from above, that is, kpas > (77%/8)kgre.

The approach to strong coupling manifests itself also
through the chemical potential ©, which changes sign from
positive to negative approximately at (1/kgas) = 0.55. This
result depends only weakly on the effective range parame-
ter kgre. For (1/kgas) < 0.55, increasing the effective range
enhances the degeneracy of the momentum distribution and
augments the chemical potential. While for (1/kgras) > 0.55,
increasing the effective range reduces the degeneracy of the
momentum distribution and lowers the chemical potential. In
Fig. 5(b), we show the decrease of the chemical potential
towards a more negative value, the change in degeneracy of
the Fermi gas.

In the strong-coupling regime, where 1/kgas > 1, a larger
effective range facilitates the formation of two-body bound
states leading to a slight increase in the magnitude of the

Apol _ 4 1 [

superfluid order parameter
1k kere \’
- +—lﬁ+o<m) 8D
EF 37 kras 4 kpas kgas
as evidenced by the correction proportional to kgr. /kras. This
analytical expression arises from a expansion in the parameter
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kere/kras < 1 at Eq. (64) for the asymptotic regime kpre <
kpas < 1.

In leading order, the result in Eq. (81) shows propor-
tionality to the inverse square-root of kgag obtained from a
zero-range theory plus a positive correction due to the effec-
tive range r., which enhances the binding energy of pairs.
For zero effective range, the two-body binding energy is
Ey = 1/ma?, and the chemical potential u = —E},/2 in the
strong-coupling regime. However, for nonzero effective range,
the two-body binding energy is altered to

Eb 1 kFVe (kFre )2
—=——|1+ +0 , (82)
er  (kpas)? ( kras kras

which is in excellent agreement with the numerical calcula-
tion for strong-coupling shown in Fig. 5(b). Furthermore, the
effective range also modifies the chemical potential to

m E, 2 kete kere \
B2y Zha14+—=)+0 . (83
EF 2«9]: + 3 Fas( + k]:(ls) + (k]:as ( )

To complete our discussion of ground-state properties, we
analyze next the pair size &, which is a measure of the
strength of the attractive interactions.

V. PAIR SIZE

The pair size &,,;; characterizes the extent of the Cooper
pair wave function yx (r) with zero center-of-mass momentum,
where r is the relative coordinate. So, generally, the pair size
is defined in real space according to

s s

= , 84
Soai Jdrx(m)x(r) ®
which in momentum space becomes
dk D V2D
Epuir = ELSAL (85)
[ dk®y Dy

Here, ®x = Ap,0/(2Ex) is the Fourier transform of the
Cooper pair wave function x (r) [52,85], and Ag g is the zero-
temperature pairing amplitude that appears in the superfluid
order parameter equation Eq. (64).

In Fig. 7, we show the dimensionless pair size kp&pqir as
a function of 1/kpas for effective range parameters kpr. = 0
(solid black line), 0.0625 (solid blue line), and 0.1535 (solid
red line). As seen in Figs. 7(a) and 7(b), the pair size &, is a
monotonically decreasing function of 1/krag for fixed kgre.
In Fig. 7(a), we plot kp&pir versus 1/kgas for 1/kras < 0.
In Fig. 7(b), we analyze kp&p.; versus 1/kpas in the neigh-
borhood of 1/kras = 0.55, where the chemical potential falls
below the bottom of the band, that is, u = 0. Note that for
1/kras < 0.55 (u > 0), an increase of kgre also increases
kp&pair, while for 1/kgas > 0.55 (1 < 0), an increase of kgre
decreases kp&pqir-

As shown in the Appendix, we analytically obtain an ex-
pression for &y, in terms of 1, Ay o, |Ag ol, and eg. The result
is

er 5|Apol* 4 2pm0lpno + Eol
42 |Ago|*Eo

(k&pair)* = . (86)
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FIG. 7. Pair size kp&y,r vs scattering parameter 1/kgag for ef-
fective ranges kgr. = 0 (solid black line), 0.0625 (solid blue line),
and 0.1535 (solid red line). Panel (a) emphasizes the weakly inter-
acting BCS region 1/kra; < —1 and the region close to unitarity
when approached from the BCS side. The vertical axis is shown
in logarithmic scale. The HSF-SSF phase boundary for given kgr.
is displayed as vertical dashed blue (kgr. = 0.0625) and dashed red
(kgre = 0.1535) lines. Panel (b) shows the region around 1/kpa, =
0.55 (u = 0) and the beginning of the BEC region 1/kras > 1. The
vertical axis in shown in linear scale.

where Ey = ./ ,u%w + |Ap,o|? is the quasiparticle energy given
in Eq. (38) at zero momentum, and pyo = — Apy is the
shifted chemical potential. The analytical result in Eq. (86)
agrees perfectly with the direct numerical calculation of &par,
from Eq. (85), plotted in Fig. 7.

‘We now use the analytical expression in Eq. (86) to discuss
asymptotic limit of kp&p,i. For weak interactions, (1/kpas <
—1), we determine asymptotic expansions depending on
whether the system is either in the HSF or in the SSF phase,
seen in Fig. 3. In the HSF phase, where kpre > (kgre)c, we
obtain in both hierarchies of scales, that is, either for kgr, <
|kras| or |kras| < kpre, the same asymptotic limit, since the
superfluid order parameter does not depend on kg7, as shown
in Eq. (67). The resulting asymptotic expansion of the pair

size is
o I e | S Coeny
—_— — €X — X .
sval @ P\ 2lkeal ) TP\ T 21k
(87)

kg %- pair =

033186-16



WEIGHTED HARTREE-FOCK-BOGOLIUBOV METHOD FOR ...

PHYSICAL REVIEW RESEARCH 7, 033186 (2025)

which is independent of kgr,, but grows exponentially with
1/|kras| when approaching kra; — 0. Therefore, kp&pair >
1. In contrast, for the SSF phase, where kpre < (kgre)c, we
obtain

& T T
_ —k — ). 88
8ﬁexp(4 Frﬁ)exp<+2|kpas|> 8

Note that again kp&,,: grows exponentially with 1/|kgas]
when kga; — 0T, but also contains an exponential depen-
dence on kgr.. The separation between these two asymptotic
solutions, and as such the HSF and SSF phases, is shown
in Fig. 7(a) by the vertical dashed blue (kgr. = 0.0625) and
the dashed red (kgr. = 0.1535) lines. In the neighborhood of
1/kgas = 0.55, where p = 0, the pair size obeys the relation
kp&pair = O(1). For strong coupling (BEC regime), 1/kpas >

1, we obtain

k}:as <1 1 kFre)

ﬁ 2 kpas '
In this limit, kp&pair tends to zero linearly with kpag, has a small
correction proportional to kpre /kras, and is always small, that
is, kpépair < 1. We emphasize that all the asymptotic analysis
discussed above agrees well with the numerical results in the
appropriate regimes.

We have discussed the consequences of the effective range
and the interplay of the Hartree and Bogoliubov channels
on several ground-state (7' = 0) properties including the
chemical potential, order parameters, free energy, momentum
distribution, and pair size. Thus, next, we present results of
the effects of the effective range and of the Hartree and Bo-
goliubov channels on the finite-temperature (7' # 0) phase
diagrams of interacting fermions.

kp&pair =

szpair = (89)

VI. FINITE-TEMPERATURE PHASE DIAGRAM

In the previous sections, we discussed the necessity of an
effective scattering range to describe the simultaneous effects
of the Hartree and Bogoliubov channels on the interacting
Fermi gas. The method of implementing a partitioning of
the interaction into Hartree and Bogoliubov channels fixes
uncontrolled approaches that either ignore divergences [6]
or arbitrarily separate the interactions in equally weighted
channels [48,60,62,73]. As a consequence of our WHFB ap-
proach, the Hartree channel has a true order parameter Ay g
that can vanish as 1/kpas changes, and the theory has a
self-consistently determined partitioning of the interactions
without unphysical divergences.

To illustrate nonzero temperature effects, we set the di-
mensionless effective range parameter to kgr. = 0.1538. For
an effective range r. = 87ap corresponding to °Li [84],
the choice kpre = 0.1538 corresponds to a density of n ~
10" /cm?3, which has not been achieved experimentally yet.
For an effective range r. = 214ap, the parameter kgr. =
0.1538 gives a density of n &~ 8 x 10'3/cm?. Our choice of
parameters helps to visualize the generic effects on nonzero
temperature. Similar effects occur for smaller values of kgr,
but they are pushed to more negative values of 1/kgras. Fur-
thermore, our parameter choice highlights that our formalism
builds a theoretical bridge between superfluid theories of

0.2
() 0.35
. 0.30
S o01F
=
L 0.25
0.0
295 —20 —15 —10 —05 L 0.20
l/kpas
0:2 L 0.15
. L 0.10
& 01
=
0.05
0.0 - 0.00
295  —20 —15 —10 —05
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FIG. 8. Density plots of |Ay|/er and |Ago|/eF in the temper-
ature T /Ty vs scattering parameter 1/kras plane for an effective
range parameter of kg7, = 0.1535. Panel (a) shows the Hartree order
parameter 5| Ay o|/er while panel (b) illustrates the superfluid order
parameter |Ag o|/¢r. The legend shows the range of values taken by
5|An,l/er and |Apo|/ek.

ultracold atomic gases [26,51,52,54,70], where kgr. < 1, and
of nuclei and neutron matter [18,21,22], where kgr, ~ 1.

In Fig. 8, we show density plots of the order parameters
|Anol/er and |Agg|/er in the T /T versus 1/kgas plane.
Color maps of the Hartree order parameter |Ap|/ep are
shown in panel (a) and color maps of the Bogoliubov order
parameter |Ag o|/er are revealed in panel (b). The color maps
range from blue to red as indicated in the legend. In Fig. 8(a),
| An.o0l/€r 1s nonzero at higher values of T'/Tg, above the criti-
cal line Ty /Tr, where | Ay 0| = 0, while in Fig. 8(b), |Agol/er
is nonzero at lower values of T /Ty, below the critical line
Tpair/ Tr, where |Ap o] = 0.

In Fig. 8(a), the Hartree order parameter | Ay o] is largest in
the normal fluid phase above T, since there the Fermi sys-
tem is fully dominated by particle-hole processes. However,
as the temperature is lowered below T, particle-particle
processes start to dominate, since the interaction energy and
the available momentum states are being used to form Cooper
pairs leading to a suppression of |Ap|. These processes
eventually force |Ap | to vanish at temperatures below Ty.
For fixed T and increasing 1/kpas, we notice that |Ap |
decreases, becoming zero when Ty is crossed.

In Fig. 8(b), the superfluid order parameter |Ag | is largest
at lowest temperatures, emerging below the Cooper pair for-
mation temperature Ty, seen as the border of the dark-blue
region. The phase between Tp,; and Ty, which we name the
Hartree superfluid (HSF), is characterized by |Ag | # 0 and
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FIG. 9. Density plots of the Hartree weight A, and the Bogoli-
ubov weight by in the temperature 7 /T Vs scattering parameter
1/kras plane for an effective range parameter of kpr. = 0.1535.
Panel (a) shows hg, while panel (b) illustrates by. The legend shows
the range of values taken by /i and b.

|An,o0| # 0. while the phase below Ty, which we call standard
superfluid (SSF), is characterized by |Ag | # 0 and |Ano| =
0. For fixed temperature 7 and increasing 1/kgas, we notice
that Ap ¢ increases, as particle-particle (pairing) correlations
dominate below Ty.

In Fig. 9, we show density plots of the weight factors &g
and by from Eqgs. (41a) and (41b) in the T /T versus 1/kpas
plane. The temperature 7, corresponds to the sharp edge
of red (blue) region in Fig. 9(a) [Fig. 9(b)] and the tem-
perature Ty corresponds to the sharp edge of the red (blue)
region in Fig. 9(b) [Fig. 9(a)]. These two plots show that
the normal fluid is fully dominated by particle-hole processes
above Ty, that particle-hole and particle-particle (pairing)
processes compete between T and Ty, and that particle-
particle (pairing processes) dominate below Ty. These results,
at the saddle-point level, improve on the standard BCS theory
describing only the pairing (Bogoliubov) channel [69], and
provides particle-hole corrections to saddle-point results that
are not considered in the Gorkov-Melik-Bakhudarov (GMB)
theory [53], as discussed below.

In Fig. 10, we use the information contained in Figs. 8
and 9 to determine the phase diagram shown in the T/7p
versus 1/kpas plane. The temperatures Ty, and Ty versus
1/kpas are indicated and the different saddle-point phases
are color-coded. The normal fluid (NF) phase at the upper
left (blue) region is characterized by |[Ago| =0 (by =0)
and nonvanishing |Apgo| (hp = 1). The standard superfluid
(SSF) phase at the lower right (red) region is characterized by

0.2

"HSF
=25 —2.0 —1.5 -1.0 —0.5
l/kFas

0.0

FIG. 10. Phase diagram in the temperature 7 /7 vs scattering
parameter 1/kgas plane for the effective range parameter kgr. =
0.1535. Three separate phases emerge: Normal fluid (NF) (blue
region), Hartree superfluid (HSF) (gray region), and standard super-
fluid (SSF) (red region). The pairing temperature T,;; and the Hartree
temperature Ty are also indicated.

|Agol # 0 (bo = 1)and |An,o| = 0 (hp = 0). The HSF phase
shown in the gray region has |Ago| #0 (0 < by < 1) and
[Anol # 0 (0 < hp < 1). The emergence of the HSF phase
is a direct consequence of the partitioning of the interaction,
which avoids the miscounting of states and fixes the unphysi-
cal divergences of the Hartree energy, chemical potential, and
the ground-state energy.

In Fig. 11, we show the temperatures Ty /7Tr and Ty /Tk
versus 1/kgag for various effective range parameters kgr.. The
parameters used are kgr. = 0 (solid black line), kpr. = 0.0625
(solid blue line), and kgr, = 0.1535 (solid red line). The gen-
eral trend in these figures is that both Ty and T, decrease
when kg7, increases, that is, when density or the two-body
effective range increases. In Fig. 11(a), we reveal that Ty /T
vanishes below the critical value of 1/kgas obtained from
Eq. (65), where the Hartree order parameter Ay o/er goes to
zero. In Fig. 11(b), we show that T /Tr is reduced when
kgre is increased. Furthermore, we show the correction to
Tpair/ Tr calculated by GMB [53] including particle-hole fluc-
tuations (dash-dotted gray line), but without considering the
nonperturbative particle-hole corrections investigated in the
partitioning method described here. The analysis performed
by GMB includes particle-hole fluctuations about the BCS
state, but ignores the nonperturbative Hartree-channel contri-
bution at the saddle-point. It is interesting to note that our
WHEFB method already captures nonperturbative corrections
to T due to particle-hole effects and thus serves as a better
starting point for fluctuation calculations including particle-
particle and particle-hole channels simultaneously.

Having investigated finite-temperature effects at the
saddle-point level, we are ready to present our conclusions
next.

VII. CONCLUSIONS

We developed the weighted Hartree-Fock-Bogoliubov
(WHFB) method that can partition a given interaction into
competing channels using a weight distribution determined
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FIG. 11. Plots of the Hartree temperature 7y /7y and pairing tem-
perature Tpyi/Tp vs scattering parameter 1/kga, for effective range
parameters kgr. = 0 (solid black line), 0.0625 (solid blue line), and
0.1535 (solid red line). Panel (a) shows the HSF to SSF transition
temperature Ty /7Tr, while panel (b) shows the NF to HSF pairing
temperature Tpi/Tr. The dash-dotted gray line in panel (b) shows
the result obtained by Gorkov and Melik-Bhakudarov [53].

by the minimization principle of the corresponding action.
As an example of this concept, we investigated ultracold
fermions with equal masses, balanced populations, and zero-
ranged interactions partitioned in the particle-hole (Hartree)
and particle-particle (Bogoliubov) channels.

We solved a decades-long issue regarding divergences in
the particle-hole channel. Using our method, we showed that
these divergences can be eliminated by the weighted parti-
tioning of the channels and the introduction of a many-body
effective range. The partitioning and regularization proce-
dures have two important consequences. First, they lead to
self-consistent relations between the Hartree and Bogoliubov
order parameters. Second, they allow for the emergence of the
Hartree superfluid as a new phase, where both the Hartree and
Bogoliubov order parameters are nonzero, in contrast to the
standard superfluid, where the Hartree order parameter is zero,
but the Bogoliubov order parameter is not.

We demonstrated that nonperturbative corrections, due to
the Hartree channel, emerge both in the normal state and
in the Hartree superfluid, even at the saddle-point level,
changing the critical temperature and the phase diagram for
superfluidity. This finding was missed in the literature and
can directly affect the particle-hole fluctuation corrections to

the standard BCS pairing theory developed by Gorkov and
Melik-Bakhudarov [53].

VIII. OUTLOOK

After describing nonperturbative effects in the particle-
particle and particle-hole channels at the saddle-point level,
it is natural to consider fluctuations next. It is well known
that particle-particle fluctuations significantly improve the
equation of state beyond the saddle-point level [51], when
describing the full range of interaction strengths from the
BCS to the BEC regimes. Within the functional integral ap-
proach, pair fluctuations to the Gaussian order [52] coincide
with the diagrammatic theory of Noziéres and Schmitt-Rink
[54]. However, the inclusion of nonperturbative particle-hole
effects, through the Hartree channel, requires a modified fluc-
tuation theory, around the saddle point, which must go beyond
the Gorkov and Melik-Bakhudarov approach [53].

Writing the superfluid order parameter as Ag(x) = Ag o +
ne(x), and the Hartree order parameter as Ag(x) = Ago +
nu(x), where ng(x) and ny(x) are the fluctuations around the
saddle point, leads to the Gaussian fluctuation action

In(x)|? + UH(X)2]
8B 8H

St {Ao); (1)1 = / dx[

1 dx _ 2
Here, the fluctuation matrix

77 (%) On

B (X))
—nu(X)
includes both ng(x) and nu(x), with Ay ! being the inverse
propagator matrix of Eq. (34). The effects of simultaneous
particle-particle and particle-hole fluctuations on the phase
diagram, thermodynamic, and collective mode properties will
be described in a forthcoming publication. Specifically, the
question of whether the phase transition between Hartree and
standard superfluid phases survives the effects of fluctuations
will be addressed. In addition, extensions of this theory for
population and/or mass imbalanced systems will be consid-
ered in future work, as the main purpose of this paper was
to introduce the partitioning and regularization method when
two competing channels arise from the same interaction.
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APPENDIX: CALCULATION OF PAIR SIZE

In this appendix, we discuss the details on how to calculate
the size of the Cooper pairs analytically at 7 = 0. Our starting
point is the definition of the pair size in momentum space,
given in Refs. [52,85] as

52' =_(¢k|vlzlq>k> :_ZkEkVI%qu (A])
o (P Px) Y lewl?
where we use the Cooper-pair wave function
Ago
k= Sp (A2)
k

Here, Ey is the Bogoliubov dispersion as given in Eq. (38).
To simplify the notation, we define pp o = 1 — Apo as the
Hartree-shifted chemical potential. To obtain &, , we need to
calculate two summations

(P |V |Dk) = Y BV Dy, (A3a)
k

(@xlPi) = Y [Dxf, (A3b)
k

which are the expectation value of the relative position

operator and the norm of the Cooper-pair wave function,

respectively. These two expressions are calculated next using

the thermodynamic limit defined in Sec. IIT A.

1. Normalization factor

The first and more straightforward calculation is the evalu-
ation of the norm of @y, which in the thermodynamic limit is
given by the integral

Aol &k
(| Pi) = — - . :
(5 — mno) + Aol

(A4)

Given that the dispersion k>/2m depends only on the modulus
of the momentum, we perform the angular integration and re-
duce (®k|Dk) to a one-dimensional integral. This is achieved
with the substitution u> = k?/(2m), leading to

00 An o123 32,2
( Dy |y :/ du |2B,0| f;zr(m) u 5
—oo  (W* — uno0)* +|As ol

where we used the fact that the integrand is even in the vari-
able u, we extended the original integration domain [0, c0) to
R, and we divided the whole expression by 2.

To compute the integral above, we use complex analysis
techniques. First, we factorize the denominator to get a simple
expression in terms of its complex roots =y, +y. These roots
are obtained by using De Moivre’s formula and are repre-
sented by

(AS5)

y =lyle?. (A6)

As an example, we discuss below the case for uy o > 0. Here,
the modulus is

vl = (1o + 1A80?) ",

while the phase is
A
6 = arctan <ﬂ>
MH,0

(A7)

(A8)

- Y '
— 3 Rez
X X

FIG. 12. Illustration of the integration contour construction for a
given R > 0 encircling the poles y and —¥ in the upper half-plane.

Using the representation above, the roots of the denomina-
tor are given by the set P = {y, —y, ¥, —} and the integral
becomes

o0 2 3/2,2
@k@k):/ .18l V27 (m) a9

v @)@ -7

where z € C is the complex variable. This procedure de-
scribes an analytical continuation of u € R to the complex
plane.

For any function f : C — C, we define a closed contour
I'r = [—R, R] U Cy, illustrated in Fig. 12, where Cy is the
upper half-circle in the complex plane with radius R > 0.The
contour integral becomes

R
% dzf(z)=/ dzf(z)+/ dzf(2).
Iz —R Cr

In the limit of R — o0, the integration along the infinite radius
circle vanishes by Jordan’s Lemma since f(z) o z~2, and the
contribution from the poles gives

/dzf(z)=f dzf(z)
R Teo

= 2in Z Res £(2).

20€Py

(A10)

(Alla)

(A11b)

The last equality is due to Cauchy’s residue theorem [80],
where one can express any closed contour integral of a mero-
morphic function by the sum of the enclosed residues. The
set Py = {y, —y} includes all poles of the function f with
an imaginary part larger than 0, that is, the poles in the upper
half-plane. Note the use of the index function 1, because we
enclose our contour counterclockwise. Using

ZZ

f@)= — (A12)
@ —y)E2 =77
leads to the norm of the Cooper-pair wave function
(Pk|Px) = |Ap o> (2m)*%i Y Res f(z).  (Al3)
=20

20€P+
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Since the function f(z) has only simple poles, calculating the
residues is a straightforward analytical task, leading to

y

R —__r Al4

Res f(2) 2,772 (Alda)
LS

Res f(z) = —_%. (A14b)

=7 2yr -y

By using the modulus and phase representation of the
poles, we obtain
[Ag o>V 27 (m)**2ix

(P |DPK) = (A15)

1
4ily|sin(6/2)

for ppo > 0. As a final step, we use the expression of the
phase from Eq. (A8) and apply trigonometric identities to
evaluate sin(f/2) giving the final result

m\3/2
(@ul0w) =277(F ) 18n0ly/mmo + Iy

For iy, < 0, the poles are rotated by a factor of e=/2, As
one pole is rotated out of the contour its conjugate is rotated
into the contour, giving rise to an additional minus sign that
is canceled by a minus sign in the residues, yielding the
same result. Note that (®Py|Pk) is always positive and that
the argument inside the square root is always positive, since

Iy 1> > wwo-

(A16)

2. Relative position expectation value

In contrast to the norm of the Cooper-pair wave function,
the expectation value of the relative position operator involves
a second spatial derivative and is more demanding to calcu-
late. By partial integration, the surface term converges to zero
upon integration over infinite three-dimensional momentum
space, leading to

(@K | V| D) /d3k5kvﬁ<bk (A17a)

— / d*k| Vi Pk |-

Using again spherical symmetry, the angular derivatives in
the gradient vanish and we simplify the integral in Eq. (A17b)
by considering only the radial derivative. Substituting again
u® = k?/(2m) gives

(A17Db)

(Pk| Vi |Px) = —2V2 7T|AB0|2/ dug(u),  (AIB)
o0
where the integrand is
40,2 2
glu) = —- U = fno) (A19)

[(? — ur0)? + 1A o2

Notice that the denominator of g(u) is the third power of
the denominator in Eq. (AS) and, thus, has the same roots.
However, in this case, this leads to third-order poles rather
than simple poles.

Through a similar procedure, such as that outlined earlier,
we replace the integral along the real line by an integral along

the closed contour I'g shown in Fig. 12. Since the function
g(z) o z7% when complex z goes to infinity, we apply again
Jordan’s Lemma and Cauchy’s residue theorem to calculate
the integral. The result is

(@k| Vil @x) = —4im*v2m| Apol* ) Res g(2).

20 E'P+

(A20)

The poles follow the same pattern as before with P, =
{y, —7} being the ones in the upper half-plane. Because these
are third-order poles, extra care is necessary. For an nth-order
pole of the function g at zp € C, the residue is

n—1

lim
D! 2>z dz!

Res g(z) =

=20 (I’l -

[(z —z20)"g(2)].  (A21)

Using the expression above, the calculation of the residues
reduces to taking derivatives and then evaluating the limit. As
the expressions for individual residues are quite long and give
no physical insight, we do not write them down here. How-
ever, the sum of the residues of the two relevant poles has a
simpler and shorter structure due to the symmetry y <— —y
in the residues. For puy ¢ > 0, this analysis leads to

Z Res 8(2)

0=V~

—5ly )+ 6|y ? MH0—3MH0
16y 1>(y = y)

_|y| V2 +7

(A22)

Using the modulus and phase representation of y and y, we
write y2 + 72 =2|y|>cos(¥) and y — ¥ = 2i|y|sin(6/2),
and use Eq. (A8) to eliminate the phase 6 giving

245/2
T Res g = V2(uno + 1y1?)

2_
= 12871y P1Ap o (y1” — mno)
20=Y,—

x (Sly1* = 3umo). (A23)

Notice that the expression above is always a positive number
divided by the imaginary unit i, since |y|> > uy.o as seen in
Eq. (A7). The final result is then

(x| Vi | Pk)

_ _”_zﬁ(HH,O + Y2y P=pi,0)Sly 1> = 3tm,0)
¥ 12 Ag,of? ’

(A24)

which is always negative. We mention in passing that the same
result is obtained for up o < 0.

Lastly, we use Eqs. (A16) and (A24) to write the square of
the Cooper pair size &2 pair given in Eq. (Al). The expression

obtained for égalr is always positive, as expected, and the

result for the dimensionless Cooper pair size kr&p,; is given
in Eq. (86) of the main text.

[1] H. Feshbach, Unified theory of nuclear reactions, Ann. Phys. 5,
357 (1958).

[2] U. Fano, Effects of configuration interaction on intensities and
phase shifts, Phys. Rev. 124, 1866 (1961).

033186-21



KASCHEWSKI, PELSTER, AND SA DE MELO

PHYSICAL REVIEW RESEARCH 7, 033186 (2025)

[3] V. Gurarie and L. Radzihovsky, Resonantly paired fermionic
superfluids, Ann. Phys. 322, 2 (2007).

[4] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).

[5] W. Zwerger, The BCS-BEC Crossover and the Unitary Fermi
Gas (Springer, Berlin, 2011).

[6] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and
Superfluidity, International Series of Monographs on Physics
(Oxford University Press, Oxford, 2016).

[7]1 R. D. Duncan and C. A. R. S4 de Melo, Thermodynamic prop-
erties in the evolution from BCS to Bose-Einstein condensation
for a d-wave superconductor at low temperatures, Phys. Rev. B
62, 9675 (2000).

[8] T. Shi, W. Zhang, and C. A. R. S4 de Melo, Density-induced
BCS-Bose evolution in gated two-dimensional superconduc-
tors: The role of the interaction range in the Berezinskii-
Kosterlitz-Thouless transition, Europhys. Lett. 139, 36003
(2022).

[9] H. Tajima and H. Liang, Role of the effective range in
the density-induced BEC-BCS crossover, Phys. Rev. A 106,
043308 (2022).

[10] H. Tajima, S. Tsutsui, T. M. Doi, and K. lida, Density-induced
hadron—quark crossover via the formation of Cooper triples,
Symmetry 15, 333 (2023).

[11] T. Hanaguri, S. Kasahara, J. Boker, I. Eremin, T. Shibauchi, and
Y. Matsuda, Quantum vortex core and missing pseudogap in the
multiband BCS-BEC crossover superconductor fese, Phys. Rev.
Lett. 122, 077001 (2019).

[12] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Tunable strongly coupled superconductivity in
magic-angle twisted trilayer graphene, Nature (London) 590,
249 (2021).

[13] Y. Nakagawa, Y. Kasahara, T. Nomoto, R. Arita, T. Nojima,
and Y. Iwasa, Gate-controlled BCS-BEC crossover in a two-
dimensional superconductor, Science 372, 190 (2021).

[14] M. Heyl, K. Adachi, Y. M. Itahashi, Y. Nakagawa, Y. Kasahara,
E. J. W. List-Kratochvil, Y. Kato, and Y. Iwasa, Vortex dynam-
ics in the two-dimensional BCS-BEC crossover, Nat. Commun.
13, 6986 (2022).

[15] Y. Mizukami, M. Haze, O. Tanaka, K. Matsuura, D. Sano, J.
Boker, I. Eremin, S. Kasahara, Y. Matsuda, and T. Shibauchi,
Unusual crossover from Bardeen-Cooper-Schrieffer to Bose-
Einstein-Condensate superconductivity in iron chalcogenides,
Commun. Phys. 6, 183 (2023).

[16] C. A. R. Sa de Melo and S. Van Loon, Evolution from
Bardeen—Cooper—Schrieffer to Bose—Einstein condensation in
two dimensions: Crossovers and topological quantum phase
transitions, Annu. Rev. Condens. Matter Phys. 15, 109
(2024).

[17] Q. Chen, Z. Wang, R. Boyack, S. Yang, and K. Levin, When
superconductivity crosses over: From BCS to BEC, Rev. Mod.
Phys. 96, 025002 (2024).

[18] V. Soloviev, On the superfluid state of the atomic nucleus, Nucl.
Phys. 9, 655 (1958).

[19] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schifer, Color
superconductivity in dense quark matter, Rev. Mod. Phys. 80,
1455 (2008).

[20] M. Jin, M. Urban, and P. Schuck, BEC-BCS crossover and
the liquid-gas phase transition in hot and dense nuclear matter,
Phys. Rev. C 82, 024911 (2010).

[21] G. C. Strinati, P. Pieri, G. Ropke, P. Schuck, and M. Urban, The
BCS-BEC crossover: From ultra-cold Fermi gases to nuclear
systems, Phys. Rep. 738, 1 (2018).

[22] A. Sedrakian and J. W. Clark, Superfluidity in nuclear systems
and neutron stars, Eur. Phys. J. A 55, 167 (2019).

[23] D. Durel and M. Urban, BCS-BEC crossover effects and pseu-
dogap in neutron matter, Universe 6, 208 (2020).

[24] E. Litvinova and P. Schuck, Nuclear superfluidity at finite tem-
perature, Phys. Rev. C 104, 044330 (2021).

[25] Y. Minami and G. Watanabe, Effects of pairing gap and band
gap on superfluid density in the inner crust of neutron stars,
Phys. Rev. Res. 4, 033141 (2022).

[26] S.Zhang and A. J. Leggett, Universal properties of the ultracold
Fermi gas, Phys. Rev. A 79, 023601 (2009).

[27] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach,
S. Gupta, Z. Hadzibabic, and W. Ketterle, Observation of
Bose-Einstein condensation of molecules, Phys. Rev. Lett. 91,
250401 (2003).

[28] M. Greiner, C. A. Regal, and D. S. Jin, Emergence of a
molecular Bose—Einstein condensate from a Fermi gas, Nature
(London) 426, 537 (2003).

[29] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl,
C. Chin, J. Hecker Denschlag, and R. Grimm, Bose-Einstein
condensation of molecules., Science 302, 2101 (2003).

[30] C. A. Regal, M. Greiner, and D. S. Jin, Observation of reso-
nance condensation of fermionic atom pairs, Phys. Rev. Lett.
92, 040403 (2004).

[31] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach,
A. J. Kerman, and W. Ketterle, Condensation of pairs of
fermionic atoms near a Feshbach resonance, Phys. Rev. Lett.
92, 120403 (2004).

[32] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H.
Schunck, and W. Ketterle, Vortices and superfluidity in a
strongly interacting Fermi gas, Nature (London) 435, 1047
(2005).

[33] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W.
Ketterle, Fermionic superfluidity with imbalanced spin popu-
lations, Science 311, 492 (2006).

[34] G. B. Partridge, W. Li, R. I. Kamar, Y. an Liao, and R. G. Hulet,
Pairing and phase separation in a polarized Fermi gas, Science
311, 503 (2006).

[35] I. Boettcher, L. Bayha, D. Kedar, P. A. Murthy, M. Neidig,
M. G. Ries, A. N. Wenz, G. Ziirn, S. Jochim, and T.
Enss, Equation of state of ultracold fermions in the 2d
BEC-BCS crossover region, Phys. Rev. Lett. 116, 045303
(2016).

[36] B. Ginger, J. Phieler, B. Nagler, and A. Widera, A versatile
apparatus for fermionic lithium quantum gases based on an
interference-filter laser system, Rev. Sci. Instrum. 89, 093105
(2018).

[37] X.-P. Liu, X.-C. Yao, H.-Z. Chen, X.-Q. Wang, Y.-X. Wang,
Y.-A. Chen, Q. Chen, K. Levin, and J.-W. Pan, Observation of
the density dependence of the closed-channel fraction of a SLi
superfluid, Nat. Sci. Rev. 9, nwab226 (2022).

[38] E. Soave, A. Canali, Z.-X. Ye, M. Kreyer, E. Kirilov, and
R. Grimm, Optically trapped feshbach molecules of fermionic
161Dy and “°K, Phys. Rev. Res. 5, 033117 (2023).

[39] J. Koch, K. Menon, E. Cuestas, S. Barbosa, E. Lutz, T. Fogarty,
T. Busch, and A. Widera, A quantum engine in the BEC-BCS
crossover, Nature (London) 621, 723 (2023).

033186-22



WEIGHTED HARTREE-FOCK-BOGOLIUBOV METHOD FOR ...

PHYSICAL REVIEW RESEARCH 7, 033186 (2025)

[40] M. Bohlen, L. Sobirey, N. Luick, H. Biss, T. Enss, T. Lompe,
and H. Moritz, Sound propagation and quantum-limited damp-
ing in a two-dimensional Fermi gas, Phys. Rev. Lett. 124,
240403 (2020).

[41] H. Biss, L. Sobirey, N. Luick, M. Bohlen, J. J. Kinnunen,
G. M. Bruun, T. Lompe, and H. Moritz, Excitation spectrum
and superfluid gap of an ultracold Fermi gas, Phys. Rev. Lett.
128, 100401 (2022).

[42] X. Li, S. Wang, X. Luo, Y.-Y. Zhou, K. Xie, H.-C. Shen, Y.-Z.
Nie, Q. Chen, H. Hu, Y.-A. Chen, X.-C. Yao, and J.-W. Pan, Ob-
servation and quantification of the pseudogap in unitary Fermi
gases, Nature (London) 626, 288 (2024).

[43] M. Horikoshi, S. Nakajima, M. Ueda, and T. Mukaiyama, Mea-
surement of universal thermodynamic functions for a unitary
Fermi gas, Science 327, 442 (2010).

[44] N. Navon, S. Nascimbene, F. Chevy, and C. Salomon, The
equation of state of a low-temperature Fermi gas with tunable
interactions, Science 328, 729 (2010).

[45] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein,
Revealing the superfluid lambda transition in the universal
thermodynamics of a unitary Fermi gas, Science 335, 563
(2012).

[46] L. D. Carr, G. V. Shlyapnikov, and Y. Castin, Achieving a BCS
transition in an atomic Fermi gas, Phys. Rev. Lett. 92, 150404
(2004).

[47] Q. Chen, J. Stajic, and K. Levin, Thermodynamics of inter-
acting fermions in atomic traps, Phys. Rev. Lett. 95, 260405
(2005).

[48] S. Yong, S. Barbosa, J. Koch, F. Lang, A. Pelster, and A.
Widera, Unravelling interaction and temperature contributions
in unpolarized trapped fermionic atoms in the BCS regime,
arXiv:2311.08853.

[49] M. Link, K. Gao, A. Kell, M. Breyer, D. Eberz, B. Rauf,
and M. Kohl, Machine learning the phase diagram of a
strongly interacting Fermi gas, Phys. Rev. Lett. 130, 203401
(2023).

[50] D. Eberz, M. Link, A. Kell, M. Breyer, K. Gao, and M. Kohl,
Detecting the phase transition in a strongly interacting Fermi
gas by unsupervised machine learning, Phys. Rev. A 108,
063303 (2023).

[51] C. A. R. S4 de Melo, M. Randeria, and J. R. Engelbrecht,
Crossover from BCS to Bose superconductivity: Transi-
tion temperature and time-dependent Ginzburg-Landau theory,
Phys. Rev. Lett. 71, 3202 (1993).

[52] J. R. Engelbrecht, M. Randeria, and C. A. R. Sa de Melo, BCS
to Bose crossover: Broken-symmetry state, Phys. Rev. B 55,
15153 (1997).

[53] L. P. Gor’kov and T. K. Melik-Barkhudarov, Contribution to
the theory of superfluidity in an imperfect Fermi gas, JETP 13,
1018 (1961).

[54] P. Nozieres and S. Schmitt-Rink, Bose condensation in an
attractive fermion gas: From weak to strong coupling supercon-
ductivity, J. Low Temp. Phys. 59, 195 (1985).

[55] R. Haussmann, Crossover from BCS superconductivity to Bose-
Einstein condensation: A self-consistent theory, Z. Phys. B 91,
291 (1993).

[56] M. Marini, F. Pistolesi, and G. C. Strinati, Evolution from
BCS superconductivity to Bose condensation: Analytic results
for the crossover in three dimensions, Eur. Phys. J. B 1, 151
(1998).

[57] M. Leskinen, J. Kajala, and J. Kinnunen, Resonant scattering
effect in spectroscopies of interacting atomic gases, New J.
Phys. 12, 083041 (2010).

[58] A. Korolyuk, J. J. Kinnunen, and P. Térmé, Collective excita-
tions of a trapped Fermi gas at finite temperature, Phys. Rev. A
89, 013602 (2014).

[59] E. Neri, S. F. Caballero-Benitez, V. Romero-Rochin, and R.
Paredes, Pairing and molecule formation along the BCS-BEC
crossover for finite range potentials, Phys. Scr. 95, 034013
(2020).

[60] B. Mihaila, J. F. Dawson, F. Cooper, C.-C. Chien, and E.
Timmermans, Auxiliary field formalism for dilute fermionic
atom gases with tunable interactions, Phys. Rev. A 83, 053637
(2011).

[61] C. J. Pethick and H. Smith, Bose—FEinstein Condensation in
Dilute Gases, 2nd ed. (Cambridge University Press, Cambridge,
2008).

[62] H. Kleinert, Hubbard-Stratonovich transformation: Successes,
failure, and cure, arXiv:1104.5161.

[63] H. Kleinert, Particles And Quantum Fields (World Scientific,
Singapore, 2016).

[64] B. Mukherjee, Z. Yan, P. B. Patel, Z. Hadzibabic, T. Yefsah,
J. Struck, and M. W. Zwierlein, Homogeneous atomic Fermi
gases, Phys. Rev. Lett. 118, 123401 (2017).

[65] J. Verstraten, K. Dai, M. Dixmerias, B. Peaudecerf, T. de
Jongh, and T. Yefsah, In situ imaging of a single-atom wave
packet in continuous space, Phys. Rev. Lett. 134, 083403
(2025).

[66] R. Yao, S. Chi, M. Wang, R. J. Fletcher, and M. Zwierlein,
Measuring pair correlations in Bose and Fermi gases via atom-
resolved microscopy, Phys. Rev. Lett. 134, 183402 (2025).

[67] T. de Jongh, J. Verstraten, M. Dixmerias, C. Daix, B.
Peaudecerf, and T. Yefsah, Quantum gas microscopy of
Fermions in the continuum, Phys. Rev. Lett. 134, 183403
(2025).

[68] E. Vermeyen, C. A. R. Sd de Melo, and J. Tempere, Exchange
interactions and itinerant ferromagnetism in ultracold Fermi
gases, Phys. Rev. A 98, 023635 (2018).

[69] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of super-
conductivity, Phys. Rev. 108, 1175 (1957).

[70] A. J. Leggett, A theoretical description of the new phases of
liquid *He, Rev. Mod. Phys. 47, 331 (1975).

[71] S. S. Botelho and C. A. R. S4 de Melo, Lifshitz transi-
tion in d-wave superconductors, Phys. Rev. B 71, 134507
(2005).

[72] S. S. Botelho and C. A. R. Sd de Melo, Quantum phase tran-
sition in the BCS-to-BEC evolution of p-wave Fermi gases,
J. Low Temp. Phys. 140, 409 (2005).

[73] H. Stoof, D. Dickerscheid, and K. Gubbels, Ultracold Quantum
Fields, Theoretical and Mathematical Physics (Springer, Berlin,
2008).

[74] G. Czycholl, Solid State Theory, Volume 1: Basics: Phonons and
Electrons in Crystals (Springer, Berlin, 2023).

[75] P. M. Stevenson, Optimized perturbation theory, Phys. Rev. D
23,2916 (1981).

[76] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics,
Polymer Physics, and Financial Markets, 5th ed. (World Scien-
tific, Singapore, 2009).

[77] L. P. Gorkov, On the energy spectrum of superconductors, JETP
34, 505 (1958).

033186-23



KASCHEWSKI, PELSTER, AND SA DE MELO

PHYSICAL REVIEW RESEARCH 7, 033186 (2025)

[78] A. A. Abrikosov, L. P. Gorkov, and I. Dzyaloshinskii, Methods
of Quantum Field Theory in Statistical Physics (Dover, Mineola,
NY, 1975).

[79] A. Altland and B. D. Simons, Condensed Matter Field
Theory, 2nd ed. (Cambridge University Press, Cambridge,
2010).

[80] J. Stalker, Complex Analysis, Modern Birkhduser Classics
(Birkhéuser, Basel, 1998).

[81] H. A. Bethe, Theory of the effective range in nuclear scattering,
Phys. Rev. 76, 38 (1949).

[82] L. B. Madsen, Effective range theory, Am. J. Phys. 70, 811
(2002).

[83] M. Urban and S. Ramanan, Low-momentum interactions for
ultracold Fermi gases, Phys. Rev. A 103, 063306 (2021).

[84] C. L. Blackley, P. S. Julienne, and J. M. Hutson, Effective-range
approximations for resonant scattering of cold atoms, Phys.
Rev. A 89, 042701 (2014).

[85] F. Pistolesi and G. C. Strinati, Evolution from BCS supercon-
ductivity to Bose condensation: Role of the parameter k&,
Phys. Rev. B 49, 6356 (1994).

033186-24



