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For several decades it has been known that divergences arise in the ground-state energy and chemical potential
of unitary superfluids, where the scattering length diverges, due to particle-hole scattering. Leading textbooks
and research articles recognize that there are serious issues but ignore them due to the lack of an approach that
can regularize these divergences. We find a solution to this difficulty by proposing a general method, called
the weighted Hartree-Fock-Bogoliubov theory, to handle multiple decomposition channels originating from the
same interaction. We distribute the interaction in weighted channels determined by minimization of the action,
and we apply this idea to unpolarized Fermi superfluids. Using our method, we solve a long-standing difficulty
in the partitioning of the interaction into Hartree, Fock, and Bogoliubov channels for Fermi superfluids, and
we obtain a phase diagram at the saddle-point level, which contains multichannel nonperturbative corrections.
In particular, we find a previously overlooked superfluid phase for weak interactions, which is dominated by
particle-hole processes, in addition to the usual superfluid phase only containing particle-particle physics.
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I. INTRODUCTION

The subject of ultracold Fermi gases is of great interest
to the atomic, condensed matter, and nuclear physics com-
munities because it can explore the evolution from weakly
to strongly correlated regimes by tuning interaction strengths
via Fano-Feshbach resonances [1–6] or modifying the density
[7–10]. In condensed matter physics, the effective interac-
tions between fermions (electrons and/or holes) in a solid are
largely unknown, and for each material one has to rely on
guesses of the type and range of the Fermi-Fermi interactions
to establish the phase diagrams of solids [11–17]. In nuclear
physics, the interactions between fermions (neutrons and/or
protons) are typically short-ranged, and their effective range
is known to play a role in determining the phase diagram of
nuclear matter [18–25]. In atomic physics, the interactions
between neutral ultracold fermions (atoms) are also short-
ranged, and for experimental systems such as 6Li and 40K it
is commonly believed that the effective range plays no role in
determining the phase diagram of Fermi gases [26].

Despite a substantial amount of experimental work in 6Li
and 40K [27–38], there is no reliable thermometry that can
be used to determine, with good precision, the critical tem-
perature of the superfluid phase of these ultracold fermions,
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as interactions are tuned from the Bardeen-Cooper-Schrieffer
(BCS) to the Bose-Einstein condensation (BEC) regimes. This
experimental difficulty arises for both harmonic traps [27–39]
and for the more recent box traps [40–42]. However, some
regions of the phase diagram are accessible to direct thermom-
etry; most prominently is the unitary region, believed to have
universal thermal behavior [43–45]. In the BCS regime, the
method of adiabatic sweeping to the BEC side is commonly
used as an indirect method of thermometry [29,30,46,47].
However, in the BCS regime, a direct method was suggested
recently, allowing us to unravel interaction and thermal con-
tributions in the measured densities of unpolarized trapped
fermionic atoms [48]. Furthermore, some creative techniques,
using machine learning, were used to attempt the determina-
tion of the critical temperature for superfluidity of 6Li [49,50]
in three dimensions. Nevertheless, precise and reliable direct
thermometric experimental methods over the entire BEC-BCS
crossover are still lacking.

Early functional integral theoretical efforts provided a ba-
sic understanding of the phase diagram of ultracold fermions
with short-ranged s-wave interactions, but they only included
the effects of the Bogoliubov (pairing) channel [51,52], that
is, only particle-particle fluctuations were investigated, and
particle-hole effects were neglected. However, it is known
theoretically that particle-hole fluctuations renormalize the
critical temperature in the weak-coupling BCS regime, as
demonstrated by Gorkov-Melik-Bakhudarov (GMB) [53].
Other early theoretical investigations, using diagramatic
methods [54–56], only include the pairing channel and its
fluctuations. In a homogeneous system, the typical argument
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for ignoring Hartree contributions is that they can be absorbed
into the chemical potential; however, for a fixed number
of particles, the actual value of the chemical potential with
respect to the band minimum can determine whether the
Fermi system is degenerate or not, and thus it has physical
consequences. Furthermore, as GMB showed, particle-hole
fluctuations can reduce the BCS critical temperature by a
factor of 2.2, which is a substantial effect. We note that GMB
did not include Hartree corrections to the BCS mean-field
state, rather they computed particle-hole fluctuations on top
of the BCS theory, meaning that their approach is incomplete.

Some authors neglect Hartree contributions for simplicity
[57–59]; others include them by partitioning half of the inter-
action energy into the Bogoliubov (particle-particle) channel
and the other half into the Hartree (particle-hole) channel
[48,60]. In both cases, there is a degree of arbitrariness that
needs to be addressed, because different choices can lead
to different qualitative and quantitative answers. Since the
physics associated with s-wave pairing cannot depend on the
choice of the decomposition, a higher principle needs to be
invoked to decide how much of the interaction energy goes
into each channel. Furthermore, the equally or arbitrarily
weighted inclusion of Hartree (particle-hole) and Bogoliubov
(particle-particle) channels for short-ranged interactions leads
to divergent Hartree energy and chemical potential at unitarity
[6,58–60], a difficulty that cannot be ignored in the context of
short-ranged or zero-ranged interactions, as applied to ultra-
cold gases.

In this paper, we present a general solution to the arbitrari-
ness of separation between Hartree (direct), Fock (exchange),
and Bogoliubov (pairing) channels for interacting fermions.
We introduce a method that weights the Hartree, Fock, and
Bogoliubov partitions, in which the interaction can be de-
composed, with the constraint that the sum of the respective
weights is 1. The contribution of each partition is obtained
by minimizing the action with respect to the weights, thus
eliminating the arbitrary separation of the channels, and dis-
tributing the interaction energy into each sector without bias.
We apply this idea to the case of short-ranged interactions,
where our method also provides a solution to the unphysi-
cal divergence of the Hartree energy and chemical potential
at unitarity [6,61], when the interaction energy is equally
distributed between the Hartree and Bogoliubov channels.
Our method eliminates the miscounting or double-counting of
states that contribute to each channel in standard approaches,
and thus removes the aforementioned unphysical results.

We emphasize that our approach can, in principle, be used
for any type of interactions, where two or more channels
compete for the partitioning of the same interaction term,
potentially leading to two or more order parameters describing
spontaneously broken symmetries. The method can be used
irrespective of the underlying type of interaction, which could
be s-wave, p-wave, d-wave, Coulomb, dipolar, or spin-spin.
However, we illustrate our technique in the simplest possible
case: Fermi systems with s-wave short-ranged attractive in-
teractions, identical masses, and equal populations. There are
two important consequences of introducing weighting factors
in the partitioning of interactions. The first consequence is
that the simultaneous regularization of order-parameter equa-
tions, for the Bogoliubov and Hartree channels, requires the

introduction of a many-body effective range. The second con-
sequence is that the Hartree shift acquires the status of an
order parameter, which vanishes before the unitarity regime
is reached, thus removing the unphysical (singular) behavior
in the Hartree energy or the chemical potential at unitarity,
as described in textbooks [6]. The vanishing of the Hartree
shift leads to the emergence of a new phase that we call the
Hartree superfluid, where the Hartree and Bogoliubov order
parameters are nonzero, in contrast to the standard superfluid
where the Hartree order parameter is zero and the Bogoliubov
order parameter does not vanish.

The remainder of the paper is organized as follows. In
Sec. II, we present our weighted Hartree-Fock-Bogoliubov
theory for the case of contact s-wave interactions. We de-
compose the interaction into Hartree, Fock, and Bogoliubov
channels, then we particularize to equal masses and balanced
populations, where only the Hartree and Bogoliubov channels
are important. In addition, we introduce Hartree and Bogoli-
ubov Hubbard-Stratonovich fields and derive the system’s
effective action. In Sec. III, we perform a saddle-point analy-
sis of the weighted Hartree-Bogoliubov theory and obtain the
corresponding self-consistency relations for the Hartree and
Bogoliubov order parameters. Furthermore, when the Hartree
and Bogoliubov channels are considered simultaneously, we
show that a many-body effective range is required to regular-
ize the theory. Moreover, we demonstrate that the Hartree and
Bogoliubov channels are nonperturbatively coupled already
at the saddle-point level. In Sec. IV, we discuss the resulting
ground-state properties in detail. First, we describe the phase
diagram in the interaction range versus interaction parameter
plane revealing the Hartree and the standard superfluid phases.
Second, we analyze the behavior of the order parameters, the
chemical potentials, and the ground-state energies in each of
the phases. In particular, we determine asymptoptic behaviors
in both weak and strong coupling, as well as at unitarity. In
Sec. V, we obtain an analytic expression for the pair size,
which serves as an indicator of the evolution from weak
to strong coupling. We also describe the various asymptotic
limits of the pair size with respect to the interaction param-
eter and range. In Sec. VI, we reveal the finite-temperature
phase diagram at the saddle-point approximation, as well
as the behaviors of the Hartree and Bogoliubov order pa-
rameters, and of their weighting factors. Finally, we make
a quick comparison between the pairing temperature calcu-
lated at the saddle-point with Hartree corrections and the
pairing temperature without the Hartree term, but including
particle-hole fluctuations, as performed by GMB. In Sec. VII,
we concisely summarize our findings. Finally, in Sec. VIII,
we outline important next steps for simultaneously including
both particle-hole and particle-particle fluctuations, which are
essential for determining the finite-temperature phase diagram
throughout the evolution from weak to strong coupling.

II. WEIGHTED HARTREE-FOCK-BOGOLIUBOV THEORY

In the following discussion, we present the weighted
Hartree-Fock-Bogoliubov (WHFB) theory to describe Fermi
superfluids with contact s-wave interactions. We use the func-
tional integral method to introduce the weighting constraint
and to determine the contribution of each channel via a
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minimization procedure of the system’s action. The devel-
opment of such a theory is important because it solves
long-standing theoretical issues regarding channel decompo-
sitions [62,63] and divergences [6]. Moreover, the utilization
of our method is motivated by the increasing number of
experimental platforms that allow for more precise com-
parisons between theory and experiment in three spatial
dimensions [48,64]. Furthermore, our methodology has also
important ramifications in addressing related issues in two-
dimensional systems that were experimentally investigated
recently [65–67].

A. Interaction decomposition

We discuss the pairing theory of fermionic superfluidity,
from BCS to BEC for two fermionic species or states labeled
by s = (↑,↓) representing, for instance, two hyperfine states
of 6Li or 40K. We explore the three-dimensional (3D) dilute
regime of this system using the Hamiltonian density

H(x) =
∑

s

ψ s(x)Ksψs(x) + V (x), (1)

where ψ,ψ are anticommuting Grassmann fields. Here, the
kinetic energy operator is

Ks = − ∇2

2ms
− μs (2)

with respect to the chemical potential μs, and ms stands for
the mass characterizing the species or state s. The interaction
term

V (x) = −gψ↑(x)ψ↓(x)ψ↓(x)ψ↑(x) (3)

corresponds to an s-wave contact attractive interaction, where
the strength g is considered to be positive, i.e., we assume
g > 0. The interaction in Eq. (3) is SU(2) invariant with
respect to the label s = (↑,↓) and is written in normal or-
der using the four-vector notation x = (x, τ ), where x is the
real-space position and τ denotes imaginary time. The corre-
sponding action associated with the Hamiltonian in Eq. (1) is

S[ψ,ψ] =
∫

dx

[∑
s

ψ s(x)∂τψs(x) + H(x)

]
. (4)

Here, we used the notation
∫

dx = ∫ β

0 dτ
∫

dx, where β =
T −1 is the inverse temperature in natural units, that is, h̄ =
kB = 1.

Up to now, theories of interacting fermions have explored
one of the following options: (a) particle-hole channel only,
(b) particle-particle channel only, or (c) an equal mixture of
the two, where the particle-hole and particle-particle chan-
nels have equal weights. In (a), one explores instabilities
driven by the particle-hole channel when direct and exchange
interactions are present [68]. In (b), one investigates in-
stabilities driven by particle-particle (hole-hole) interactions
resulting in pairing [51,52,54,56,69–72]. In (c), one ana-
lyzes instabilities with equal weights in the particle-hole and
particle-particle channels [48,73,74]. Although this last option
includes Hartree, Fock, and Bogoliubov terms, it treats the
channels using equal weights. As a result of this arbitrary

choice, the equal weight method miscounts contributions by
overestimating one channel and underestimating another.

To remove the arbitrariness of the choices (a), (b), or (c),
and the miscounting that they introduce, we use a weighted
Hartree-Fock-Bogoliubov theory by partitioning the interac-
tion into the Hartree, Fock, and Bogoliubov channels with
weights {h, f , b}, respectively, satisfying the constraint h +
f + b = 1. We implement this procedure by partitioning the
interaction V (x), shown in Eq. (3), into

V (x) = VH(x) + VF(x) + VB(x), (5)

where the Hartree (H), Fock (F), and Bogoliubov (B) terms
are

VH(x) = −gHψ↑(x)ψ↑(x)ψ↓(x)ψ↓(x), (6a)

VF(x) = +gFψ↑(x)ψ↓(x)ψ↓(x)ψ↑(x), (6b)

VB(x) = −gBψ↑(x)ψ↓(x)ψ↓(x)ψ↑(x). (6c)

Notice that the interactions written in terms of the Grass-
mann fields satisfy the constraint g = gH + gF + gB. This is
equivalent to attributing weights to each interaction channel
through the relations gH = hg, gF = f g, and gB = bg, with
h + f + b = 1 and {h, f , b} ∈ [0, 1]. With these constraints,
the weights {h, f , b} represent the probability of participation
of each channel in the interaction decomposition. Using this
partitioning, we rewrite the action in Eq. (4) as

S[ψ,ψ] = Skin[ψ,ψ] + SH[ψ,ψ] + SF[ψ,ψ] + SB[ψ,ψ],

(7)

where the kinetic contribution reads

Skin[ψ,ψ] =
∫

dx
∑

s

ψ s(x)(∂τ + Ks)ψs(x) (8)

and the interaction corresponding to each separate channel is

SJ[ψ,ψ] =
∫

dx VJ(x), (9)

with J = {H, F, B} labeling the the Hartree, Fock, and Bo-
goliubov channels, respectively. The specific value of the
weights {h, f , b} is obtained via the minimization of the action
S[ψ,ψ] given in Eq. (7).

To understand the impact on thermodynamic properties,
when including all three channel simultaneously, we need to
analyze the grand-canonical partition function

Z =
∮

DψDψ exp(−S[ψ,ψ]), (10)

where the symbol
∮

represents functional integration over
the Grassmann fields, which are antiperiodic with respect to
imaginary time. This yields the grand-canonical potential

�(V, T, μ) = −T lnZ. (11)

Therefore, the weights {h, f , b} are determined either by min-
imizing the action in Eq. (7) or the grand-canonical potential
in Eq. (11), according to the principle of minimal sensitivity
[75,76].

The discussion above shows that our approach treats the
Hartree, Fock, and Bogoliubov channels without biases and at
a nonperturbative level, unlike earlier attempts of including
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particle-hole effects via the Hartree and Fock channels as
perturbations about the Bogoliubov channel [53,77]. Further-
more, our procedure removes the arbitrariness of assigning
equal weights to different channels, which leads to a mis-
counting (overcounting or undercounting) of contributions of
different states to each interaction sector. Next, we introduce
the Hubbard-Stratonovich fields separately in the different
channels to decouple the interaction terms.

B. Hubbard-Stratonovich transformations

In investigating the functional integral (10), the next step
relies on factorizing the integrand into different exponen-
tials corresponding to the respective interaction channels.
For this purpose, we apply to each exponential factor a
specific Hubbard-Stratonovich transformation (HST), which
decomposes the interaction with four fermionic fields into an
auxiliary bosonic and two fermionic fields. In this section, we
concentrate on the Hartree and Bogoliubov decompositions,
because our main interest in this manuscript is the application
of our method for equal mass and balanced populations, as
discussed in Sec. II C and beyond.

To tackle the Hartree channel we decompose the interac-
tion as

VH(x) = −gH,↑↓ρ↑(x)ρ↓(x) − gH,↓↑ρ↓(x)ρ↑(x), (12)

where both contributions are weighted independently by gH,↑↓
and gH,↓↑ with the constraint gH = gH,↑↓ + gH↓↑. For Hermi-
tian and reciprocal systems, the two interactions gH,↑↓ and
gH,↓↑ are indeed the same quantity, that is, equal to gH/2. Even
though non-Hermitian and nonreciprocal interactions are not
considered in this paper, we kept a more general notation to
allow for future research in this direction. In addition, we use
this notation as a bookkeeping device for the matrix elements
shown below in Eq. (17).

Further, we set the spin-resolved density to ρs(x) =
ψ s(x)ψs(x) and introduce a real valued bosonic field

�T
H(x) = (�H,↓(x) �H,↑(x)) (13)

coupling to the Hartree channel source term

jH(x) =
(

ρ↑(x)
ρ↓(x)

)
, (14)

which is associated with particle-hole processes for the dif-
ferent densities. The Hubbard-Stratonovich transformation for
the Hartree channel action in Eq. (9) then reads

e−SH[ψ,ψ] = NH

∮
D�He−SH

aux[�H;ψ,ψ], (15)

where the auxiliary action is

SH
aux[�H; ψ,ψ]

=
∫

dx

[
1

2
�T

H(x)MH�H(x) + �T
H(x) jH(x)

]
. (16)

Here the matrix that couples �T
H(x) and �H(x) is

MH = 1

2

(
0 1/gH,↑↓

1/gH,↓↑ 0

)
. (17)

Thus, the auxiliary action in Eq. (16) is explicitly given by
evaluating the scalar products

SH
aux[�H; ψ,ψ]

=
∫

dx

{
�H,↓(x)�H,↑(x)

4gH,↑↓
+ �H,↑(x)�H,↓(x)

4gH,↓↑

+ �H,↑(x)ψ↓(x)ψ↓(x) + �H,↓(x)ψ↑(x)ψ↑(x)

}
. (18)

This transforms the direct contribution of the interaction, after
which we will focus on the pairing terms. As the Bogoliubov
channel is represented by complex scalar fields, we rewrite
its action in Eq. (9) by means of the Hubbard-Stratonovich
transformation

e−SB[ψ,ψ] = NB

∮
D�BD�Be−SB

aux[�B,�B,ψ,ψ]. (19)

The explicit form of the auxiliary action is

SB
aux[�B,�B, ψ,ψ] =

∫
dx[�B(x)MB�B(x) + jB(x)�B(x)

+ jB(x)�B(x)], (20)

when expressed in terms of the auxiliary fields �B(x), �B(x)
and the source term jB(x). The Bogoliubov channel source
term

jB(x) = ψ↓(x)ψ↑(x) (21)

is associated with singlet pairing, and we identify MB = g−1
B .

Defining ZH[ψ,ψ] = e−SH[ψ,ψ] and using Eq. (15), as well as
defining ZB[ψ,ψ] = e−SB[ψ,ψ] and using Eq. (19), we rewrite
the grand-canonical partition function shown in Eq. (10) in
terms of the auxiliary fields {�H,s,�B,�B} as

Z =
∮

DψDψ exp(−Skin[ψ,ψ])ZHB[ψ,ψ], (22)

where the decomposition into the two interaction channels is
described by the product

ZHB[ψ,ψ] = ZH[ψ,ψ]ZB[ψ,ψ]. (23)

As a consequence, using Eq. (23), the Hubbard-Stratonovich
transformations in Eq. (15) for the Hartree sector and in
Eq. (19) for the Bogoliubov channel, transform the partition
function in Eq. (22) to

Z =
∮

DψDψ

∮
D{�} exp(−SHB[ψ,ψ ; {�}]). (24)

Here, the notation {�} abbreviates the set {�H,s,�B,�B}
of auxiliary fields, and D{�} represents their combined
functional integral measure D�H,sD�BD�B. The resulting
Hartree-Bogoliubov action

SHB[ψ,ψ ; {�}] = Skin[ψ,ψ] + SH
aux[�H; ψ,ψ]

+SB
aux[�B,�B; ψ,ψ] (25)

contains the kinetic contribution Skin[ψ,ψ] given in Eq. (8)
for equal masses and balanced populations, the auxiliary
Hartree action SH

aux[�H,s, ψ,ψ] described in Eq. (16), and
the auxiliary Bogoliubov action SB

aux[�B,�B, ψ,ψ] from
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Eq. (20). Writing the Hartree-Bogoliubov (HB) action explic-
itly,

SHB[ψ,ψ ; {�}]

=
∫

dx

{∑
s

ψ s(x)(∂τ+Ks)ψs(x) + �H,↑(x)ψ↓(x)ψ↓(x)

+ �H,↓(x)ψ↑(x)ψ↑(x) + �B(x)ψ↓(x)ψ↑(x)

+ �B(x)ψ↑(x)ψ↓(x) + �B(x)�B(x)

gB

+ �H,↓(x)�H,↑(x)

4gH,↑↓
+ �H,↑(x)�H,↓(x)

4gH,↓↑

}
(26)

reveals that it is quadratic in the fermionic as well as in
the bosonic auxiliary fields. We emphasize that the Hartree-
Bogoliubov action in Eq. (27), expressed in terms of the
Hubbard-Stratonovich fields, represents a generalization of
the cases, where either only the Hartree sector [68] or only the
Bogoliubov channel [21,51,52,54,56,69–72] occurs and for
now does not have any restrictions to the two spin-populations
ns = 〈ψ s(x)ψs(x)〉. A similar approach can be applied also for
the Fock term in Eq. (6b), but since we focus next on the case
of equal masses and balanced populations, the Fock terms are
not relevant, as explained in Sec. II C. Now, we are ready to
use the method outlined above to investigate nonperturbative
effects of the Hartree (particle-hole) sector on the Bogoliubov
(particle-particle) channel. These nonperturbative effects re-
flect the coupling between the Hartree and Bogoliubov fields
that result from integrating out the fermionic degrees of free-
dom and keeping track of the interaction partitioning between
the two channels via gH,↑↓, gH,↓↑, and gB. These steps lead to
an effective action, which only includes the bosonic auxiliary
fields and the weighting parameters.

Thus, we discuss next the example of balanced populations
and equal masses, as the simplest example of the appli-
cation of general weighted Hartree-Fock-Bogoliubov theory
discussed above.

C. Balanced populations and equal masses

To understand the effects of the competing channels
{H, F, B} in systems of balanced populations and equal
masses, we notice that the interaction term of the Hamiltonian
density given in Eq. (1) is local, includes only the singlet
s-wave component, and preserves SU(2) symmetry. Also the
kinetic energy term is spin-diagonal and proportional to the
identity matrix in spin space, and thus is also SU(2) invariant.
Due to these symmetries, no spin-flip processes are allowed
and the Fock source field is absent. The irrelevance of the
Fock term is not directly connected to the range of the sin-
glet s-wave interaction used, but rather to the preservation of
SU(2) symmetry. For balanced populations and equal masses,
we consider only the case of spontaneously broken U(1) sym-
metry, but SU(2) symmetry is preserved. Fock channel source
terms involve spin flips, breaking SU(2) symmetry explicitly,
and thus they do not appear for spontaneously broken U(1) but
preserved SU(2) symmetry. On the other hand, for imbalanced
populations and equal masses, when U(1) is spontaneously

broken and SU(2) is explicitly broken, a nontrivial solution for
the Fock order parameter may exist, because the system can
develop a magnetization. However, in the limit of balanced
populations and equal masses, the Fock order parameter is
identically zero, because it is proportional to the population
imbalance. The generalization of our theory to include pop-
ulation and/or mass imbalances will be the topic of our next
publication. In the present paper, our intention is to discuss the
simplest example possible, where the weighted Hartree-Fock-
Bogoliubov method needs to be applied.

Thus, for balanced populations and equal masses, the Fock
contribution does not emerge at a saddle-point level, that is,
gF = 0. Since we focus on the example of a single atomic
species with balanced populations, that is, μ↑ = μ↓ = μ and
m↑ = m↓ = m, the kinetic terms simplify to K↑ = K↓ = K =
−∇2/(2m) − μ. Furthermore, equal populations implies that
�H,↑ = �H,↓ = �H and using that gH,↑↓ = gH,↓↑ = gH/2
leads to two contributions: one originating from the Hartree
channel with weight h, yielding gH = hg, and the other from
the Bogoliubov channel with weight b included in gB = bg,
such that we have h + b = 1 or gH + gB = g. Under those
simplifications, the overall HB action from Eq. (26) becomes

SHB[ψ,ψ ; {�}]

=
∫

dx

{∑
s

ψ s(x)(∂τ + K)ψs(x) + �B(x)ψ↓(x)ψ↑(x)

+ �B(x)ψ↑(x)ψ↓(x) + �H(x)[ψ↓(x)ψ↓(x)

+ ψ↑(x)ψ↑(x)] + �B(x)�B(x)

gB
+ �H(x)�H(x)

gH

}
,

(27)

covering contributions from the Hartree and Bogoliubov
channels. The action in Eq. (27) is the starting point for
investigating the effects of particle-hole fluctuations not
only in the BCS regime [53] but throughout the BCS-BEC
crossover. Thus, we construct the effective action of the
Hartree-Bogoliubov sector by integrating out the fermions, as
discussed next.

D. Effective action

To obtain the effective action of our system, we write the
fermion fields as a Nambu spinor 	(x) = (ψ↑(x) ψ↓(x))
and express the HB action from Eq. (27) as

SHB[	,	, {�}] =
∫

dx

[
	(x)A	(x) + �B(x)�B(x)

gB

+ �H(x)�H(x)

gH

]
, (28)

where matrix A has the structure

A =
(

∂τ + K + �H(x) �B(x)
�B(x) ∂τ − K − �H(x)

)
, (29)

with K = −∇2/2m − μ, as discussed earlier for equal masses
and balanced populations. The integration over fermionic
Grassmann fields is performed by converting the measure
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DψDψ into D	D	 leading to the effective action

Seff ({�}) = − ln [Det(βA)]

+
∫

dx

βV

[
βV

|�B(x)|2
gB

+ βV
�H(x)2

gH

]
, (30)

where Det(βA) means the product of the eigenvalues of the
operator matrix βA, including spins. This represents the exact
effective action for the Hartree-Bogoliubov decomposition.
Therefore, integration over fermion fields in Eq. (24) leads
to the grand-canonical partition function

Z =
∮

D{�} exp(−Seff [{�}]). (31)

To make progress towards a saddle-point description, we
write �B(x) = �B,0 + ηB(x) for the superfluid order pa-
rameter and �H(x) = �H,0 + ηH(x) for the Hartree order
parameter. Here, �B,0 and �H,0 represent saddle points, while
ηB(x) and ηH(x) correspond to fluctuations. Such a represen-
tation leads to two contributions to the effective action. The
first one is the saddle-point action S0[{�0}] discussed below
in detail and the fluctuation action Sfluct[{�0}; {η}] discussed
briefly in Sec. VIII, which represents the outlook of the paper.

For the rest of this section, we ignore fluctuations and
consider only the saddle-point contribution leading to the
grand-canonical partition function

Z0 = exp(−S0[{�0}]) (32)

with the saddle-point action

S0[{�0}] = −
∫

dx

βV
ln [det (βA0)]

+βV

(
|�B,0|2

gB
+ �2

H,0

gH

)
. (33)

The notation det (βA0) refers to the determinant in the spin
subspace only, while the space-time part of the determinant
was converted into the integral

∫
dx, and

A0 =
(

∂τ + K + �H,0 �B,0

�B,0 ∂τ − K − �H,0

)
(34)

represents the inverse propagator matrix. Performing a Fourier
transformation into momentum (k) and Matsubara (ikn) space
with the fermionic Matsubara frequencies kn = (2n + 1)π/β,
where n is an integer, we obtain

S0[{�0}] = −
∑

k

ln[det(βÃ0,k )]

+βV

(
|�B,0|2

gB
+ �2

H,0

gH

)
. (35)

Here, we use the four-momentum notation k = (ikn, k), as
well as the transformation ∂τ → −ikn, −i∇ → k, and K →
k2/2m − μ, to write the Fourier transform of Eq. (34) as

Ã0,k = −iknI + (ξk + �H,0)σz

+�B,0σ
+ + �B,0σ

−, (36)

where ξk = k2/(2m) − μ is the kinetic energy with respect
to the chemical potential μ, σ j stands for the Pauli matrices

with j = {x, y, z}, and σ± = (σx ± iσy)/2 represent the spin
raising and lowering operators. In Eq. (35), the determinant

det(βÃ0,k ) = β2(ikn − Ek )(ikn + Ek ) (37)

is the product of the eigenvalues of βÃ0,k , with the quasipar-
ticle dispersion being

Ek =
√

(ξk + �H,0)2 + |�B,0|2. (38)

Notice that S0 in Eq. (35) contains a branch cut due to the log-
arithm, which needs to be carefully handled when recovering
the correct zero-point energy and the saddle-point equations to
be discussed next.

III. SADDLE-POINT ANALYSIS

In this section, we discuss the saddle-point equations de-
rived from our WHFB approach. We show that the Hartree
and Bogoliubov channels exhibit a nonanalytic and nonpertur-
bative coupling, and that the inclusion of both contributions
requires a many-body renormalization scheme to regularize
the order parameter equations. Our approach also solves a
long-standing issue with the Hartree contribution near uni-
tarity [6]. So, let us start our analysis by discussing next the
self-consistency relations.

A. Self-consistency equations

To establish self-consistency for �B,0 and �H,0, we ex-
tremize the action S0 given in Eq. (35), that is, we set
∂S0/∂�H,0 = 0 and ∂S0/∂�B,0 = 0. Evaluating these partial
derivatives leads to the saddle-point conditions

�H,0 = − gH

2βV

∑
k

[cH,+(k) − cH,−(k)], (39a)

�B,0 = − gB

βV

∑
k

cB(k). (39b)

The relation given in Eq. (39a) represents the order param-
eter for the Hartree (particle-hole) channel, while Eq. (39b)
refers to the order parameter in the Bogoliubov (particle-
particle) channel. The functions appearing on the right-hand
side of Eqs. (39a) and (39b) are given by

cH,±(k) = − ikn ± (ξk + �H,0)

(ikn)2 − E2
k

eikn0±
, (40a)

cB(k) = �B,0

(ikn)2 − E2
k

. (40b)

Note that the exponentials eikn0±
capture the existence of

a branch cut in the logarithm of Eq. (35) due to the ana-
lytical structure of det(βÃ0,k ) shown in Eq. (37). This extra
care is necessary for recovering the zero-point energy in the
action S0 and the grand-canonical thermodynamic potential
�0(V, T, μ) = −β−1 lnZ0. This is a well-known point that
can be found in textbooks [76,78,79].

In Eq. (39a) the interaction gH = hg appears, while in
Eq. (39b) the interaction gB = bg emerges. As highlighted
below in Sec. IV, we remove the arbitrariness of assigning
equal weights to the particle-hole and to the particle-particle
channels by preventing the miscounting of states involved in
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the Bogoliubov (particle-particle) and Hartree (particle-hole)
partitions. For this purpose, we extremize the action S0 with
respect to b, that is, set ∂S0/∂b = 0, subject to the constraint
h + b = 1 (gH + gB = g) and the physical requirement that
0 � b � 1, which guarantees that S0 is minimal with respect
to b, that is, ∂2S0/∂

2b � 0. This procedure leads to the saddle-
point solution

h0 = |�H,0|
|�B,0| + |�H,0| , (41a)

b0 = |�B,0|
|�B,0| + |�H,0| , (41b)

where �H,0 and �B,0 are defined by Eqs. (39a) and (39b),
respectively. Notice that h0 + b0 = 1.

At the saddle point, we have checked that the global min-
imum always occurs for b = b0 and h = h0 between [0, 1],
when variables like temperature, effective range, and scat-
tering parameter change. When the minimum occurs at end
points of the domain, the derivative of the action with respect
to b is still zero.

In general, given that we have a constrained system where
b + h = 1, the minimization of the action with respect to any
value of b gives always a global minimum between [0, 1].
This result provides the mathematical basis for the physical
interpretation that b and h are distribution weights of the in-
teraction, meaning that both b and h are always in the interval
[0, 1] and thus can be viewed as the probability of partici-
pation of each interaction channel. For instance, minima of
the action with b < 0 (h > 1) or b > 1 (h < 0) do not arise
mathematically in our problem, and if they did, these types of
solutions would be considered unphysical, since they would
change the nature of the interaction in one of the channels
from attractive to repulsive.

The evaluation of the Matsubara sums in Eqs. (39a) and
(39b) is performed by using Cauchy’s residue theorem [80],
leading to

�H,0 = −gH,0

2V

∑
k

[
1 − ξ̃k

Ek
tanh

(
βEk

2

)]
, (42a)

�B,0 = gB,0�B,0
1

V

∑
k

tanh
(

βEk
2

)
2Ek

. (42b)

Here, the shifted free particle dispersion ξ̃k = ξk + �H,0

was used. The expression in Eq. (42a) is the Hartree or-
der parameter equation, and the expression in Eq. (42b)
describes the Bogoliubov order parameter equation. We ad-
ditionally used the optimized interaction strengths gH,0 = h0g
and gB,0 = b0g with gH,0 + gB,0 = g.

To obtain the number equation that fixes the chemical
potential μ, we perform the Matsubara sums in Eq. (35) and
calculate the saddle-point grand-canonical potential

�0

V
= |�B,0|2

gB,0
+ �2

H,0

gH,0
− 1

V

∑
k

(Ek − ξ̃k )

− 1

V

∑
k

2

β
ln(1 + e−βEk ), (43)

where we used �0 = β−1S0. The particle density n =
N/V , where N is the number of particles, is obtained
from the thermodynamic relation N = −∂�/∂μ|T,V . Thus,
at the saddle-point level, the number of particles is N0 =
−∂�0/∂μ|T,V giving

n0 = 1

V

∑
k

[
1 − ξ̃k

Ek
tanh

(
β

2
Ek

)]
(44)

for the saddle-point number density equation.
The saddle-point Hartree order parameter equation results

from combining Eq. (39a) with Eq. (44), yielding

�H,0 = −gH,0n0

2
, (45)

where the factor 1/2 arises from two spin states, in contrast
with the Hartree shift for spinless bosons, where the factor of
2 is absent [6].

Notice that �H,0 is proportional to n0, and is always non-
positive since g � 0. Substituting the expression for h0 from
Eq. (41a) into Eq. (45) leads to

�H,0 = − |�H,0|
|�H,0| + |�B,0|

gn0

2
. (46)

Since the interaction is attractive or zero (g � 0), the only
physically acceptable solutions for �H,0 are negative or zero,
that is, �H,0 � 0. Using �H,0 = −|�H,0| we see that Eq. (46)
has two possible solutions. The first is the trivial solution
�H,0 = 0, and the second is

�H,0 = −gn0

2
+ |�B,0| � 0. (47)

Notice that as soon as |�B,0| � gn0/2, �H,0 must vanish,
meaning that when the interaction strength g is sufficiently
strong, that is, g � 2|�B,0|/n0, there are no Hartree correc-
tions. Therefore, we arrive at the closed analytical form for
the Hartree order parameter

�H,0 = min
(

0; −gn0

2
+ |�B,0|

)
. (48)

Next, we turn our attention to the superfluid order param-
eter given in Eq. (42b). Restricting ourselves to three spatial
dimensions (d = 3), where the saddle-point solutions are a
reasonable starting point, we take the thermodynamic limit
{N,V } → ∞ with finite density n = N/V , and we transform
the summations over k into three-dimensional integrals us-
ing the prescription

∑
k → V

∫
d3k/(2π )3. This procedure

leads to

�B,0

[
1

gB,0
−

∫
d3k

(2π )3

tanh
(

βEk
2

)
2Ek

]
= 0. (49)

Naturally, there are two types of solutions for this equation.
The first is the trivial one with �B,0 = 0 and the second is the
solution of

1

gB,0
−

∫
d3k

(2π )3

tanh
(

βEk
2

)
2Ek

= 0. (50)

This order parameter equation is similar to the standard one
where the Hartree term is ignored [51], and in that case we
have gB,0 → g since b0 → 1. However, in the presence of
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the Hartree term gB,0 = b0g additional care is necessary. The
integral over momenta has an ultraviolet divergence that needs
to be regularized, but the regularization procedure is slightly
different from the standard one, because the interaction in
the pairing channel gB,0 is no longer the bare interaction g.
Thus, we outline next the standard regularization procedure
and show how it needs to be modified to regularize Eq. (50).

B. Two-body scattering renormalization

For gB,0 → g (b0 → 1), the ultraviolet (UV) divergence
in Eq. (50) is resolved by taking advantage of two-body
scattering theory. Since we are considering contact interac-
tions, we can use the Lippmann-Schwinger equation (LSE)
[3,51,52,73] to obtain the scattering phase shift

q cot δ(q) = 4π

mg
− 2kc

π
+ 2

πkc
q2 + O(q4), (51)

where q is the center-of-mass momentum of the scattering
fermions, and kc plays the role of the UV cutoff. A direct
comparison of Eq. (51) with the phase shift

q cot δ(q) = − 1

as
+ re

2
q2 + O(q4) (52)

for spherically symmetric potentials, where as denotes the s-
wave scattering length and re stands for the effective range
[81,82], leads to the relation

1

g(kc)
= − m

4πas
+ m

2π2
kc (53)

for the leading q0 term. This is the well-known renormal-
ization condition for the bare coupling strength g [3,51,52].
Comparing the coefficients of the q2 term in Eqs. (51) and
(52) provides a direct connection between the UV cutoff kc

and the effective range re [83] given by

kc(re ) = 4

πre
. (54)

Introducing the resonance value of the coupling strength
g∗(re) = π3re/(2m), we use Eqs. (53) and (54) to rewrite the
s-wave scattering length as

as = π2

8
re

g/g∗(re)

g/g∗(re) − 1
. (55)

This shows a finite background scattering length for infinite
attractive interactions g → ∞, that is, as(g → ∞) = reπ

2/8.
In Fig. 1, we visualize the behavior of the scattering

length as versus the rescaled coupling strength g/g∗(re) in
two panels. In Fig. 1(a), we show that as, in units of the
Bohr radius aBohr, versus g/g∗(re) strongly depends on the
effective range re; see plots for effective ranges re = 200 aBohr

(solid blue line), 87 aBohr (solid red line), and 50 aBohr (solid
green line). In Fig. 1(b), we display the universal behavior of
the inverse scattering parameter kFas in units of the effective
range kFre, versus g/g∗(re). Here, kF = (3π2n)1/3 is the Fermi
momentum defined by the particle density n. The analytical
expression for the universal behavior is

kFas

kFre
= π2

8

g/g∗(re)

g/g∗(re) − 1
. (56)

FIG. 1. Relation between scattering length as and bare interac-
tion strength g in units of the resonance interaction strength g∗(re ).
Panel (a) shows as, in units of the Bohr radius aBohr, vs g/g∗(re )
for different effective ranges re = 200 aBohr (solid blue line), 87 aBohr

(solid red line), and 50 aBohr (solid green line). The dashed lines indi-
cate the asymptotes for infinite interactions (g → ∞) corresponding
to the background scattering length associated to that effective range.
Panel (b) displays the universal behavior of the inverse scattering
parameter kFas, in units of the effective range kFre, vs g/g∗(re ).

For gB,0 → g, that is, b0 → 1, the UV cutoff kc and the zero-
ranged interaction strength g can be directly eliminated in
favor of the s-wave scattering length as only. However, for
gB,0 �= g, that is, b0 �= 1, we cannot simultaneous eliminate in
Eq. (50) both g and kc in favor of as.

Since we are interested in scattering processes simultane-
ously involving particle-particle (Bogoliubov) and particle-
hole (Hartree) channels, it is necessary to modify standard
scattering theory, described above, to provide a suitable reg-
ularization when both sectors are present. Thus, next, we
discuss how to implement such a procedure within our ap-
proach.

C. Effective many-body scattering renormalization

Since the interaction gB,0 = b0g is a fractionalization of the
bare interaction g into the Bogoliubov channel due to the exis-
tence of the Hartree order parameter, we need to renormalize
Eq. (50) to reflect this many-body effect. This is achieved by
using the LSE equation for gB,0 as

1

gB,0(kc,B)
= − m

4πas
+ m

2π2
kc,B, (57)

and writing the many-body UV cutoff

kc,B = 4

πre,B
(58)

in terms of the many-body effective range re,B, in analogy to
Eq. (54). Using gB,0 = b0g and the expression for 1/g from
Eq. (53), we obtain the many-body cutoff

kc,B = kc

b0
− π

2as

h0

b0
, (59)
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which must be used to remove the UV divergence in Eq. (50).
We can rewrite the expression in Eq. (59) as

kc,B

kc
= 1

b0

(
1 − πh0

2kcas

)
= 1

b0

(
1 − h0

π2

8

kFre

kFas

)
, (60)

where kc, from Eq. (54), was used on the right-hand side.
Since we have 0 � h0 � 1 and 0 � b0 � 1 with the con-
straint h0 + b0 = 1, it is immediately apparent that kc,B � kc,
when the interaction parameter lies in the interval −∞ <

1/(kFas) � 0. Physically this means that the interaction gB has
shorter effective range than the bare interaction g, that is, the
many-body effective range re,B is shorter than the two-body
effective range re. The ratio between the effective ranges is

re,B

re
= b0

1 − h0
π2

8
kFre
kFas

. (61)

Note that re,B/re � 1 in the interval −∞ < 1/kFas � 0,
becoming 1 only when h0 → 0, i.e., b0 → 1. Further insight
into this behavior is gained by analyzing the first two terms on
the right-hand side of Eq. (43), as we shall see next.

D. Nonanalytic coupling between Bogoliubov
and Hartree channels

The first two terms on the right-hand side of Eq. (43)
involve the order parameters �B,0 and �H,0 and the weighted
interaction strengths gB,0 = b0g and gH,0 = h0g representing
the Hartree and Bogoliubov channels, respectively. Using the
expressions for h0 and b0 in Eqs. (41a) and (41b), we get

|�B,0|2
gB,0

+ �2
H,0

gH,0
= |�B,0|2

g
+ �2

H,0

g
+ 2

g
|�B,0||�H,0|, (62)

where we used the identity |�H,0|2 = �2
H,0, whenever needed,

since �H,0 is real. The result in Eq. (62) shows explicitly
a nonanalytic and a nonperturbative coupling between the
Hartree and Bogoliubov channels already at the saddle-point
level via the term 2|�B,0||�H,0|/g.

Considering the non-analytic coupling and the effective
many-body scattering renormalization, the Hartree’s order pa-
rameter in Eq. (48) becomes

�H,0 = min

(
0;

n0

2

[
m

4πas
− 2m

π3re

]−1

+ |�B,0|
)

, (63)

while the Bogoliubov’s order parameter in Eq. (49) reduces to

�B,0

{
m

4πas
−

∫
I

d3k

(2π )3

[
m

k2
− tanh

(
β

2 Ek
)

2Ek

]}
= 0, (64)

where I = {|k| � kc,B} defines the integration volume. A di-
rect consequence of the analysis above is that the expressions
for the Hartree and Bogoliubov order parameters shown in
Eqs. (63) and (64), together with the particle density in
Eq. (44), elliminate a well-known divergence that emerges
when these channels are not properly considered. Ignoring
particle-hole effects and a divergence at unitarity, as is done
in textbooks [6], is not a solution for the difficulty but rather
an avoidance of the issue.

Without considering the proper counting (partitioning) of
states and regularization introduced here, prior attempts of

including the simultaneous effects of particle-particle and
particle-hole channels led to ultraviolet divergences in the
Hartree order parameter Eq. (42a) [6,48,62]. Thus, next,
we discuss results that explicitly show the fixing of this
well-known issue while including simultaneously properly
partitioned and regularized particle-particle (Bogoliubov) and
particle-hole (Hartree) sectors.

E. Self-consistency and implications
of many-body renormalization

All the relations derived above, Eqs. (63) and (64) for the
order parameters, Eq. (44) for the number density, Eqs. (41a)
and (41b) for the weight parameters, and Eq. (58) for the
effective many-body range, form a set of transcendental equa-
tions that has to be solved self-consistently. For instance, the
many-body effective range rB,e depends explicitly not only
on the two-body effective range re and the s-wave scattering
length as, but also on the weights h0 and b0 as seen in Eq. (61).
However, h0 and b0 also dependent on the order parame-
ters, which are explicit functions of rB,e and re, thus closing
the self-consistency conditions. To obtain the full solution,
we solve all those equations simultaneously by a numerical
algorithm, where a standard iterative procedure is applied.
Among the solutions obtained there are two distinct families
of quantities determined. The first are auxiliary quantities, that
is, the many-body effective range rB,e and the weight factors
h0 and b0, which are discussed below in this section, and the
second are thermodynamic quantities, that is, �B,0, �H,0, and
μ discussed in Sec. IV.

In Fig. 2, we plot auxiliary quantities, that is, the many-
body UV cutoff kc,B in units of the two-body cut-off kc,
the many-body effective range re,B in units of the two-body
effective range re, and the Hartree (h0) and Bogoliubov (b0)
weights calculated at T = 0 versus the scattering parameter
1/kFas. The effective range parameters used are kFre = 0
(black line), 0.0625 (blue line), and 0.1535 (red line). Further
discussions about the effective range parameter kFre are found
at the beginning of Sec. IV.

In Fig. 2(a), we display kc,B/kc (main figure) and re,B/re

(inset) versus 1/kFas in a semilog plot. Note that kc,B/kc

(re,B/re ) decreases (increases) exponentially towards 1, as
1/kFas grows. In the weakly interacting regime, an expo-
nential behavior occurs because the Hartree and Bogoliubov
channels are competing for the interaction energy. However,
beyond a critical value of 1/kFas, where the Hartree weight
factor h0 vanishes, the many-body kc,B and the two-body kc

UV cutoffs coincide, that is, the system is fully determined by
two-body properties.

In Fig. 2(b), we show the Hartree h0 (dashed lines) and
Bogoliubov b0 (solid lines) weights versus 1/kFas for effective
range parameters kFre = 0 (black lines), 0.0625 (blue lines)
and 0.1535 (red lines). Note that h0 (b0) converges to 0 (1)
beyond a critical value of 1/kFas, which moves closer to uni-
tarity (1/kFas = 0) with increasing effective range parameter
kFre. Beyond this critical value, the physical properties are
determined by the particle-particle channel (b0 = 1, h0 = 0),
while for weaker interactions the particle-hole and particle-
particle channels compete for the interaction energy (b0 �=
0, h0 �= 0).
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FIG. 2. The many-body UV cutoff kc,B in units of the two-body
cutoff kc, the many-body effective range re,B in units of the two-body
effective range re and the Hartree (h0) and Bogoliubov (b0) weights
are plotted vs the scattering parameter 1/kFas. The effective range
parameters used are kFre = 0 (black lines), 0.0625 (blue lines) and
0.1535 (red lines). In panel (a), kc,B/kc (main figure) and re,B/re (in-
set) vs 1/kFas are shown, where the y-axis is scaled logarithmically.
In panel (b), the weights h0 (dashed lines) and b0 (solid lines) versus
1/kFas are displayed.

Having discussed this general behavior at T = 0, we dis-
cuss next ground state properties including phase diagrams,
order parameters, chemical potential and ground-state energy.

IV. GROUND-STATE PROPERTIES

In this section, we specialize our theory to zero temperature
and discuss a few ground-state properties based on the self-
consistency relations mentioned in the previous section. Even
though quantum fluctuations are known to play a large role,
ground-state analysis, especially in the weakly interacting
limit, is a suitable first approximation already at the saddle-
point level. Our results are expressed in Fermi units, that is,
our unit of energy is εF = k2

F/2m and our unit of momentum is
kF = (3π2n)1/3, since we are using h̄ = kB = 1. For instance,
the dimensionless scattering parameter is given by 1/kFas and
the dimensionless effective range is kFre.

The two-particle effective range re is a property of the inter-
action potential. For a specific particle species, re is a constant
over a broad Feshbach resonance [84]. All dimensionless ther-
modynamic quantities depend on the dimensionless effective

range kFre, which describes the ratio between the two-particle
effective range re and the typical interparticle spacing k−1

F
fixed by the density n. Quite naturally, the larger kFre the
stronger is the deviation from universality of ultracold Fermi
gases at unitarity.

In what follows, we discuss first the emergence of a new
phase in the ground state (Sec. IV A) before we analyze ther-
modynamic properties of this new phase as well as the effects
of the interaction partitioning on the standard superfluid phase
(Secs. IV B–IV E).

In Sec. IV A, we show a plot of our T = 0 phase dia-
gram, and in Secs. IV B–IV E, the main plots depict results
using our partitioning method, while the insets show the stan-
dard approach [6,62] that weights both channels by a factor
of 1: gH,0 = g = gB,0. In these figures we use the effective
range kFre = 0 (black line), kFre = 0.0625 (blue line), and
kFre = 0.1535 (red line). As the effective range is a quan-
tity fixed by the interaction potential, one can change the
dimensionless effective range by adjusting the density of the
system. For example, 6Li has a two-body effective range
re = 87 a0 throughout the broad s-wave Feshbach resonance
centered at 832 Gauss [84], with a0 being the Bohr radius.
For 6Li, the value of kFre = 0.0625 (blue line) corresponds
to the density n = 8 × 1013/cm3, while for kFre = 0.1535
(red line) the density is n = 1 × 1015/cm3. The latter value
represents an exaggerated density, which has not yet been
realized experimentally. However, for an effective range of
re = 214 a0 the value kFre = 0.1538 (red line) corresponds
to the realistic density of n ≈ 8 × 1013/cm3. The same color
code holds also for the insets, where we additionally visualize
the approach used in Refs. [6,48,62]. There the replacement
g ∝ as is shown by the magenta line.

A. Phase diagram

The main consequence of the WHFB theory is the emer-
gence of the nonanalytic coupling between Hartree �H,0

and Bogoliubov �B,0 order parameters, which allows for the
possibility of a vanishing �H,0, which otherwise would be
impossible, if we had chosen an arbitrary partitioning as done
in standard theories. In other words, if the WHFB theory
is not used, �H,0 becomes simply a nonvanishing Hartree
shift due to an arbitrary partitioning of the interactions. Thus,
the WHFB theory exposes the existence of two superfluid
phases at T = 0, where �B,0 �= 0. In one phase, which we call
the Hartree superfluid (HSF), the Hartree order parameter is
nonzero, that is, �H,0 �= 0; while in the other phase, which we
call the standard superfluid (SSF), the Hartree order parameter
vanishes, that is, �H,0 = 0.

In Fig. 3, we show the resulting ground-state phase dia-
gram (T = 0) in the plane of kFre versus 1/kFas. The dashed
black line describes the numerical phase boundary between
the HSF phase (gray region) and the SSF phase (red region).
This phase boundary is established via the condition given in
Eq. (63), which can be expressed as

(kFre )c = 8

π2

[
1

kFas
+ 4εF

3π |�B,0|
]−1

, (65)

when written in Fermi units. The dash-dotted line represents
an analytic result for the phase boundary, derived later in
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FIG. 3. The ground-state (T = 0) phase diagram in the plane
of kFre vs kFas, showing Hartree superfluid (HSF) and standard
superfluid (SSF) phases. The dashed line indicates the numerically
determined phase boundary, and the dash-dotted line represents an
analytical asymptotic result.

Eq. (78). Note that, when the scattering parameter 1/kFas is
very negative (weak coupling), it is easier to reach the HSF
phase at fixed interactions since the critical kFre is smaller.
However, for larger 1/kFas, towards unitary and beyond,
reaching the HSF phase requires larger kFre. In summary, for
fixed 1/kFas, the SSF phase is favored at lower effective range
parameter kFre, while the HSF phase is energetically more
favorable at larger kFre.

Before discussing the quantitative differences between the
HSF and the SSF phases, we briefly outline the general
characteristics of the two order parameters to create an all-
encompassing picture about the general trends.

In Fig. 4, we show the dimensionless modulus of the order
parameters |�H,0|/εF and |�B,0|/εF versus 1/kFas for differ-
ent theories. The main figures show the results from WHFB
method, while the insets reveal the behavior predicted by the-
ories with equally weighted Hartree and Bogoliubov channels
[6,61,62]. The parameters used are kFre = 0 (solid black line),
and 0.0625 (solid blue line) and 0.1535 (solid red line). The
dash-dotted purple line represents the results without proper
many-body scattering renormalization, while the solid black,
blue and red lines include the many-body scattering renormal-
ization within the equally-weighted approach.

In Fig. 4(a), the main plots describes |�H,0|/εF versus
1/kFas using our WHFB method. Note the factor of 5 (five)
on the vertical scale both in the main and inset plots. As
seen in the main plot, |�H,0|/εF vanishes for kFre = 0 (solid
black line) for all values of 1/kFas, but it is nonzero in some
region of 1/kFas as kFre increases. Notably, for each value of
1/kFas, it is straightforward to read out the value of (kFre)c

(see phase diagram in Fig. 3) beyond which |�H,0|/εF van-
ishes. Physically this means that there is no Hartree shift of
the chemical potential at the saddle-point level and that the
pairing (Bogoliubov) channel fully controls the saddle-point
physics when kFre < (kFre )c. In other words, below (kFre )c,
any renormalization of the chemical potential must arise from
fluctuations.

In Fig. 4(a), the main plots also reveal that the Hartree
order parameter |�H,0|/εF vanishes continuously, indicating

FIG. 4. Order parameters |�H,0|/εF and |�B,0|/εF vs 1/kFas, for
various effective range parameters: kFre = 0 (solid black line), and
0.0625 (solid blue line) and 0.1535 (solid red line). Panel (a) shows
the Hartree order parameter |�H,0|/εF and panel (b) depicts the
superfluid order parameter |�B,0|/εF. The main figures display the
results from our WHFB method, while the insets reveal the behavior
predicted by theories with equally-weighted Hartree and Bogoliubov
channels. The dash-dotted purple line represents the results without
proper many-body scattering renormalization, while the solid black,
blue and red lines include the many-body scattering renormalization
within the equally weighted approach.

that the saddle-point description predicts a continuous HSF-
SSF phase transition. Defining η = 1/kF as, the Hartree order
parameter behaves near the transition point ηc as |�H,0| ∼
(ηc − η)β , for η < ηc, where β = 1. This exponent is dif-
ferent from the standard Gaussian fixed point (β = 1/2) of
the conventional Ginzburg-Landau φ4 theory, because of the
non-analytic term 2|�B,0||�H,0|/g that arises in the thermody-
namic potential �0 of Eq. (43) using the relation in Eq. (62).
Furthermore, a detailed analysis reveals that, the isothermal
compressibility κT = (∂n/∂μ)/n2|T,V exhibits a discontinu-
ity, thus producing a critical exponent γ = 0, thermody-
namically confirming the existence of a continuous phase
transition. This discontinuity confirms that this transition be-
longs to a different universality class than the conventional
Ginzburg-Landau φ4 theory, where the corresponding suscep-
tibility diverges (γ = 1). A renormalization-group analysis
is necessary to obtain critical exponents beyond the saddle-
point approximation, but we leave this effort for a future
publication.
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In Fig. 4(a), the inset shows results using standard methods
where equal weights h0 = b0 = 1 (gH = gB = g) are arbitrar-
ily chosen [6,62,63]. The dash-dotted magenta line represents
the solution without proper effective range renormalization
[6], leading to a divergence in |�H,0| at unitarity (1/kFas = 0).
The results shown by the solid black, blue and red lines
use a variational perturbation theory [62,63] and include the
proper effective range renormalization, but still produce diver-
gences in the Hartree contribution, now located at 1/kFas =
(8/π2)(1/kFre ). By comparing Fig. 4(a) main and inset, it is
evident that the self-consistent partitioning and regularization
method within our WHFB approach solves this long-standing
divergence in |�H,0| and provides physically acceptable re-
sults with clear interpretations.

In Fig. 4(b), the main plot shows |�B,0|/εF versus 1/kFas.
At fixed 1/kFas, increasing the effective range parameter
kFre reduces |�B,0|/εF by a small amount for 1/kFas < 0.55.
In contrast, increasing kFre enhances |�B,0|/εF by a small
amount for 1/kFas > 0.55. In Fig. 4(b), the inset reveals re-
sults for |�B,0|/εF versus 1/kFas using the standard method,
where gH = gB = g (h0 = b0 = 1). For |�B,0|/εF, the results
of the two methods differ only by a few percent, because
|�B,0|/εF is much less sensitive to the renormalization of
the chemical potential μ associated with the Hartree order
parameter �H,0, as is discussed in the next two sections.

From Fig. 4(b), we can also extract important information
in the weak-coupling regime. For instance, the semilog plots
show the exponential behavior of |�B,0|/εF versus 1/kFas,
that is, |�B,0|/εF ∼ e−1/|kFas| when 1/kFas � −1. In this
regime, the HSF-SSF phase boundary, given in Eq. (65), satis-
fies the condition (kFre )c � |kFas|. When kFre < (kFre )c (see
Fig. 3), the SSF phase gives rise to the hierarchy of dimen-
sionless length scales kFre < (kFre )c � |kFas|. Therefore, in
weak coupling, the standard superfluid phase only exists when
kFre � |kFas| � 1. However, for kFre > (kFre)c (see Fig. 3),
the HSF phase allows for two hierarchies of dimensionless
length scales: either kFre � |kFas| � 1 or |kFas| � kFre � 1.
This distinction between hierarchies of dimensionless length
scales is useful for our discussion of asymptotic limits in
Secs. IV B and IV C.

Having identified a major issue in the literature and pro-
vided a physical solution to the problem, next we take a
closer look at the two different phases that emerge from the
regularization and the WHFB theory: the Hartree superfluid
and the standard superfluid.

B. Hartree superfluid

The main characteristic of the Hartree superfluid (HSF)
phase is the occurrence of a Hartree order parameter reg-
ularizing the chemical potential by applying the so called
Hartree shift, ultimately lowering the chemical potential for
weak interactions. Analyzing the many-body effective range,
we can see that the Hartree order parameter captures the short
distance physics of the system as it is strongly dependent
on kFre. In contrast, the superfluid order parameter �B,0 is
independent of kFre due to cancellations in the many-body
effective range. For effective ranges obeying kFre > (kFre )c,
the many-body UV cutoff in Eq. (60) can be simplified using

Eq. (63). This procedure leads to

kc,B

kF
= 2

3

εF

|�B,0| − π

2|kFas| , (66)

which is independent of the two-body effective range re. Due
to Eq. (66), the corrections to the superfluid order parameter
are only due to their coupling to the Hartree order parame-
ter. In the HSF phase, the superfluid order parameter can be
asymptotically solved for |kFas| � 1 by cutting out the Fermi
surface of the integral in Eq. (64) and using a constant density
of states near εF. This yields

|�B,0|
εF

= 8

e2

(
1 − 12

e2
e− π

2|kFas |

)
exp

(
− π

2|kFas|
)

, (67)

which gives an additional exponentially weak correction to
the standard superfluid order parameter. Depending on the
proximity of the effective range parameter kFre to the criti-
cal effective range parameter (kFre )c, we have two different
asymptotic limits. The one close to the phase boundary, gov-
erned by kFre � |kFas| � 1, shows that the Hartree order
parameter depends on kFre and |kFas| as follows:

�H,0

εF
= −π

6
kFre

[
1 − π2

8

(
kFre

|kFas|
)

+ O

(
kFre

|kFas|
)2

]

+ 8

e2

(
1 − 12

e2
e− π

2|kFas |

)
exp

(
− π

2|kFas|
)

. (68)

As the interaction gets weaker, �H,0 looses its sensitivity
to kFre, as now the scattering parameter becomes the smallest
length scale in the gas. In this regime, we enter the region
|kFas| � kFre � 1, leading to the asymptotic expansion

�H,0

εF
= − 4

3π
|kFas|

[
1 − 8

π2

|kFas|
kFre

+ O

( |kFas|
kFre

)2
]

+ 8

e2

(
1 − 12

e2
e− π

2|kFas |

)
exp

(
− π

2|kFas|
)

. (69)

The results in Eqs. (68) and (69), arise from a series expan-
sion of Eq. (63) in kFre/|kFas| and |kFas|/kFre, respectively.

Since the Hartree order parameter contributes to the shift
of the chemical potential μ from the Fermi energy εF, we
analyze next μ/εF in general, and in the two asymptotic limits
discussed above.

In Fig. 5, we show the dimensionless chemical potential
μ/εF versus 1/kFas for effective range parameters kFre = 0
(solid black line), and 0.0625 (solid blue line) and 0.1535
(solid red line). The main figures show the results from WHFB
method, while the insets reveal the behavior predicted by the-
ories with equally weighted Hartree and Bogoliubov channels
[6,61,62]. The parameters used are kFre = 0 (solid black line),
and 0.0625 (solid blue line) and 0.1535 (solid red line). The
dash-dotted purple line represents the results without proper
many-body scattering renormalization, while the solid black,
blue and red lines include the many-body scattering renormal-
ization within the equally weighted approach. The dash-dotted
magenta line represents the solution without proper effective
range renormalization [6], leading to a divergence in μ at uni-
tarity (1/kFas = 0). The results shown by the solid black, blue
and red lines use a variational perturbation theory [62,63] and
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FIG. 5. Chemical potential μ/εF vs scattering parameter 1/kFas

for different effective range parameters kFre = 0 (solid black line),
0.0625 (solid blue line), and 0.1535 (solid red line). In panel (a),
the region from the weakly interacting regime 1/kFas < −1 up to
the unitary point 1/kFas = 0 is shown. In panel (b), the region from
the unitary point towards the BEC regime, around 1/kFas = 0.55 is
emphasized. In both panels, the insets show the standard approach
(equal weights), highlighting the unphysical divergence of μ (dash-
dotted magenta line).

include the proper effective range renormalization, but still
produce divergences in the chemical potential, now located
at 1/kFas = (8/π2)(1/kFre ).

In Fig. 5(a), we show μ/εF versus 1/kFas for 1/kFas < 0,
that is, from the weakly interacting regime to the unitary
point. The regions of more negative scattering parameters are
identified with the HSF phase shown in Fig. 3. Within the
HSF phase there are two asymptoptic limits depending on the
relative strengths of kFre and kFas. In the asymptotic limit of
kFre � |kFas| � 1, the chemical potential is

μ

εF
= 1 − π

6
kFre

[
1 − π2

8

kFre

|kFas| + O

(
kFre

|kFas|
)2

]
. (70)

However, when |kFas| � kFre � 1, the chemical potential
becomes

μ

εF
= 1 − 4|kFas|

3π

[
1 − 8

π2

|kFas|
kFre

+ O

( |kFas|
kFre

)2
]
. (71)

Having discussed the behavior of the zero-temperature order
parameters and the chemical potential as a function of the

scattering length and effective range, we analyze next the
Helmholtz free energy F = � + μV n, where � stands for
the thermodynamic potential, V represents the sample vol-
ume, and n is the particle density. At T = 0, the Helmholtz
free energy F becomes the ground-state energy E for fixed
n, meaning that F → E . The grand-canonical potential �

contains the non-analytic coupling term, shown in Eq. (62).
However, the Legendre transformation, using the equation of
state μ(n), eliminates this term leading to

E
εFN

= − 3π

8

[
|�B,0|2
ε2

FkFas
− �2

H,0

ε2
F

(
1

kFas
− 8

π2

1

kFre

)]

+ μ(n) − �H,0

εF
− 3

4ε
5/2
F

∫ ∞

0
dε

√
ε(E − ξ̃ ), (72)

after writing the explicit expressions for the weight param-
eters h0 and b0 given in Eqs. (41a) and (41b). Here, we

used ξ̃ = ε − μ(n) + �H,0 and E =
√

(̃ξ )2 + |�B,0|2 for the
Bogoliubov dispersion.

In Fig. 6, we show the ground-state energy per particle
E (T = 0)/(εFN ) versus the scattering parameter 1/kFas for
effective range parameters, kFre = 0 (solid black line), and
0.0625 (solid blue line) and 0.1535 (solid red line). In the
insets, we depict the equally weighted (h0 = b0 = 1) theories
just like discussed in Figs. 4 and 5.

In Fig. 6(a), we show E (T = 0)/(εFN ) versus 1/kFas

for 1/kFas < 0, covering the region from weak interactions
through the unitary point 1/kFas = 0. In the HSF phase, where
kFre > (kFre )c, the ground state energy per particle is reduced
due to the presence of the Hartree order parameter �H,0. The
reduction of the ground state energy is stronger for larger
values of kFre and becomes zero at the HSF to SSF transition
boundary (kFre )c, where �H,0 = 0.

For kFre < (kFre )c, �H,0 is strictly zero and the system is
in the SSF phase, where the ground state energy is slightly
enhanced with increasing effective range. This small increase
is caused by a reduction in the negative contribution connected
to |�B,0|/εF in Eq. (72). The inset shows the results for
equally weighted theories (h0 = b0 = 1) with the same kFre

as discussed in Figs. 4 and 5, producing similar divergences
like those for �H,0 and μ.

In Fig. 6(b), we display E (T = 0)/(εFN ) versus 1/kFas in
the neighborhood 1/kFas = 0.55 where the chemical potential
vanishes. For scattering parameters 1/kFas > 0.55 the effec-
tive range causes a slight decrease of the ground-state energy
per particle as the chemical potential becomes negative. The
inset shows the results for equally weighted theories (h0 =
b0 = 1) with the same kFre parameters as the main figure.

For weak interactions (|kFas| � 1), we use the asymp-
totic expression μ/εF = 1 + �H,0/εF, evaluate the integral in
Eq. (72), and use the many-body effective range re,B, identi-
fied in Eq. (58), to obtain

E
εFN

= 3

5
− 3π

8

(
1

|kFas| + 8

π2

1

kFre

) |�H,0|2
ε2

F

− 3

8

(
1 − π

2
kFre,B

) |�B,0|2
ε2

F

, (73)
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FIG. 6. Ground-state energy per particle E (T = 0)/(εFN ) vs the
scattering parameter 1/kFas for different effective range parameters
kFre = 0 (solid black line), 0.0625 (solid blue line) and 0.1535 (solid
red line). In panel (a), the weakly interacting BCS region 1/kFas <

−1 is shown as well as the approach to unitarity (1/kFas = 0)
from the BCS side. In panel (b), the region around 1/kFas = 0.55,
where μ = 0, is displayed and a glimpse of the strong coupling
regime 1/kFas > 1 is also shown. The insets in both panels illustrate
the equally weighted standard theory, highlighting the unphysical
behavior (dash-dotted magenta line) it produces by neglecting the
many-body effective range renormalization.

which is valid for both HSF and SSF phases. The factor 3/5
is the energy of the free Fermi gas, while the second term
represents the Hartree shift, which lowers the energy. The last
term shows the energy gain due to pairing with an altered
prefactor, associated with kFre,B.

Focusing on the HSF phase, we obtain next analytical
expressions for E in two asymptotic regimes. Using kc,B/kF

from Eq. (66), and the weak-coupling limit expression of the
superfluid order parameter in Eq. (67), we obtain

E
εFN

=
[

3

5
− π

12

(
1 − π2

8

kFre

|kFas|
)

kFre

]
+ O

(
kFre

|kFas|
)2

− 24

e4

{
1 − 12

e2
[ f (kFas )]1/2

}3

f (kFas), (74)

in the asymptotic regime kFre � |kFas| � 1, where the ex-
pression for �H,0 given in Eq. (68) is valid. Here, the function
f (kFas) = exp(− π

|kFas| ) describes an exponential correction.

Using Eq. (69) for the Hartree order parameter, instead of
Eq. (68), we obtain a different expression for the second
hierarchy of scales, that is, |kFas| � kFre � 1, leading to

E
εFN

=
[

3

5
− 2

3π

(
1 − 6

π

|kFas|
kFre

)
|kFas|

]
+ O

( |kFas|
kFre

)2

− 24

e4

{
1 − 12

e2
[ f (kFas)]1/2

}3

f (kFas). (75)

The analytical results displayed in Eqs. (74) and (75) agree
very well with the numerical evaluations.

In summary, the HSF is a superfluid phase characterized
by two separate order parameters, the Hartree order parameter
�H,0, responsible for the renormalization of the chemical po-
tential and the superfluid order parameter �B,0, representing
Cooper pairs that are responsible for fermionic superfluidity.
The Hartree order parameter reduces the energy by lowering
the chemical potential and, thus, this phase corresponds to a
stable minimum of the underlying grand-canonical potential.
The non-analytic coupling of the two order parameters gives
rise to the mechanism that allows the Hartree shift to vanish,
converting �H,0 into a true order parameter that characterizes
the HSF to SSF transition.

C. Standard superfluid

The standard superfluid phase is the region in the phase
diagram where the interaction strength becomes sufficiently
strong such that particle-hole contributions are suppressed and
all interaction energy is used to form Cooper pairs. There-
fore, this phase is characterized by a vanishing Hartree order
parameter �H,0 = 0 and nonzero superfluid order parame-
ter �B,0 �= 0. The vanishing of the Hartree order parameter
causes the many-body UV cutoff kc,B in Eq. (59) to converge
to the two-body UV cutoff kc in Eq. (54) resulting in

kc,B

kF
= 4

πkFre
. (76)

Therefore, in the standard superfluid (SSF) phase, �B,0 is
directly affected by kFre. Since, the SSF phase exists only
for kFre < (kFre)c, the only asymptotic regime reachable is
kFre � |kFas| � 1, leading to

|�B,0|
εF

= 8

e2
exp

(
−π

4
kFre

)
exp

(
− π

2|kFas|
)

. (77)

The relation above tells us that kFre reduces the superfluid
order parameter exponentially when considering weak inter-
actions, in contrast to the results of Eq. (67) for HSF phase,
where |�B,0|/εF is independent of kFre in the same asymptotic
regime. Using Eq. (77), we approach the HSF-SSF phase
boundary from the right (see Fig. 3) and use the continuity
of �B,0 to obtain

(kFre)c = 48

πe2
e− π

2|kFas | , (78)

describing an analytical approximation for the numerical
phase boundary shown in Fig. 3. The analytical expres-
sion in Eq. (78) is represented by the dash-dotted line in
Fig. 3. This shows that the phase boundary (kFre)c has an
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exponential dependence on 1/|kFas| in the weakly interacting
limit |kFas| � 1.

Since there is no Hartree shift in the SSF phase, the
only correction to the weak-coupling chemical potential arises
from the superfluid order parameter and hence is exponen-
tially small, that is, μ = εF − O(|�B,0|2/εF). Using Eq. (77),
it is clear that deviations from εF are exponential in kFre

and 1/|kFas| separately, in sharp contrast with the polynomial
corrections in the ratios kFre/|kFas| or |kFas|/kFre found for
the HSF phase [see Eqs. (70) and (71)].

Lastly, we use the same general expression for the ground-
state energy derived in Eq. (73) and insert the SSF asymptotic
behavior of the superfluid order parameter resulting in

E
εFN

= 3

5
− 24

e4

(
1 − π

2
kFre

)
exp

(
−π

2
kFre

)
f (kFas), (79)

where the function f (kFas) = exp(− π
|kFas| ) describes an expo-

nential correction. Here, the energy is only lowered due to
pairing, which is slightly suppressed by the finite effective
range, as can be seen in Fig. 6(a).

In summary, in the weak-coupling |kFas| � 1 regime, the
SSF phase possesses a superfluid order parameter that is more
affected by the effective range in comparison to the HSF
phase. Furthermore, the SSF phase has a higher ground-state
energy and a larger chemical potential when compared to the
HSF phase. These differences in sensitivity to the effective
range and scattering parameters, allow for experiments that
can distinguish the two phases.

D. Unitary gas

The unitary point (1/kFas = 0) is a place of great the-
oretical and experimental interest due to the concept of
universality, which is well known in the realm of ultracold
dilute gases. A main difference between standard theories of
superfluidity for ultracold fermions and theories of superflu-
idity for nuclear matter is that the interaction range plays just
a minor role in ultracold fermions because they are dilute,
while the densities in nuclear systems are sufficiently large
for the interaction range to be at least of the same order of the
interparticle spacing.

The standard approach outlined in Refs. [6,48,60] investi-
gates the role of particle-hole interactions by using the weak
coupling relation g = 4πas/m, leading to unphysical singu-
larities at unitarity. Such divergences occur not only in the
Hartree order parameter, but also in the chemical potential
and the ground-state energy (see dash-dotted magenta line in
the insets of Figs. 4–6). Note that after unitary (1/kFas > 0),
the dash-dotted magenta lines approach the zero-range curve
(solid black line) from above. This results in a chemical poten-
tial μ and a ground-state energy E which have no lower bound
when 1/kFas → 0− and no upper bound when 1/kFas → 0+.

Our approach resolves the issues discussed above, because
it considers the proper renormalization of the interaction by
taking into account the effective range and introduces a self-
consistent weighting of the interaction channels. Both steps
are necessary, because when only the effective range renor-
malization is considered for non-self-consistent weights of the
Hartree and Bogoliubov channels then a singular point still oc-
curs at kFas = (π2/8)kFre. This value of the kFas corresponds

to the infinite attraction limit in Eq. (55), which cannot be
exceeded. The introduction of self-consistent weights solves
this problem at unitary and beyond.

For example, at unitarity, instead of a diverging Hartree
order parameter, one gets a result that is fully determined by
the effective range

�H,0

εF
= min

(
0; −π

6
kFre + |�B,0|

εF

)
, (80)

as described in Eq. (63). A nontrivial solution for �H,0 at uni-
tarity only occurs for sufficiently large values of kFre, which
do not occur in 6Li or 40K for experimentally achievable
densities. As a consequence of these experimental constraints,
the only possible solution of Eq. (80) is �H,0 = 0 yielding a
SSF phase at unitarity. Since the effective range is essential
in resolving singular issues, its effects are real in spite of the
smallness of kFre.

For dilute unitary Fermi gases, as suggested by Zhang and
Leggett in 2009 [26], kFre is too small for its effects to be
detected by current experimental setups, however kFre is very
relevant for higher densities such as for nuclear matter or
neutron stars near and away from unitarity. Therefore, for
dilute Fermi gases at unitarity, where kFre � 1, one finds
the concept of quasi-universality, that is, all gases behave the
same way, irrespective of the atomic species.

E. Towards strong coupling

After crossing the unitary point, starting from weak in-
teractions, the scattering length switches sign from negative
to positive, that is, beyond unitarity the relation kFas > 0 is
satisfied. As seen in the phase diagram of Fig. 3, the SSF
phase exists at unitarity (1/kFas = 0) and beyond for any kFre.
Furthermore, from Fig. 1, we can see that there is only one
asymptotic regime (kFre � kFas � 1), because the scattering
length as can only approach the background scattering length
from above, that is, kFas � (π2/8)kFre.

The approach to strong coupling manifests itself also
through the chemical potential μ, which changes sign from
positive to negative approximately at (1/kFas) = 0.55. This
result depends only weakly on the effective range parame-
ter kFre. For (1/kFas) < 0.55, increasing the effective range
enhances the degeneracy of the momentum distribution and
augments the chemical potential. While for (1/kFas) > 0.55,
increasing the effective range reduces the degeneracy of the
momentum distribution and lowers the chemical potential. In
Fig. 5(b), we show the decrease of the chemical potential
towards a more negative value, the change in degeneracy of
the Fermi gas.

In the strong-coupling regime, where 1/kFas � 1, a larger
effective range facilitates the formation of two-body bound
states leading to a slight increase in the magnitude of the
superfluid order parameter

|�B,0|
εF

= 4√
3π

1√
kFas

[
1 + 1

4

kFre

kFas
+ O

(
kFre

kFas

)2
]
, (81)

as evidenced by the correction proportional to kFre/kFas. This
analytical expression arises from a expansion in the parameter
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kFre/kFas � 1 at Eq. (64) for the asymptotic regime kFre �
kFas � 1.

In leading order, the result in Eq. (81) shows propor-
tionality to the inverse square-root of kFas obtained from a
zero-range theory plus a positive correction due to the effec-
tive range re, which enhances the binding energy of pairs.
For zero effective range, the two-body binding energy is
Eb = 1/ma2

s , and the chemical potential μ = −Eb/2 in the
strong-coupling regime. However, for nonzero effective range,
the two-body binding energy is altered to

Eb

εF
= 1

(kFas)2

(
1 + kFre

kFas
+ O

(
kFre

kFas

)2
)

, (82)

which is in excellent agreement with the numerical calcula-
tion for strong-coupling shown in Fig. 5(b). Furthermore, the
effective range also modifies the chemical potential to

μ

εF
= − Eb

2εF
+ 2

3π
kFas

(
1 + kFre

kFas

)
+ O

(
kFre

kFas

)2

. (83)

To complete our discussion of ground-state properties, we
analyze next the pair size ξpair, which is a measure of the
strength of the attractive interactions.

V. PAIR SIZE

The pair size ξpair characterizes the extent of the Cooper
pair wave function χ (r) with zero center-of-mass momentum,
where r is the relative coordinate. So, generally, the pair size
is defined in real space according to

ξ 2
pair =

∫
drχ (r)r2χ (r)∫
drχ (r)χ (r)

, (84)

which in momentum space becomes

ξ 2
pair = −

∫
dk�k∇2

k�k∫
dk�k�k

. (85)

Here, �k = �B,0/(2Ek ) is the Fourier transform of the
Cooper pair wave function χ (r) [52,85], and �B,0 is the zero-
temperature pairing amplitude that appears in the superfluid
order parameter equation Eq. (64).

In Fig. 7, we show the dimensionless pair size kFξpair as
a function of 1/kFas for effective range parameters kFre = 0
(solid black line), 0.0625 (solid blue line), and 0.1535 (solid
red line). As seen in Figs. 7(a) and 7(b), the pair size ξpair is a
monotonically decreasing function of 1/kFas for fixed kFre.
In Fig. 7(a), we plot kFξpair versus 1/kFas for 1/kFas < 0.
In Fig. 7(b), we analyze kFξpair versus 1/kFas in the neigh-
borhood of 1/kFas = 0.55, where the chemical potential falls
below the bottom of the band, that is, μ = 0. Note that for
1/kFas < 0.55 (μ > 0), an increase of kFre also increases
kFξpair, while for 1/kFas > 0.55 (μ < 0), an increase of kFre

decreases kFξpair.
As shown in the Appendix, we analytically obtain an ex-

pression for ξpair in terms of μ, �H,0, |�B,0|, and εF. The result
is

(kFξpair )
2 = εF

4
√

2

5|�B,0|2 + 2μH,0[μH,0 + E0]

|�B,0|2E0
, (86)

FIG. 7. Pair size kFξpair vs scattering parameter 1/kFas for ef-
fective ranges kFre = 0 (solid black line), 0.0625 (solid blue line),
and 0.1535 (solid red line). Panel (a) emphasizes the weakly inter-
acting BCS region 1/kFas < −1 and the region close to unitarity
when approached from the BCS side. The vertical axis is shown
in logarithmic scale. The HSF-SSF phase boundary for given kFre

is displayed as vertical dashed blue (kFre = 0.0625) and dashed red
(kFre = 0.1535) lines. Panel (b) shows the region around 1/kFas =
0.55 (μ = 0) and the beginning of the BEC region 1/kFas > 1. The
vertical axis in shown in linear scale.

where E0 =
√

μ2
H,0 + |�B,0|2 is the quasiparticle energy given

in Eq. (38) at zero momentum, and μH,0 = μ − �H,0 is the
shifted chemical potential. The analytical result in Eq. (86)
agrees perfectly with the direct numerical calculation of ξpair,
from Eq. (85), plotted in Fig. 7.

We now use the analytical expression in Eq. (86) to discuss
asymptotic limit of kFξpair. For weak interactions, (1/kFas �
−1), we determine asymptotic expansions depending on
whether the system is either in the HSF or in the SSF phase,
seen in Fig. 3. In the HSF phase, where kFre � (kFre )c, we
obtain in both hierarchies of scales, that is, either for kFre <

|kFas| or |kFas| < kFre, the same asymptotic limit, since the
superfluid order parameter does not depend on kFre, as shown
in Eq. (67). The resulting asymptotic expansion of the pair
size is

kFξpair = e2

8
√

2

[
1 + 12

e2
exp

(
− π

2|kFas|
)]

exp

(
+ π

2|kFas|
)

,

(87)
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which is independent of kFre, but grows exponentially with
1/|kFas| when approaching kFas → 0−. Therefore, kFξpair �
1. In contrast, for the SSF phase, where kFre � (kFre)c, we
obtain

kFξpair = e2

8
√

2
exp

(π

4
kFre

)
exp

(
+ π

2|kFas|
)

. (88)

Note that again kFξpair grows exponentially with 1/|kFas|
when kFas → 0+, but also contains an exponential depen-
dence on kFre. The separation between these two asymptotic
solutions, and as such the HSF and SSF phases, is shown
in Fig. 7(a) by the vertical dashed blue (kFre = 0.0625) and
the dashed red (kFre = 0.1535) lines. In the neighborhood of
1/kFas = 0.55, where μ = 0, the pair size obeys the relation
kFξpair = O(1). For strong coupling (BEC regime), 1/kFas �
1, we obtain

kFξpair = kFas√
2

(
1 − 1

2

kFre

kFas

)
. (89)

In this limit, kFξpair tends to zero linearly with kFas, has a small
correction proportional to kFre/kFas, and is always small, that
is, kFξpair � 1. We emphasize that all the asymptotic analysis
discussed above agrees well with the numerical results in the
appropriate regimes.

We have discussed the consequences of the effective range
and the interplay of the Hartree and Bogoliubov channels
on several ground-state (T = 0) properties including the
chemical potential, order parameters, free energy, momentum
distribution, and pair size. Thus, next, we present results of
the effects of the effective range and of the Hartree and Bo-
goliubov channels on the finite-temperature (T �= 0) phase
diagrams of interacting fermions.

VI. FINITE-TEMPERATURE PHASE DIAGRAM

In the previous sections, we discussed the necessity of an
effective scattering range to describe the simultaneous effects
of the Hartree and Bogoliubov channels on the interacting
Fermi gas. The method of implementing a partitioning of
the interaction into Hartree and Bogoliubov channels fixes
uncontrolled approaches that either ignore divergences [6]
or arbitrarily separate the interactions in equally weighted
channels [48,60,62,73]. As a consequence of our WHFB ap-
proach, the Hartree channel has a true order parameter �H,0

that can vanish as 1/kFas changes, and the theory has a
self-consistently determined partitioning of the interactions
without unphysical divergences.

To illustrate nonzero temperature effects, we set the di-
mensionless effective range parameter to kFre = 0.1538. For
an effective range re = 87a0 corresponding to 6Li [84],
the choice kFre = 0.1538 corresponds to a density of n ≈
1015/cm3, which has not been achieved experimentally yet.
For an effective range re = 214a0, the parameter kFre =
0.1538 gives a density of n ≈ 8 × 1013/cm3. Our choice of
parameters helps to visualize the generic effects on nonzero
temperature. Similar effects occur for smaller values of kFre,
but they are pushed to more negative values of 1/kFas. Fur-
thermore, our parameter choice highlights that our formalism
builds a theoretical bridge between superfluid theories of

FIG. 8. Density plots of |�H,0|/εF and |�B,0|/εF in the temper-
ature T/TF vs scattering parameter 1/kFas plane for an effective
range parameter of kFre = 0.1535. Panel (a) shows the Hartree order
parameter 5|�H,0|/εF while panel (b) illustrates the superfluid order
parameter |�B,0|/εF. The legend shows the range of values taken by
5|�H,0|/εF and |�B,0|/εF.

ultracold atomic gases [26,51,52,54,70], where kFre � 1, and
of nuclei and neutron matter [18,21,22], where kFre ∼ 1.

In Fig. 8, we show density plots of the order parameters
|�H,0|/εF and |�B,0|/εF in the T/TF versus 1/kFas plane.
Color maps of the Hartree order parameter |�H,0|/εF are
shown in panel (a) and color maps of the Bogoliubov order
parameter |�B,0|/εF are revealed in panel (b). The color maps
range from blue to red as indicated in the legend. In Fig. 8(a),
|�H,0|/εF is nonzero at higher values of T/TF, above the criti-
cal line TH/TF, where |�H,0| = 0, while in Fig. 8(b), |�B,0|/εF

is nonzero at lower values of T/TF, below the critical line
Tpair/TF, where |�B,0| = 0.

In Fig. 8(a), the Hartree order parameter |�H,0| is largest in
the normal fluid phase above Tpair, since there the Fermi sys-
tem is fully dominated by particle-hole processes. However,
as the temperature is lowered below Tpair, particle-particle
processes start to dominate, since the interaction energy and
the available momentum states are being used to form Cooper
pairs leading to a suppression of |�H,0|. These processes
eventually force |�H,0| to vanish at temperatures below TH.
For fixed T and increasing 1/kFas, we notice that |�H,0|
decreases, becoming zero when TH is crossed.

In Fig. 8(b), the superfluid order parameter |�B,0| is largest
at lowest temperatures, emerging below the Cooper pair for-
mation temperature Tpair, seen as the border of the dark-blue
region. The phase between Tpair and TH, which we name the
Hartree superfluid (HSF), is characterized by |�B,0| �= 0 and

033186-17



KASCHEWSKI, PELSTER, AND SÁ DE MELO PHYSICAL REVIEW RESEARCH 7, 033186 (2025)

FIG. 9. Density plots of the Hartree weight h0 and the Bogoli-
ubov weight b0 in the temperature T/TF vs scattering parameter
1/kFas plane for an effective range parameter of kFre = 0.1535.
Panel (a) shows h0, while panel (b) illustrates b0. The legend shows
the range of values taken by h0 and b0.

|�H,0| �= 0. while the phase below TH, which we call standard
superfluid (SSF), is characterized by |�B,0| �= 0 and |�H,0| =
0. For fixed temperature T and increasing 1/kFas, we notice
that �B,0 increases, as particle-particle (pairing) correlations
dominate below TH.

In Fig. 9, we show density plots of the weight factors h0

and b0 from Eqs. (41a) and (41b) in the T/TF versus 1/kFas

plane. The temperature Tpair corresponds to the sharp edge
of red (blue) region in Fig. 9(a) [Fig. 9(b)] and the tem-
perature TH corresponds to the sharp edge of the red (blue)
region in Fig. 9(b) [Fig. 9(a)]. These two plots show that
the normal fluid is fully dominated by particle-hole processes
above Tpair, that particle-hole and particle-particle (pairing)
processes compete between Tpair and TH, and that particle-
particle (pairing processes) dominate below TH. These results,
at the saddle-point level, improve on the standard BCS theory
describing only the pairing (Bogoliubov) channel [69], and
provides particle-hole corrections to saddle-point results that
are not considered in the Gorkov-Melik-Bakhudarov (GMB)
theory [53], as discussed below.

In Fig. 10, we use the information contained in Figs. 8
and 9 to determine the phase diagram shown in the T/TF

versus 1/kFas plane. The temperatures Tpair and TH versus
1/kFas are indicated and the different saddle-point phases
are color-coded. The normal fluid (NF) phase at the upper
left (blue) region is characterized by |�B,0| = 0 (b0 = 0)
and nonvanishing |�H,0| (h0 = 1). The standard superfluid
(SSF) phase at the lower right (red) region is characterized by

FIG. 10. Phase diagram in the temperature T/TF vs scattering
parameter 1/kFas plane for the effective range parameter kFre =
0.1535. Three separate phases emerge: Normal fluid (NF) (blue
region), Hartree superfluid (HSF) (gray region), and standard super-
fluid (SSF) (red region). The pairing temperature Tpair and the Hartree
temperature TH are also indicated.

|�B,0| �= 0 (b0 = 1) and |�H,0| = 0 (h0 = 0). The HSF phase
shown in the gray region has |�B,0| �= 0 (0 < b0 < 1) and
|�H,0| �= 0 (0 < h0 < 1). The emergence of the HSF phase
is a direct consequence of the partitioning of the interaction,
which avoids the miscounting of states and fixes the unphysi-
cal divergences of the Hartree energy, chemical potential, and
the ground-state energy.

In Fig. 11, we show the temperatures TH/TF and Tpair/TF

versus 1/kFas for various effective range parameters kFre. The
parameters used are kFre = 0 (solid black line), kFre = 0.0625
(solid blue line), and kFre = 0.1535 (solid red line). The gen-
eral trend in these figures is that both TH and Tpair decrease
when kFre increases, that is, when density or the two-body
effective range increases. In Fig. 11(a), we reveal that TH/TF

vanishes below the critical value of 1/kFas obtained from
Eq. (65), where the Hartree order parameter �H,0/εF goes to
zero. In Fig. 11(b), we show that Tpair/TF is reduced when
kFre is increased. Furthermore, we show the correction to
Tpair/TF calculated by GMB [53] including particle-hole fluc-
tuations (dash-dotted gray line), but without considering the
nonperturbative particle-hole corrections investigated in the
partitioning method described here. The analysis performed
by GMB includes particle-hole fluctuations about the BCS
state, but ignores the nonperturbative Hartree-channel contri-
bution at the saddle-point. It is interesting to note that our
WHFB method already captures nonperturbative corrections
to Tpair due to particle-hole effects and thus serves as a better
starting point for fluctuation calculations including particle-
particle and particle-hole channels simultaneously.

Having investigated finite-temperature effects at the
saddle-point level, we are ready to present our conclusions
next.

VII. CONCLUSIONS

We developed the weighted Hartree-Fock-Bogoliubov
(WHFB) method that can partition a given interaction into
competing channels using a weight distribution determined
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FIG. 11. Plots of the Hartree temperature TH/TF and pairing tem-
perature Tpair/TF vs scattering parameter 1/kFas for effective range
parameters kFre = 0 (solid black line), 0.0625 (solid blue line), and
0.1535 (solid red line). Panel (a) shows the HSF to SSF transition
temperature TH/TF, while panel (b) shows the NF to HSF pairing
temperature Tpair/TF. The dash-dotted gray line in panel (b) shows
the result obtained by Gorkov and Melik-Bhakudarov [53].

by the minimization principle of the corresponding action.
As an example of this concept, we investigated ultracold
fermions with equal masses, balanced populations, and zero-
ranged interactions partitioned in the particle-hole (Hartree)
and particle-particle (Bogoliubov) channels.

We solved a decades-long issue regarding divergences in
the particle-hole channel. Using our method, we showed that
these divergences can be eliminated by the weighted parti-
tioning of the channels and the introduction of a many-body
effective range. The partitioning and regularization proce-
dures have two important consequences. First, they lead to
self-consistent relations between the Hartree and Bogoliubov
order parameters. Second, they allow for the emergence of the
Hartree superfluid as a new phase, where both the Hartree and
Bogoliubov order parameters are nonzero, in contrast to the
standard superfluid, where the Hartree order parameter is zero,
but the Bogoliubov order parameter is not.

We demonstrated that nonperturbative corrections, due to
the Hartree channel, emerge both in the normal state and
in the Hartree superfluid, even at the saddle-point level,
changing the critical temperature and the phase diagram for
superfluidity. This finding was missed in the literature and
can directly affect the particle-hole fluctuation corrections to

the standard BCS pairing theory developed by Gorkov and
Melik-Bakhudarov [53].

VIII. OUTLOOK

After describing nonperturbative effects in the particle-
particle and particle-hole channels at the saddle-point level,
it is natural to consider fluctuations next. It is well known
that particle-particle fluctuations significantly improve the
equation of state beyond the saddle-point level [51], when
describing the full range of interaction strengths from the
BCS to the BEC regimes. Within the functional integral ap-
proach, pair fluctuations to the Gaussian order [52] coincide
with the diagrammatic theory of Nozières and Schmitt-Rink
[54]. However, the inclusion of nonperturbative particle-hole
effects, through the Hartree channel, requires a modified fluc-
tuation theory, around the saddle point, which must go beyond
the Gorkov and Melik-Bakhudarov approach [53].

Writing the superfluid order parameter as �B(x) = �B,0 +
ηB(x), and the Hartree order parameter as �H(x) = �H,0 +
ηH(x), where ηB(x) and ηH(x) are the fluctuations around the
saddle point, leads to the Gaussian fluctuation action

Sfluct[{�0}; {η}] =
∫

dx

[ |ηB(x)|2
gB

+ ηH(x)2

gH

]
+ 1

2

∫
dx

βV
tr
{[

A−1
0 δA(x)

]2}
. (90)

Here, the fluctuation matrix

δA(x) =
(

ηH(x) ηB(x)
ηB(x) −ηH(x)

)
(91)

includes both ηB(x) and ηH(x), with A−1
0 being the inverse

propagator matrix of Eq. (34). The effects of simultaneous
particle-particle and particle-hole fluctuations on the phase
diagram, thermodynamic, and collective mode properties will
be described in a forthcoming publication. Specifically, the
question of whether the phase transition between Hartree and
standard superfluid phases survives the effects of fluctuations
will be addressed. In addition, extensions of this theory for
population and/or mass imbalanced systems will be consid-
ered in future work, as the main purpose of this paper was
to introduce the partitioning and regularization method when
two competing channels arise from the same interaction.
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APPENDIX: CALCULATION OF PAIR SIZE

In this appendix, we discuss the details on how to calculate
the size of the Cooper pairs analytically at T = 0. Our starting
point is the definition of the pair size in momentum space,
given in Refs. [52,85] as

ξ 2
Pair = −〈�k|∇2

k|�k〉
〈�k|�k〉 = −

∑
k �k∇2

k�k∑
k |�k|2 , (A1)

where we use the Cooper-pair wave function

�k = �B,0

2Ek
. (A2)

Here, Ek is the Bogoliubov dispersion as given in Eq. (38).
To simplify the notation, we define μH,0 = μ − �H,0 as the
Hartree-shifted chemical potential. To obtain ξ 2

Pair, we need to
calculate two summations

〈�k|∇2
k|�k〉 =

∑
k

�k∇2
k�k, (A3a)

〈�k|�k〉 =
∑

k

|�k|2, (A3b)

which are the expectation value of the relative position
operator and the norm of the Cooper-pair wave function,
respectively. These two expressions are calculated next using
the thermodynamic limit defined in Sec. III A.

1. Normalization factor

The first and more straightforward calculation is the evalu-
ation of the norm of �k, which in the thermodynamic limit is
given by the integral

〈�k|�k〉 = |�B,0|2
4

∫
d3k(

k2

2m − μH,0
)2 + |�B,0|2

. (A4)

Given that the dispersion k2/2m depends only on the modulus
of the momentum, we perform the angular integration and re-
duce 〈�k|�k〉 to a one-dimensional integral. This is achieved
with the substitution u2 = k2/(2m), leading to

〈�k|�k〉 =
∫ ∞

−∞
du

|�B,0|2
√

2π (m)3/2u2

(u2 − μH,0)2 + |�B,0|2 , (A5)

where we used the fact that the integrand is even in the vari-
able u, we extended the original integration domain [0,∞) to
R, and we divided the whole expression by 2.

To compute the integral above, we use complex analysis
techniques. First, we factorize the denominator to get a simple
expression in terms of its complex roots ±γ ,±γ . These roots
are obtained by using De Moivre’s formula and are repre-
sented by

γ = |γ |ei θ
2 . (A6)

As an example, we discuss below the case for μH,0 > 0. Here,
the modulus is

|γ | = (
μ2

H,0 + |�B,0|2
)1/4

, (A7)

while the phase is

θ = arctan

( |�B,0|
μH,0

)
. (A8)

FIG. 12. Illustration of the integration contour construction for a
given R > 0 encircling the poles γ and −γ in the upper half-plane.

Using the representation above, the roots of the denomina-
tor are given by the set P = {γ ,−γ , γ ,−γ } and the integral
becomes

〈�k|�k〉 =
∫ ∞

−∞
dz

|�B,0|2
√

2π (m)3/2z2

(z2 − γ 2)(z2 − γ 2)
, (A9)

where z ∈ C is the complex variable. This procedure de-
scribes an analytical continuation of u ∈ R to the complex
plane.

For any function f : C → C, we define a closed contour
�R = [−R, R] ∪ CR, illustrated in Fig. 12, where CR is the
upper half-circle in the complex plane with radius R > 0.The
contour integral becomes∮

�R

dz f (z) =
∫ R

−R
dz f (z) +

∫
CR

dz f (z). (A10)

In the limit of R → ∞, the integration along the infinite radius
circle vanishes by Jordan’s Lemma since f (z) ∝ z−2, and the
contribution from the poles gives∫

R
dz f (z) =

∮
�∞

dz f (z) (A11a)

= 2iπ
∑

z0∈P+

Res
z=z0

f (z). (A11b)

The last equality is due to Cauchy’s residue theorem [80],
where one can express any closed contour integral of a mero-
morphic function by the sum of the enclosed residues. The
set P+ = {γ ,−γ } includes all poles of the function f with
an imaginary part larger than 0, that is, the poles in the upper
half-plane. Note the use of the index function 1, because we
enclose our contour counterclockwise. Using

f (z) = z2

(z2 − γ 2)(z2 − γ 2)
(A12)

leads to the norm of the Cooper-pair wave function

〈�k|�k〉 = |�B,0|2π2(2m)3/2i
∑

z0∈P+

Res
z=z0

f (z). (A13)
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Since the function f (z) has only simple poles, calculating the
residues is a straightforward analytical task, leading to

Res
z=γ

f (z) = 1

2

γ

γ 2 − γ 2 , (A14a)

Res
z=−γ

f (z) = −1

2

γ

γ 2 − γ 2 . (A14b)

By using the modulus and phase representation of the
poles, we obtain

〈�k|�k〉 = |�B,0|2
√

2π (m)3/22iπ
1

4i|γ | sin(θ/2)
(A15)

for μH,0 > 0. As a final step, we use the expression of the
phase from Eq. (A8) and apply trigonometric identities to
evaluate sin(θ/2) giving the final result

〈�k|�k〉 = 2π2
(m

2

)3/2
|�B,0|

√
μH,0 + |γ |2. (A16)

For μH,0 < 0, the poles are rotated by a factor of e−iπ/2. As
one pole is rotated out of the contour its conjugate is rotated
into the contour, giving rise to an additional minus sign that
is canceled by a minus sign in the residues, yielding the
same result. Note that 〈�k|�k〉 is always positive and that
the argument inside the square root is always positive, since
|γ |2 > μH,0.

2. Relative position expectation value

In contrast to the norm of the Cooper-pair wave function,
the expectation value of the relative position operator involves
a second spatial derivative and is more demanding to calcu-
late. By partial integration, the surface term converges to zero
upon integration over infinite three-dimensional momentum
space, leading to

〈�k|∇2
k|�k〉 =

∫
d3k�k∇2

k�k (A17a)

= −
∫

d3k|∇k�k|2. (A17b)

Using again spherical symmetry, the angular derivatives in
the gradient vanish and we simplify the integral in Eq. (A17b)
by considering only the radial derivative. Substituting again
u2 = k2/(2m) gives

〈�k|∇2
k|�k〉 = −2

√
2mπ |�B,0|2

∫ ∞

−∞
dug(u), (A18)

where the integrand is

g(u) = u4(u2 − μH,0)2

[(u2 − μH,0)2 + |�B,0|2]3
. (A19)

Notice that the denominator of g(u) is the third power of
the denominator in Eq. (A5) and, thus, has the same roots.
However, in this case, this leads to third-order poles rather
than simple poles.

Through a similar procedure, such as that outlined earlier,
we replace the integral along the real line by an integral along

the closed contour �R shown in Fig. 12. Since the function
g(z) ∝ z−6 when complex z goes to infinity, we apply again
Jordan’s Lemma and Cauchy’s residue theorem to calculate
the integral. The result is

〈�k|∇2
k|�k〉 = −4iπ2

√
2m|�B,0|2

∑
z0∈P+

Res
z=z0

g(z). (A20)

The poles follow the same pattern as before with P+ =
{γ ,−γ } being the ones in the upper half-plane. Because these
are third-order poles, extra care is necessary. For an nth-order
pole of the function g at z0 ∈ C, the residue is

Res
z=z0

g(z) = 1

(n − 1)!
lim
z→z0

dn−1

dzn−1
[(z − z0)ng(z)]. (A21)

Using the expression above, the calculation of the residues
reduces to taking derivatives and then evaluating the limit. As
the expressions for individual residues are quite long and give
no physical insight, we do not write them down here. How-
ever, the sum of the residues of the two relevant poles has a
simpler and shorter structure due to the symmetry γ ←→ −γ

in the residues. For μH,0 > 0, this analysis leads to∑
z0=γ ,−γ

Res
z=z0

g(z)

= −|γ |2(γ 2 + γ 2 − 5|γ |2) + 6|γ |2μH,0 − 3μ2
H,0

16|γ |2(γ − γ )5
.

(A22)

Using the modulus and phase representation of γ and γ , we
write γ 2 + γ 2 = 2|γ |2 cos(θ ) and γ − γ = 2i|γ | sin(θ/2),
and use Eq. (A8) to eliminate the phase θ giving

∑
z0=γ ,−γ

Res
z=z0

g(z) =
√

2(μH,0 + |γ |2)5/2

128i|γ |2|�B,0|5 (|γ |2 − μH,0)

× (5|γ |2 − 3μH,0). (A23)

Notice that the expression above is always a positive number
divided by the imaginary unit i, since |γ |2 � μH,0 as seen in
Eq. (A7). The final result is then

〈�k|∇2
k|�k〉

= −π2

16

√
m

(μH,0 + |γ |2)5/2(|γ |2−μH,0)(5|γ |2 − 3μH,0)

|γ |2|�B,0|3 ,

(A24)

which is always negative. We mention in passing that the same
result is obtained for μH,0 < 0.

Lastly, we use Eqs. (A16) and (A24) to write the square of
the Cooper pair size ξ 2

pair given in Eq. (A1). The expression
obtained for ξ 2

pair is always positive, as expected, and the
result for the dimensionless Cooper pair size kFξpair is given
in Eq. (86) of the main text.
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