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In the Supplemental Material we present details related to mean-field theory of the Dirac spin
liquid, the numerical procedure, and more supporting data. First of all, we restate the low energy
theory for Nf = 4 QED3 of the U(1) Dirac spin liquid on the triangular lattice as well as its finite
size effect on different geometries. Secondly, we discuss the numerical observations of even/odd
sector states and weak nematic ordering of the groundstate. At last, we show additional data of
transfer-matrix spectrum, entanglement entropy and gaps for total simulated 16 different geometries
and/or system sizes.

U(1) DIRAC SPIN LIQUID ON THE
TRIANGULAR LATTICE

We fractionalize spin operators into fermionic partons,
S = f †σf , f † = (f†↑ , f

†
↓). The U(1) Dirac spin liquid

(DSL) can be described by a mean-field ansatz,

HMF = −
∑
〈ij〉

∑
σ=↑/↓

[(−1)sijf†i,σfj,σ + h.c.]. (1)

(−1)sij is chosen to give a π/0 flux on the up/down trian-
gles. One can find a band structure of two Dirac cones in
the 1st Brillouin zone. Therefore, the low-energy theory
of this state is described by Nf = 4 QED3.

Once we put U(1) DSL on a finite-width and infinite-
length cylinder, there are several subtle finite size effects,
which can be understood in the mean-field theory. First,
the cylinder may trap an extra flux φ = 0 or π from the
emergent U(1) gauge field [1]. The value of φ will be
energetically determined. Second, we note that there is
an even-odd effect for the mean-field ansatz. As shown
in Fig. S1, cylinders with even and odd circumference
Ly should have different gauge configurations. Next, we
solve band structure with an additional phase eiσθ/2+iφ

for the hoppings across the boundary in axis a1, where θ
is the external Aharonov-Bohm flux inserted in the cylin-
der and the factor σ/2 is due to that f↑/↓ carries ±1/2

Even Ly Odd Ly

FIG. S1. U(1) Dirac spin liquid ansatz on the cylindrical ge-
ometry with even/odd width Ly. We have hopping amplitude
−1 on the red bond, 1 on the black bond.

spin. So on the YCLy-n cylinders, the properties of the
band structure can be classified according to the even or
oddness of Ly and n. If both Ly and n are even, φ = π
will be energetically favored, and the fermions become
gapless when θ = 2π. For the other cases, the system
behaves qualitatively similar no matter φ = 0 or π, and
the fermions will become gapless at θ = π or 3π, where
only two (instead of four in the thermodynamic limit)
Dirac fermions become gapless.

TRANSFER MATRIX TECHNIQUE

In this section, we provide more details of the trans-
fer matrix technique. In iDMRG, we wrap a 2D lat-
tice on a thin cylinder with a finite circumference Ly
but an infinite length Lx and use the snake-chain ma-
trix product state (MPS) to cover the cylinder as shown
in Fig. S2 (b) (for simplicity we view triangular lattice
as a square lattice with a diagonal bond). Generically
the snake-chain MPS geometry breaks the lattice trans-
lation symmetry along the a1 direction, so we need to
use 2n distinct matrices Al (l = 1, · · · , 2n) in the MPS
of YC2n-0 cylinders (see Fig. S2 (b), left panel), while
4n+ 2 matrices for YC(2n+ 1)-0 cylinder. For a special
geometry, i.e. YCLy-1, MPS recover two-site repeating
structure, namely A1-A2, independent if Ly is even or
odd (see Fig. S2 (b), right panel). On the other hand,
the MPS is translation invariant and repeating along the
direction a2. Then, one can use the smallest repeating
unit cell to define the transfer matrix (TM), as shown

in Fig. S2 (c). The eigenvalues λj = eikj−ξ
−1
j of TM–

T contain information of the correlation functions of all
operators, which are further related to excitations of the
system [2]. Physically, each eigenvalue corresponds to
one excitation mode of the system: ξj gives the correla-
tion length (or equivalently the inverse of gap), while kj
gives the momentum along the infinite direction of the
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cylinder.
We can further extract the conserved quantum num-

ber of each excitation mode from TM. We note that the
Schmidt basis (virtual index) of MPS has a well defined
conserved quantum number (Qα), hence each eigenvector
of TM–T shall have a quantum number Q = Qα − Qα′

(Fig. S2(c)). From this calculation we can get the
correlation-length spectrum of different Sz sectors. Be-
low we discuss the method of calculating momentum
(k1, k2) of the correlation length spectrum.

For the YCLy-0 geometry, k2 is nothing but k from

the eigenvalues (eik−ξ
−1

) of TM–T, k1 on the other hand
requires a bit more work. Due to the snake covering the
MPS does not have translational invariance along the
compactified direction (a1). However, the Hamiltonian
still has translational invariance along a1, hence the mo-
mentum k1 is a conserved quantum number. In other
words, k1 is similar to other conserved quantum number
(e.g. Sz) even though it is not encoded in MPS explic-
itly. To extract k1 of each mode one needs to first obtain
the conserved momentum k1 of each Schmidt basis of the
MPS using the mixed transfer matrix TM–T[T

(y)
1 ]. The

mixed TM–T[T
(y)
1 ] is pictorially defined in Fig. S2(d),

namely it is defined by translating the MPS by one site
along the a1 direction. Due to the translation invariance

(along a1) the dominant eigenvector of T[T
(y)
1 ] should

be Vα,α′ = δα,α′e
ikα , with kα being the conserved mo-

mentum k1 of each Schmidt basis of the MPS. At last,
each mode has the momentum k1 = kα − kα

′
, where α

and α′ are the Schmidt basis of eigenvectors of TM–T.
In the simulation we inserted a finite flux θ in the cylin-
der, so the aforementioned momentum is further modified
(k1 + θ/Ly, k2) to obtain the final correlation spectrum
presented in the paper.

For the special geometry YCLy-1, the momenta k1 and
k2 are intertwined together. A benefit is that the MPS
with snake-geometry is actually invariant under two-sites
translation. And the momentum (k1, k2) can be obtained
directly form the TM’s eigenvalues eik−1/ξ,

2k1 = k + 2θ/Ly, k2 = kLy/2. (2)

Therefore, for the −1 geometry, one can still get k1 and
k2, but k1 has a π ambiguity.

EVEN/ODD-SECTOR STATES

It is well known that a topological ordered state has
a number of topological degenerate groundstates once it
is placed on a torus or an infinite cylinder (e.g. see [3]).
Physically all topological sectors can be understood as a
state with gauge fluxes and/or gauge charge lines (i.e.
anyon lines) threaded in the torus or cylinder. Simi-
larly the U(1) DSL also has different groundstate sec-
tors, which we will call as super-selection sectors instead

4

1

2

3

4

8

5

6

7

8

1

2

3

4

4

5

6

7

8

θ

eiθ/Ly Ŝ−x, yŜ
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FIG. S2. (a) Equivalent square-lattice geometry for cylin-
ders YC4-0 and YC4-1 on the triangular lattice. Bravais lat-
tice primitive vectors a1/2 are indeed x/y axes. Inserted flux

θ leads to a phase eiθ/Ly in front of the spin-flipping term
Ŝ−x,yŜ

+
x′,y+1. (b) MPS representations for cylinders YC4-0

and YC4-1. (c) Pure transfer-matrix T of a smallest repeat-
ing unit cell. Its eigenvalues are determined by the quantum

number discrepancy q = Qα − Qα
′
. (d) The mixed transfer

matrix T[T
(y)
1 ] within a translation operation T

(y)
1 under one

site along the cylinder circumference to calculate the momen-
tum k1 of each Schmidt basis.

of topological sectors. The properties of super-selection
sectors of U(1) DSL are not well understood theoreti-
cally, and it will not be pursued here either. In this sec-
tion we will try to clarify some confusion regarding the
topological/super-selection sectors obtained in DMRG
simulations.

For a spin liquid Hamiltonian, DMRG simulations may
yield several different “groundstates” (They are local
minima of the Hamiltonian). However, there is no a-
priori knowledge that these “groundstates” are differ-
ent topological/super-selection sectors of a spin liquid
phase. One has to conduct a thorough study on these
“groundstates”. For example, for a gapped topological
spin liquid one needs to check if the modular matrix cal-
culated from these “groundstates” agrees with the the-
oretical expectation for a topologically ordered phase.
Otherwise one cannot exclude the possibility that dif-
ferent “groundstates” are the groundstates of different
competing phases.

For the J1-J2 triangular spin liquid, one can obtain
two “groundstates” on the YC2n-0 geometry. Previous
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works [4–7] call these two “groundstates” the even and
odd sectors, which pictorially corresponds to the number
of valence bonds which cross a cut through the system.
Their entanglement spectrum is one-fold or two-fold de-
generate respectively, related to whether the SO(3) spin
rotation symmetry is realized projectively (two-fold) or
not (one-fold). Numerically, we can get even/odd-sector
states in the model without/with a pair of blank sites
center-symmetrically located at two edge-columns dur-
ing iDMRG “warming-up” steps. For three cylindrical
geometries (YC2n-(2k+ 1), YC(2n+ 1)-2k, YC(2n+ 1)-
(2k+1)) there is no distinction between the even and odd
sector, as these two sectors are simply related by a trans-
lation symmetry. In contrast, on the YC2n-2k cylinders
the odd sector and even sector are different states, and
we mostly focus on the odd sector for this geometry. The
even sector on the YC2n-2k cylinders has a smaller gap,
which also shows signatures of U(1) DSL in the correla-
tion length spectrum.

We remark that a parallel work [8] reported a large
central charge c = 5 for the even sector state on a finite
YC8-0 cylinder with a small length Lx. However, our
data of the even sector state on YC8-0 cylinder does not
agree with their observation. We use SU(2)-iDMRG and
have simulated bond dimension up to m? = 8192 (equiv-
alent to U(1)-DMRG with m = 32014). In Fig. S3, we fit
the central using three different methods [9], namely the
scaling of entropy with (a) the correlation length, (b) the
SU(2)-DMRG bond dimension, and (c) the equivalent
U(1)-DMRG bond dimension. The fitted central charge
is much smaller than c = 5, and it keeps on decreasing as
bond dimension increases. The central charge is likely to
eventually go to c = 0 at the infinite bond dimension. So
the observation of c = 5 in Ref. [8] might be a finite size
effect: They only simulated a small cylinder (Lx = 16),
but the central charge is only well defined in the 1D limit
with Lx � Ly = 8.

We also note that there is a weak (C6 breaking) ne-
matic ordering in the spin liquid groundstates, namely
a small difference of bond strengths in three inequal di-
rections. The cylindrical geometry of DMRG breaks C6

symmetry explicitly, so it is not surprising that a gapless
U(1) Dirac spin liquid weakly breaks C6 [10]. Second, the
C6 breaking is weak and it becomes even weaker as we in-
crease the bond dimension (Tab. I). The YC6-0 cylinder
has extremely tiny nematicity, which may come from the
fact that DMRG simulation is fully converged for such a
small Ly.

ADDITIONAL NUMERICAL DATA

Correlation length spectrum

We have in total simulated 16 different geometries
and/or system sizes. Similar to the 4 clusters shown

TABLE I. Discrepancy of bond strengths (subtracted by the
average value ∼ −0.18) in the lowest-energy odd-sector state
for various YCLy-0 cylinders by setting J2/J1 = 0.12 and
θ = 0. They are shown in three inequal directions a2, a1 and
a1 − a2. The data is accurate to 4 decimal places.

Geometry m a2 a1 a1 − a2

YC6-0 1024 0.0002 −0.0004 0.0002

2048 −0.0004 0.0007 −0.0004

4096 −0.0005 0.0011 −0.0005

6144 −0.0006 0.0012 −0.0006

YC8-0 1024 0.0286 −0.0576 0.0290

2048 0.0251 −0.0503 0.0252

4096 0.0227 −0.0455 0.0227

6144 0.0218 −0.0437 0.0219

8192 0.0214 −0.0428 0.0214

12288 0.0210 −0.0419 0.0210

YC10-0 1024 0.0517 −0.1072 0.0555

2048 0.0459 −0.0927 0.0468

4096 0.0404 −0.0818 0.0413

6144 0.0381 −0.0765 0.0384

8192 0.0365 −0.0732 0.0368

YC12-0 1024 0.0682 −0.1481 0.0798

2048 0.0623 −0.1319 0.0696

4096 0.0573 −0.1171 0.0598

6144 0.0534 −0.1093 0.0559

8192 0.0509 −0.1042 0.0533

1 1.2 1.4 1.6
lnξ

4.05

4.15

4.25

4.35

S

6 7 8 9
lnm

8 9 10 11
lnm

(a) (b) (c)

c= 2.42

c= 1.56

c= 0.21

c= 0.07

c= 0.19

c= 0.06

FIG. S3. Fitting the central charge of the even sector state
on the YC8-0 cylinder. We use SU(2)-iDMRG and central
charge is obtained by fitting entanglement entropy with (a)
the largest correlation length ln ξ, S = (c/6) ln ξ+a; (b) num-

ber of SU(2) bases m?, S = 1/(
√

12/c + 1) lnm? + b?; and

(c) number of U(1) bases m, S = 1/(
√

12/c + 1) lnm + b.
The five data points correspond to SU(2) bond dimensions
m? = 1024, 2048, 4096, 6144 and 8192. Maximal equivalent-
U(1) bond dimension m = 32014. Fitting with five points
leads to red dashed lines while fitting with two largest points
gives us magenta solid ones.
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in main text, the fermion bilinear and monopole oper-
ators also show up in correlation length spectrum of all
the other 12 clusters. Here provide these data in this
appendix.

YC2n-(2k + 1)

Let us first look at the YC2n-(2k + 1) cylinder. We
have already shown results of YC8-1 and YC10-1 cylin-
ders in the main text, but for comparison we still plot
them together with YC6-1 and YC12-1 ones in Fig. S4.
For YC6-1 in the panel (a), we can insert the flux adiabat-
ically until the flux θ > 0.3π. Once a Dirac spin liquid
is put on a small cylinder, it might have an instability
by spontaneously generating massive terms during flux
insertion. Therefore sometimes the numerical adiabatic
change breaks down, but such finite size effect will be
gone in the pure 2+1D limit, so only data is shown where
the ground state remains in the spin liquid state. This
is consistent with our observation that, for a larger sys-
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FIG. S4. Inverse correlation length 1/ξSz=1 (green �) as a
function of the flux θ (left column), momentum 2k1/π (mid-
dle column) and momentum k2/π (right column) for YCLy-1
cylinders by setting J2/J1 = 0.12. We choose bond dimension
(a) m = 4096 for Ly = 6, (b) 12288 for Ly = 8, (c) 12288 for
Ly = 10 and (d) 12288 for Ly = 12 respectively. Specially,
we denote the lowest-lying spinon-pair excitations by blue 9
and monopole excitations by red / and magenta ..

tem size (i.e. YC8-1, YC10-1 and YC12-1), the adiabatic
twist can be maintained even when θ = π. The trend of
the spectrum is similar to larger system sizes, although
the information of θ ∈ (0, 0.3π) is not enough for us to
mark the type of its excitations. For other three cylin-
ders, we also find one Dirac cone (low-lying excitations) is
at a M point (2k1, k2) = (0, π) (M2 or M3 point) and the
other is close to the K± point (2k1, k2) = ±(2π/3, 2π/3).
The former correspond to Fermion bilinears and the lat-
ter correspond to monopole operators.

Comparing the correlation length spectrum of various
Ly = 8, 10 and 12, it seems that the larger the system
is, the higher the Dirac mode (blue 9) is. We think it is
an artifact from the finite entanglement effect (bond di-
mensions) in iDMRG simulations. For larger system sizes
(Ly), the gapless modes suffers more severe truncation er-
ror, yielding a smaller correlation length at a given bond
dimension. This artifact can be seen in Fig. S5, where
clearly the Dirac mode becomes lower as the bond dimen-
sion increases. On the other hand, to achieve the same
accuracy (truncation error), the required bond dimen-
sion increases exponentially with the circumference of the
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FIG. S5. Inverse correlation length 1/ξSz=1 (green �) as a
function of the flux θ (left column), momentum 2k1/π (mid-
dle column) and momentum k2/π (right column) for YC10-
1 cylinders by setting J2/J1 = 0.12. Bond dimension (a)
m = 2048, (b) 4096, (c) 6144 and (d) 8192 respectively. Spe-
cially, we denote the lowest-lying spinon-pair excitations by
blue 9 and monopole excitations by red / and magenta ..
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cylinder. Table II shows the truncation error for differ-
ent bond dimensions, system sizes and flux. For the large
system size (YC10-1, YC12-1), m = 12288 roughly gives
comparable accuracy as m = 1024 for YC8-1. Therefore,
more care should be taken if one wants to compare the
results between different system sizes.

TABLE II. Truncation error for various YC2n-1 cylinder by
setting J2/J1 = 0.12. θ = π has much bigger truncation error
than θ = 0.

m = 1024 m = 6144 m = 12288

YC8-1 (θ = 0) 5.3× 10−5 5.3× 10−6 1.7× 10−6

YC8-1 (θ = π) 6.5× 10−5 1.1× 10−5 4.5× 10−6

YC10-1 (θ = 0) 1.3× 10−4 2.5× 10−5 1.3× 10−5

YC10-1 (θ = π) 1.5× 10−4 3.7× 10−5 2.1× 10−5

YC12-1 (θ = 0) 5.8× 10−5 3.4× 10−5

YC12-1 (θ = π) 7.1× 10−5 4.4× 10−5
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FIG. S6. Inverse of correlation length 1/ξSz=1 (green �) as a
function of the flux θ (left column), momentum k1/π (middle
column) and momentum k2/π (right column) for (a) YC6-0,
(b) YC8-0, (c) YC10-0, and (d) YC12-0 cylinders by setting
J2/J1 = 0.12. Bond dimension m = 6144 for all cases. Spe-
cially, we denote the lowest-lying spinon-pair excitations by
blue 9, while monopole excitations by red / and magenta ..
The data is shown for the lowest energy “topological” sector,
namely odd sector (sometimes called spinon sector) [6].

YC2n-2k

Next we look at the YC2n-2k cylinder. As we dis-
cussed previously, this class of cylinder behaves very dif-
ferent than YC2n-(2k+1) discussed above. For the U(1)
Dirac spin liquid, the YC2n-(2k + 1) cylinder hits the
gapless Dirac cone at θ = π, while YC2n-2k cylinder
hits the gapless Dirac cone at θ = 2π. Our simulation
on the YC2n-2k cylinder is also consistent with this sce-
nario. For YC6-0, the adiabaticity of the twist can be
maintained until θ = 1.1π, after which the system col-
lapses to the other topological sector. For YC8-0, YC10-
0 and YC12-0 cylinders, adiabatic twist can persist until
θ ≈ 1.5π.

Fig. S6 shows the Sz = 1 correlation length spectrum
of the YC6-0, YC8-0, YC10-0 and YC12-0 cylinders at
J2/J1 = 0.12. We find the lowest modes behave like
the fermion bilinears and monopole operators of U(1)
DSL. Similar to the YC2n-(2k + 1) cylinder, the low-
est modes show a linear dependence with the flux θ.
The lowest-lying fermion bilinear appears at M2 = (0, π)
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point (labeled by (k1, k2)). We do not find spinon-
pair excitations at M1 and M3, which can be under-
stood by the explicitly broken rotation symmetry C6 on a
finite-width and infinite-length cylinder. Importantly, we
also find that one additional branch appears nearby K±
points (k1, k2) = ±(−2π/3, 2π/3), signaling the expected
monopole excitations.
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1 [5]) and (b)YC9-2 (“YC”8-2 [4]) by setting J2/J1 = 0.12.
Bond dimension m = 4096 for both cases. Specially, we de-
note the lowest-lying spinon-pair excitations by blue 9, while
monopole excitations by red / and magenta ..
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FIG. S10. Entanglement entropy S as a function of the flux

angle θ (left column) and f(θ) =
∑Nf
n=1 ln |2 sin [s (θ − θcn) /2]|

(right column) for various cylinders: (a) YC8-0, (b) YC10-0
and (c) YC12-0. Bond dimensions m = 2048 (�), 4096 (♦),
6144 (D), 8192 (9) and 12288 (×). We do the fitting of data
(red symbols) around minima to the Eq. (2). The best fitting
(blue solid line) give us the coefficient B which is marked in
the panel (d) as a function of m.

YC(2n+ 1)-(2k + 1)

Thirdly, the YC(2n + 1)-(2k + 1) cylinder is basically
the same as YC2n-(2k+ 1). For the YC(2n+ 1)-(2k+ 1)
cylinder, we expect that spinons hit Dirac cones when
θ = π or 3π independent of the emergent gauge flux
φ = 0 or π. In Fig. S7, we plot the Sz = 1 correla-
tion length spectrum as a function of the flux θ, 2k1 and
2k2 respectively. Different from YC2n-(2k + 1) cylin-
der, the adiabatic twist cannot persist to π due to the
small gap and instability of the state as Dirac cone is
approached. Furthermore, from the momentum-resolved
spectrum we find Fermion bilinears appearing at a M
point (2k1, 2k2) = (0, 0), and monopoles close to the K±
points (2k1, 2k2) = ±(2π/3,−2π/3).

YC(2n+ 1)-2k

In Fig. S8, we plot the Sz = 1 correlation length spec-
trum of YC(2n+1)-0 cylinders as a function of the flux θ,
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FIG. S11. Entanglement entropy S as a function of the flux

angle θ (left column) and f(θ) =
∑Nf
n=1 ln |2 sin [s (θ − θcn) /2]|

(right column) for various cylinders: (a) YC8-1, (b) YC10-1
and (c) YC12-1. Bond dimensions m = 1024 (#), 2048 (�),
4096 (♦), 6144 (D), 8192 (9) and 12288 (×). We do the fitting
of data (red symbols) around minima to the Eq. (2). The
best fitting (blue solid line) give us the coefficient B which is
marked in the panel (d) as a function of m.

k1 and 2k2 respectively. We find that the spinon-pair ex-
citations appear at (k1, 2k2) = (π, 0) (M1 or M3 point).
Additionally, monopole excitations appears nearby K±
(k1, 2k2) = ±(−2π/3,−2π/3).

Other geometries

In previous studies, people use different geometries,
such as “XC” geometry as defined in Ref. [5] (left column
of Fig. S9 (a)) and “YC” geometry as defined in Ref. [4]
(left column of Fig. S9 (b)). Therefore, we also analyze
the adiabatic flux insertion for cylinders “XC”8-1 and
“YC”8-2 as shown in Fig. S9.

For the “XC”8-1 cylinder (equivalent to the YC8-5
cylinder), the spinon-pair excitations hit Dirac cones
when θ = π independent of the emergent gauge flux
φ = 0 or π. In Fig. S9 (a), we find that its Dirac
mode appears at a M point (4k1, k2) = (0, π) modulo
2π. Monopole excitations are very close to K± points
(4k1, k2) = ±(−2π/3, 2π/3).

“YC” cylinders can be transformed to “XC” by a ro-
tation π/2 in the xy-plane. For the “YC”8-2 cylinder
(equivalent to the YC9-2 cylinder), the spinon-pair exci-
tations hit a Dirac cone when θ = π independent of the
emergent gauge flux φ = 0 or π too. In Fig. S9 (b),
we find that its Dirac mode appears at a M point
(2k1, 4k2) = (0, 0). Monopole excitations are very close
to K± points (2k1, 4k2) = ±(2π/3, 2π/3) too.

Scaling behavior of entanglement entropy

In addition to Fig. 4, we show more data of entan-
glement entropy S for the cylinder YCLy-0 (Fig. S10)
and YCLy-1 (Fig. S11). Firstly, we find that Eq. (2)
accurately fits the data around the minimal value of S
for all the geometries and bond dimensions. Secondly,
we notice that the fitting parameter B shows strong
dependence on bond dimension, system geometry, etc..
The strong dependence on bond dimension makes it
hard to draw a conclusion on the question whether B
is a universal quantity or not. However, it is clear that
the entanglement entropy always follows the universal
scaling law conjectured for the U(1) DSL.

Gaps

Gap measurement

We use an algorithm that combines iDMRG and fi-
nite DMRG to calculate the spin gap in Fig. S12. We
first obtain a converged wave-function of an infinitely-
long cylinder using iDMRG “warm-up” steps. Then we
insert a sector of cylinder consisting of Ly×Ly sites (red
cylinder) into the middle of two half-chains. The left (L)
and right (R) semi-infinite cylinder can be considered
as environment (boundary conditions). We further do
sweeps inside the small cylinder and get the lowest energy
E0(Sz = 1) in the Sz = 1 sector and the energy of the 1st

excited state E1(Sz = 0) in the Sz = 0 sector. Finally,
we obtain the gap ∆Sz=1 = E0(Sz = 1)− L2

ye0(Sz = 0)
and ∆Sz=0 = E1(Sz = 0) − L2

ye0(Sz = 0) where we get
the average energy per-site e0(Sz = 0) during iDMRG
calculations.

L R

FIG. S12. Schematic picture for the gap measurement in
iDMRG.
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Gap scaling

In addition to Fig. 2, we show more data for the gap
in Fig. S13. For large enough Ly, the spin gap of a DSL
at θ = 0 decreases with the circumference size Ly as
∆Sz=1 ∼ vSz=1/Ly, but numerically larger Ly also has
a larger trunctation error from finite bond dimension m,
which tends to overestimate the spin gap in Fig. 2. A
simple finite size scaling is therefore difficult, if m sets
a larger energy scale. We therefore demonstrate that
the gap value becomes lower with increasing truncated
bond dimension in Fig. S13, which is consistent with a
vanishing gap in the thermodynamic limit (Ly →∞).

0 0.2 0.4 0.6 0.8 1

θ/π

0

0.1

0.2

0.3

∆
S
z
=

1

m= 2048

m= 4096

m= 6144

FIG. S13. Dependence of the spin gap ∆Sz=1 (solid line) on
the spin flux θ and the truncated bond dimension m. Data
is taken with J2/J1 = 0.12 on the YC10-1 cylinder. Gener-
ally the estimated gap decreases with the bond dimension m:
For larger the system sizes, the energy scale from truncation
becomes relevant, thereby overestimating the spin gap.
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