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Abstract

We calculate the effects of a single impurity in antiferromagnetic quantum spin-1/2 chains

with the help of one-dimensional quantum field theory and renormalization group tech-

niques in the low temperature limit. We are able to present numerical evidence from ex-

act diagonalization, numerical Bethe ansatz, and quantum Monte Carlo methods, which

support our findings. Special emphasis has been put on impurity effects on the local

susceptibility in the chain, because of the experimental relevance of this quantity. We

propose a muon spin resonance experiment on quasi one-dimensional spin compounds,

which may show some of the impurity effects.
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Chapter 1

Introduction

Considerable attention has been focused on spin-1/2 chains since Bethe’s original work

more than 60 years ago[1]. The large interest in these relatively simple many-body quan-

tum mechanical systems is no surprise, since they exhibit many fascinating cooperative

phenomena which may be shared by more complex models. The Bethe ansatz has been

refined over the years[2], and thermodynamic quantities can be calculated exactly for a

wide parameter range[3]. With the advent of conformal field theory and more computing

power, we are now able to understand the model even on a more detailed level as pre-

sented in this thesis. Another goal of this thesis is to link this theoretical knowledge to

real experimental systems with special emphasis on impurity effects.

1.1 The Hamiltonian

We can model the magnetic properties of insulators very well by describing the exchange

coupling between orbital spins in terms of an anisotropic Heisenberg coupling. It is

possible to have quasi one-dimensional spin systems, in which the spins form “chains”

along one crystal axis in the sense that the exchange coupling is much stronger between

neighboring spins within the chain compared to the coupling J⊥ between spins of dif-

ferent chains. If we neglect this interchain coupling we can describe the model by the

Hamiltonian

H =
l−1
∑

i=1

[
J

2
(S+

i S
−
i+1 + S−

i S
+
i+1) + Jz S

z
i S

z
i+1], (1.1)

1



Chapter 1. Introduction 2

where S+
i , S

−
i are the usual spin-1/2 raising and lowering operators at site i, l is the total

number of sites, and J is taken to be positive. We may choose open boundary conditions

where the ends at the 1st and lth site are free, or we may impose periodic boundary

conditions where the ends are coupled with the same coupling constants, J and Jz.

Some materials are known to exist for spin-1/2 which exhibit this one-dimensional

behavior to various degrees (e.g. KCuF3[4] and CPC[5]). The ratio J/J⊥ is a measure

of the one-dimensional properties of the material since three dimensional Néel ordering

will occur for low temperatures T < TN , TN ∝ J⊥[6]. In some materials a spin-Peierls

transition to a dimer phase may occur instead if the phonon-spin coupling is strong.

Typically the exchange coupling J is of the order of 20 − 1000K, while the ordering

temperature TN is at least one order of magnitude smaller. Experimental results in

KCuF3[4] and CPC[5] are reported to agree well with the prediction of the Hamiltonian

in equation (1.1) at the isotropic point J ≈ Jz. Both J and J⊥ arise from an exchange

integral since the dipole-dipole interaction is only in the mK range. We also neglected

the spin-orbit coupling which is generally also much smaller than the exchange coupling.

The effect of a spin-orbit coupling can be described by a single-ion anisotropy of the form

(Sz)2 in the Hamiltonian, which reduces to a trivial c-number for spin-1/2.

1.2 Impurities

The main goal of this thesis is to provide a good understanding of impurity effects in

spin-1/2 chains. The study of impurities has always been a large part of solid state

physics, because there are many cases where impurities produce very interesting effects

and may even dominate the behavior of the system. The best known examples may be

semiconductor doping, the Kondo effect, and high temperature superconductors.
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xx=0

impurity boundary

bulk

τ

v/TK

Figure 1.1: An impurity breaks conformal invariance and renormalizes to a boundary
condition.

Recently, there has been an increased theoretical interest in quantum impurity prob-

lems which can be described by (1+1) dimensional conformal field theories. The resulting

theory of boundary critical phenomena proved to be very successful in treating a vari-

ety of problems[8], with the Kondo problem being probably the most famous. It turns

out that our model system can be regarded as one example of this technique, so it is

instructive to present the central ideas of this approach at this point (see also reference

[8]).

Let us start with some gapless, scale invariant system that can be described by a

conformally invariant field theory. We may introduce a local, time-independent pertur-

bation as shown in figure 1.1, which represents the impurity in the system and breaks the

conformal invariance. It also creates a new energy scale in the system, which depends on

the initial strength of the perturbation and on the scaling dimensions of the perturbing

operators in the field theory. This energy scale is defined as the temperature where we

expect a breakdown of perturbation theory, which is often called TK in analogy with the

Kondo effect. It is reasonable to assume that the system will still be described by the

conformal field theory far away from the impurity, i.e. outside a “boundary layer” which

is defined by the new energy scale in the system i.e. with width v/TK , where v is the
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boundary "no boundary"

R

L

L L

Figure 1.2: An analytic continuation of left movers in terms of right movers to the
negative half axis effectively removes the boundary and restores conformal invariance.

effective speed of light of the field theory.

The system outside the boundary layer may still be affected by the impurity in a

universal way, however, since it may effectively introduce a boundary condition on the

system. The effective boundary conditions are created quite naturally, because the usual

renormalization group ideas of perturbations in scale invariant systems apply. We expect

a relevant impurity perturbation to renormalize from a weak coupling limit to a strong

or intermediate coupling limit as the temperature is lowered. The weak coupling limit

recovers the original boundary condition of the unperturbed system, while the strong

(infinite) coupling limit can most likely be described by some other (e.g. fixed) boundary

condition as indicated in figure 1.1. In this case we expect to find universal correlation

functions for points close to the impurity compared to their relative distance (but outside

the boundary layer v/TK as shown in figure 1.1). These boundary correlation functions

are in general different from the correlation functions in the bulk. The cross-over temper-

ature between the two boundary conditions is simply given by the original energy scale

TK that has been created by the perturbation.

One important point of the theory is the fact that a fixed boundary condition is still

consistent with conformal invariance, although it seems to break translational invariance.

As an example consider a fixed boundary condition where some quantum field has been

set to zero φ(0) = φL(0) + φR(0) ≡ 0. An analytic continuation to the negative half axis
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of the left moving field in terms of the right moving field allows us to effectively get rid of

this boundary condition for the newly defined left moving field φL(−x) ≡ φR(x), x > 0

as shown in figure 1.2.

Although we will not use the theory of boundary critical phenomena to its full extent,

we will recover the same results in our analysis of impurities. The reader may understand

some of the presented ideas better once they are explained with the example of the spin-

1/2 chain later in this thesis.

As will be shown in chapter 4, we can understand the effect of impurities in these

systems very well with the help of the field theoretical analysis. In all cases, we find that

any impurity renormalizes to an effective boundary condition on the bulk system at zero

temperature. An effectively decoupled spin may be left over and there might be impurity

corrections to thermodynamic quantities. While extensive quantities generally scale with

the size of the system, the impurity contributions are independent of the length l of the

chain. These findings are analogous to those of the Kondo effect to some extent.

1.3 Experimental Relevance

To detect these impurity effects in experimental systems, we have to overcome some

difficulties. Since the predicted corrections to thermodynamic quantities scale with the

impurity density, we will generally need a macroscopic number of defects, and even then it

will be difficult to extract the part of the signal which is due to the impurities. Moreover,

we expect that impurities will affect each other in a strongly correlated system like the

spin-1/2 chain[7]. Instead of making a global measurement on thermodynamic quantities,

we would therefore ideally like to make a measurement only locally, close to an isolated

impurity. In this case, we expect a strong effect since the impurity will effectively play the

role of a boundary condition on an otherwise unperturbed system at low temperatures.
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Correlation functions will be changed drastically in this case as we will see later.

Out of the motivation to make a local measurement and perturbation, we developed

the idea of a Muon Spin Resonance (µSR) experiment on quasi one-dimensional spin

compounds. In this case the electric charge of the muon creates a defect in the material,

while the muon also makes a measurement of the local susceptibility in its vicinity. The

idea of the experimental setup will be discussed in more detail in section 5.4.

Even assuming that we are able to create an idealized impurity system, we still

have the serious problem that our field theory predictions are strictly valid only at low

temperatures where experimental materials might already behave three dimensionally.

This problem can be overcome only to some extent by selecting materials that have very

pronounced one-dimensional behavior (i.e. a large ratio J/J⊥).

To give a more complete prediction of the outcome of the µSR experiments and

to link theoretical calculations to the experimentally accessible temperature range, we

performed extensive quantum Monte Carlo simulations. We can recover the predicted

scaling at low temperatures, which we can link to the predicted experimental signal at

higher temperatures. This gives some very encouraging results for the possible µSR

experiment. The presented setup for the µSR experiment is of course only one possible

way of detecting the predicted effects of impurities, which will be present in any quasi

one-dimensional compound. This thesis will provide some interesting Monte Carlo data

for the local susceptibility near an impurity. The reader is encouraged to use this data

to develop other experimental methods to probe the predicted effects.

1.4 Outline

This thesis is organized as follows: A review of the derivation of the quantum field theory

treatment for spin-1/2 chains is given in chapter 2 which is largely based on previous
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references. We are able to extend this analysis to derive some results for finite size

systems in chapter 3. Some renormalization group ideas will also be presented in chapter

3 in connection with finite size scaling. We use the field theory treatment to study the

effects of impurities in the chain as discussed in chapter 4 in some detail, which is based

on some of my previous work with Ian Affleck in reference [9]. Some finite size scaling

results from numerical exact diagonalization studies are also presented to confirm our

results.

The most recent results of our field theory analysis are predictions for the local and

the bulk susceptibility of the spin chain in chapter 5. The impurity contributions to

the susceptibility will be discussed in the language of boundary critical phenomena as

described above. In the last chapter 6, we present the promising data from our Monte

Carlo simulations, which also establishes our predictions for the µSR experiments. The

results are discussed in the context of the expectations from the field theory.



Chapter 2

Theoretical Background

To establish our notation, we will review the field theoretical treatment of the spin-1/2

chain in this chapter. While we attempt to give a complete outline, it might be necessary

to refer to reference [10] or appendix A in some cases, since it is not the primary goal of

this thesis to present research on this aspect. We consider the antiferromagnetic spin-1/2

xxz chain with l sites, which is described by the Hamiltonian in equation (1.1).

2.1 From the Lattice Model to the Quantum Field Theory

We first apply the Jordan-Wigner transformation by expressing the spin operators in

terms of spinless fermion annihilation and creation operators at each site[11]:

Sz
i = ψ†

iψi −
1

2

S−
i = (−1)iψi exp (iπ

i−1
∑

j=1

ψ†
jψj) (2.2)

The exponential string operator cancels for nearest neighbor interactions on a chain, and

we are left with a local Hamiltonian for interacting Dirac fermions by direct substitution

into equation (1.1):

H =
l−1
∑

i=1

[−J
2

(ψ†
iψi+1 + h.c.) + Jz (ψ†

iψi −
1

2
)(ψ†

i+1ψi+1 −
1

2
)] (2.3)

For Jz = 0, this is just a Hamiltonian for free fermions on a lattice. For this case,

we obtain a cosine dispersion relation, and the ground state is a half-filled band with

the Fermi points at kF = ±π/2. Expanding around this ground state, we can restrict

8



Chapter 2. Theoretical Background 9

ourselves to low energy excitations by only considering those fermions which have wave-

vectors close to kF = ±π/2:

ψ(x) ≈ eixπ/2ψL(x) + e−ixπ/2ψR(x) (2.4)

The coordinate x is measured in units of the lattice spacing, and ψL and ψR contain only

long wavelength Fourier modes.

We now take the continuum limit, and, up to terms with higher order derivatives,

we are left with a (1+1) dimensional relativistic field theory of left- and right-moving

fermions. The resulting Hamiltonian for the case Jz = 0 is:

H = v
∫

dx

[

ψ†
Ri

d

dx
ψR − ψ†

Li
d

dx
ψL

]

(2.5)

The Jz-interaction can be reintroduced in terms of the fermion currents JI = :ψ†
IψI:,

I = L,R by use of equation (2.4):

Jz

l−1
∑

i

: ψ†
iψi : : ψ†

i+1ψi+1 :→ Jz

∫

dx[J2
L + J2

R + 4JLJR − {(: ψ†
LψR :)2 + h.c.}] (2.6)

Because of Fermi statistics, we can drop the last term for now. The first two terms can

be rewritten to first order with the help of Wick’s formula:

JL(x)JL(x+ δ) ≈ : JL(x)JL(x) : + const.

+
i

2πδ
[ψ†

L(x+ δ)ψL(x) − ψ†
L(x)ψL(x+ δ)]

≈ − i

π
ψ†

L

d

dx
ψL + const.

JR(x)JR(x+ δ) ≈ i

π
ψ†

R

d

dx
ψR + const. (2.7)

With the use of those relations, we can rewrite the complete Hamiltonian in terms of the

Fermion currents with a renormalized “speed of light” v:

H = vπ
∫

dx[J2
R + J2

L +
4Jz

πv
JLJR] (2.8)
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This model can now be transformed using the usual abelian bosonization rules[10]:

JL =
1√
4π

(Πφ − ∂φ

∂x
)

JR = − 1√
4π

(Πφ +
∂φ

∂x
)

ψR = const. exp(i
√

4πφR)

ψL = const. exp(−i
√

4πφL), (2.9)

where the constant of proportionality can be taken to be real, but cut-off dependent.

The fields φL and φR are the left and right-moving parts of φ which can be defined in an

infinite system as

φL(x) =
1

2
φ(x) +

1

2

∫ x

−∞
Πφ(y)dy

φR(x) =
1

2
φ(x) − 1

2

∫ x

−∞
Πφ(y)dy, (2.10)

where Πφ is the momentum variable conjugate to φ. Left moving operators are functions

of only x+ vt, while right moving operators are functions of only x− vt. A dual field φ̃

can also be defined in terms of those components:

φ̃ ≡ φL − φR (2.11)

The resulting Hamiltonian is a non-interacting boson theory

H =
v

2



(1 − 2Jz

πv
)Π2

φ + (1 +
2Jz

πv
)

(

∂φ

∂x

)2


 . (2.12)

However, the boson operators now have to be transformed by a canonical transformation

to obtain a conventionally normalized theory:

φ → φ√
4πR

Πφ →
√

4πR Πφ (2.13)

R2 =
1

4π

√

πv + 2Jz

πv − 2Jz

≈ 1

4π
+

Jz

2vπ2
. (2.14)
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This gives us the usual free boson Hamiltonian:

H =
v

2

[

(Πφ)
2 + (

∂φ

∂x
)2

]

= v [TL + TR] . (2.15)

Here TL,R are the left- and right-moving parts of the free Hamiltonian

TR,L ≡
(

∂φR,L

∂x

)2

=
1

4

(

∂φ

∂x
± Πφ

)2

. (2.16)

By combining the spin to fermion and fermion to boson transformations, we obtain

the continuum limit representation for the spin operators:

Sz
j ≈ 1

2πR

∂φ

∂x
+ (−1)jconst. cos

φ

R

S−
j ∝ e−i2πRφ̃

[

cos

(

φ

R

)

+ const.(−1)j

]

. (2.17)

Altogether, this is a very nice result, because we are now in the position to calculate any

expectation value of spin operators in terms of free boson Green’s functions.

Note, that all physical operators are invariant under a shift of the boson

φ ≡ φ+ 2πR

φ̃ ≡ φ̃+ 1/R. (2.18)

Therefore, the boson φ must be thought of as a periodic variable measuring arc-length

on a circle of radius R.

So far, we have treated the Jz interaction perturbatively so that the rescaling equa-

tions (2.14) are only accurate to lowest order in Jz/J . Fortunately, the “boson radius”

R and the “spin-wave velocity” v have been analytically determined with the help of the

Bethe ansatz[12, 13]. After defining a new variable θ,

cos θ ≡ Jz

J
, (2.19)
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the two quantities are conveniently expressed as

v =
Jπ sin θ

2θ

R =

√

1

2π
− θ

2π2
, (2.20)

which agrees to first order in Jz/J ≈ π/2 − θ with the perturbative field theory calcula-

tions in equation (2.14).

2.2 Symmetries

There are two independent discrete symmetries of the spin chain which we can identify in

the continuum limit. The first one is translation by one site, T . This appears as a discrete

symmetry independent of translation in the continuum limit, simply interchanging even

and odd sublattices. By comparing with equation (2.17) we see that it corresponds to:

T : φ→ φ+ πR, T : φ̃→ φ̃+ 1/2R. (2.21)

The second one is site parity, PS, i.e. reflection of the whole chain about a site. Note,

that this does not interchange even and odd sub-lattices. Thus it must map the spin

operators into themselves. Since parity interchanges left and right, φ and φ̃ transform

oppositely. We see that the correct transformation is

PS : φ→ −φ, PS : φ̃→ φ̃. (2.22)

There is a third discrete symmetry, link parity, PL, i.e. reflection about a link.

However, this is not independent, but is a product of PS and T . It corresponds to

PL : φ→ −φ+ πR, PL : φ̃→ φ̃+ 1/2R. (2.23)
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2.3 Correlation Functions

One of the first[13] and most important results of the field theory treatment is the cal-

culation of spin correlation functions, which is not possible with Bethe ansatz methods.

Using equation (2.17) and some results from appendix A it is straight forward to express

the Sz Green’s function as

Gz(x, t) ≡ 〈Sz
0(0)Sz

x(t)〉

=
1

4π2R2
<
∂φ(0, 0)

∂x

∂φ(x, t)

∂x
〉 + const. (−1)x〈cos

φ(0, 0)

R
cos

φ(x, t)

R
〉

=
−1

16π3R2

(

1

(x+ vt)2
+

1

(x− vt)2

)

+ const.
(−1)x

(x2 − v2t2)1/4πR2
. (2.24)

The separation into uniform and alternating parts is taken from equation (2.17), which

also implies that the spin operators can be separated into uniform and alternating parts.

This seems to be a valid assumption in the long wave-length limit, but the separation

is not unique on small length scales. Note, that the cross terms of the alternating and

uniform parts of Sz in equation (2.17) have a vanishing expectation value as they should.

In a scale invariant system we can define a scaling dimension d ≡ dL + dR of an operator

O = OLOR by the auto-correlation function

〈O(x, t)O(0, 0)〉 = 〈OL(x+ vt)OL(0)〉〈OR(x− vt)OR(0)〉 ∝ 1

|x+ vt|2dL

1

|x− vt|2dR
.

(2.25)

According to equation (2.24) the scaling dimension of the uniform part of the Sz operator

is always one, while the exponent of the alternating part decreases with anisotropy. At

the isotropic point the alternating scaling dimension is d = 1/2, while we recover d = 1

at the xx point (free fermions).

Likewise, we can calculate the S± Green’s function:

G±(x, t) ≡ 〈S+
0 (0)S−

x (t)〉 (2.26)
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∝ (x2 − v2t2)−(1/R−2πR)2/4π

(

1

(x+ vt)2
+

1

(x− vt)2

)

+ const.
(−1)x

(x2 − v2t2)πR2

Now the uniform scaling dimension decreases from d = 5/4 at the xx-model, to d = 1 at

the Heisenberg point, while the alternating dimension increases from 1/4 to 1/2. At the

Heisenberg point, the expressions for the two Green’s functions Gz and G± are identical,

as expected.

The scaling dimensions at the xx-point (free fermions) agree with previous results from

rigorous methods[14]. Extensive numerical studies at the Heisenberg point show that the

predicted exponents are correct there as well[15, 16] up to logarithmic corrections. The

constant of proportionality of the alternating part in equation (2.24) has been estimated

numerically to be const. ≈ 0.5[16].



Chapter 3

Scaling and Finite Size Effects

So far we have treated the spin chain with a theory which used the implicit assumption

that we are in the limit of infinite length and very low temperatures. It is now useful to

extend this theory to make useful predictions on finite size systems.

3.1 Boundary Conditions

To identify possible fixed points, we need to uncover the corresponding boundary condi-

tions on the boson in the continuum limit.

3.1.1 Periodic boundary conditions

To get periodic boundary conditions, we can define ~S0 ≡ ~Sl and let the sum in equa-

tion (1.1) run from 0 to l. For the fermions, this condition translates into periodic or

antiperiodic boundary conditions, depending on the total number of fermions[11]. It is

clear from equation (2.17) that the boundary conditions on the boson are given by

φ(l) = φ(0) + 2πRSz

φ̃(l) = φ̃(0) +m/R, (3.27)

where m and Sz have to be integer for even length l and half-odd-integer for odd length l.

We can identify Sz to be the z-component of the total spin by integrating equation(2.17):

Sz ≡
∑

i

Sz
i =

1

2πR
(φ(l) − φ(0)) (3.28)

15
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As expected, Sz is integer or half-odd-integer for an even or odd length chain, respectively.

There is no immediate physical interpretation for m other than that it represents a

conserved quantity with integer or half-odd-integer value [see also equation (3.42) later].

3.1.2 Open boundary conditions

The case of free ends is slightly more subtle. One way of dealing with it is to introduce

two additional “phantom sites” at 0 and l+1 and let the sum of the first term in equation

(2.3) run from 0 to l, and then impose vanishing boundary conditions on ψ0 and ψl+1.

This imposes conditions on the continuum limit left and right moving Fermion fields:

ψL(0) + ψR(0) = 0

ψL(l + 1) + (−1)l+1ψR(l + 1) = 0 (3.29)

Using equations (2.4) and (2.9) and taking into account the correct commutation relations

in equation (A.106), we conclude that the correct boundary conditions on the bosons are

φ(0) = πR/2

φ(l + 1) = πR/2 + 2πRSz, (3.30)

where Sz is integer for l even or half-odd-integer for l odd. As expected, this condition

is not compatible with site (link) parity for an even (odd) number of sites.

At first sight, these conditions do not seem to correspond to conformally invariant

boundary conditions because they break translational invariance, but we can rewrite

them in terms of left- and right-movers

φL(0, t) = πR/2 − φR(0, t). (3.31)

Since φL is a function only of x+ vt and φR only of x− vt, we can define φL for negative

values of x by regarding φR as an analytic continuation:

φL(−x, t) ≡ −φR(x, t) + πR/2, x > 0. (3.32)
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The condition at l + 1 then becomes

φL(l + 1, t) = −φR(l + 1, t) + πR/2 + 2πRSz = φL(−l − 1, t) + 2πRSz. (3.33)

We therefore recover the usual periodic or antiperiodic boundary conditions, depending

on whether l is even or odd. This is in complete agreement with the discussion in section

1.2 and figure 1.2. The right moving channel φR has been replaced by an analytical

continuation of the left moving field φL to the negative half axis. Since φL has now twice

the range 2l we have the same degrees of freedom as before, but the left moving field has

the usual periodic (conformally invariant) boundary conditions. It appears as if we have

gotten rid of the fixed boundary condition altogether.

One may ask at this point how the boundary correlation functions can be different

after we have effectively recovered periodic boundary conditions and translational invari-

ance. The reason is that all physical operators that were previously expressed in terms

of left and right movers are now written in terms of left-movers only. The spin operators

therefore become non-local expressions because they will be a function of both φL(x) and

φL(−x). To understand the effect on the boundary scaling dimensions, it is instructive to

consider the staggered part of the spin-spin correlation function at the Heisenberg point

as an example. This is most easily calculated for S− by using

S−(x) ∝ (−1)xe−i
√

2π[φL(x,t)+φL(−x,t)]. (3.34)

The two-point Green’s function for 〈S−S+〉 now becomes a four-point function for the

left-moving boson, giving, according to equation (A.105):

〈S+(t1, x1) · S−(t2, x2)〉 ∝ (−1)x1−x2

√

x1x2

[(x1 − x2)2 − t212][(x1 + x2)2 − t212]
, (3.35)

where we have set the spin-wave velocity to one and t12 ≡ t1 − t2. Note, that far

from the boundary, when x1x2 ≫ |(x1 − x2)
2 − t212|, we recover the bulk correlation
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function 1/
√

(x1 − x2)2 − t212, corresponding to a scaling dimension of d = dL + dR =

1/2 for the staggered spin operator. This also fixes the constant of proportionality in

equation (3.35) to be const. ≈ 2[16] as mentioned at the end of section 2.3. However,

the correlation function near the boundary (i.e. when |t12| ≫ x1, x2) takes the form

√
x1x2/|t12|2, corresponding to a scaling dimension of d = 1 for the staggered boundary

spin operator. In this case the scaling dimensions of the original left and right movers no

longer add, since they are no longer independent as x1, x2 → 0. In this case the different

scaling dimension can formally be derived by the operator product expansion[17, 18].

3.2 Scaling and Irrelevant Operators

Although we were able to arrive at a free Hamiltonian in equation (2.15), it is important

to realize that we neglected all terms which involved higher order derivatives or powers

of fermions. These terms are irrelevant at low temperatures and long wavelengths, but

they will give some corrections with characteristic scaling relations.

We can study these corrections systematically by classifying operators in the Hamil-

tonian density by their scaling dimension. We see that the free Hamiltonian density has a

scaling dimension of d = 2 as it should since its integral has to have units of energy. This

is assuming that in a scale invariant theory the scaling dimension d in equation (2.25) is

the only quantity that determines the units of the corresponding operator. If we want

to consider perturbing operators with scaling dimension other than d = 2, we need to

consider that this operator must contain the appropriate powers of the ultraviolet cutoff

Λ in so that its overall units work out to that of the Hamiltonian density. We may choose

to define a dimensionless coupling constant λΛd−2 by absorbing the appropriate powers

of the cutoff. The renormalized coupling constant of an operator with scaling dimension

d 6= 2 is therefore proportional to λΛd−2, where λ is the original coupling parameter in
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the Hamiltonian density. We therefore conclude that operators with dimension d > 2

are irrelevant when the cutoff is lowered, while operators with d < 2 will be relevant.

If relevant operators are present we expect a breakdown of perturbation theory, and

the system either develops a mass gap or renormalizes to a different fixed point. The

ultraviolet cutoff Λ may be reduced to the larger of the temperature T or the inverse

system size v/l. We expect that this results in an effective Hamiltonian that describes

the macroscopic physics correctly and only depends on the energy scale T or v/l and the

renormalized coupling constants.

Since the coupling constants always appear in the combination λΛd−2 it is sufficient

in most cases to only consider the perturbing operator with the lowest scaling dimension

d (the “leading” operator). This determines the leading correction to the spectrum and

other quantities which will be proportional to T d−2 or l2−d to first order in perturbation

theory. This can be generalized to higher orders in λΛd−2 if higher order perturbation

theory should be necessary to calculate the corrections.

We still need to consider the special case of perturbing operators with scaling di-

mension d = 2, which are marginal and can be categorized into three different cases.

Sometimes we may absorb the operator exactly into the free Hamiltonian as we did

with the Jz interaction in equations (2.6-2.8). We then refer to the operator as exactly

marginal. If we cannot absorb the operator in the free Hamiltonian, we can calculate

the rescaling equations from perturbation theory. If we have only one marginal coupling

constant λ, the so called β-function has the generic form

dλ

d log Λ
= bλ2, (3.36)

where b is determined by the perturbation expansion. We see that whether the pertur-

bation is relevant or irrelevant depends on the sign of b and λ. In particular, assuming
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b is positive, we see that λ decreases when the cutoff is lowered, making a positive cou-

pling λ marginally irrelevant and a negative coupling λ marginally relevant. It therefore

depends on the initial sign of the bare coupling constant if the perturbation is relevant

or irrelevant. Integrating equation (3.36) gives

λ =
λ0

1 − λ0b log Λ
, (3.37)

where λ0 ≡ λ(Λ = 1). For the irrelevant case λ0b > 0, the renormalized coupling λ

becomes smaller when the cutoff is lowered and “universal” logarithmic corrections of

order −1/b ln Λ arise which are independent of λ0 as Λ → 0. If λ0b < 0, however,

the perturbation is relevant and we expect a breakdown of perturbation theory when

λ0b ln Λ → 1 (i.e. TK ∝ e1/bλ0 in terms of the cross-over energy scale).

Since the above arguments rely on the dimensional analysis of the operators, we can

immediately deduce that a δ-function increases the scaling dimension by one. Therefore

local operators are regarded to be marginal for d = 1 and irrelevant for d > 1. Likewise

a derivative will always increase the effective scaling dimension of operators by one.

Let us study these renormalization group concepts with the example of the spin-1/2

chain. One perturbing operator comes from the last term in the Jz interaction of equation

(2.6), which represents an Umklapp process for the fermions. We expect this to be the

leading irrelevant operator, because it is the only four-Fermion operator, which we have

not taken into account which does not include higher derivatives. After direct substitution

of the bosonization formulas in equation (2.9) and the rescaling in equation (2.14), this

operator is given by λ cos(2φ/R) with some non-universal coupling constant λ. According

to equation (A.104) its scaling dimension is given by d = 1/πR2, which decreases with

Jz and becomes d = 2 at the isotropic (“Heisenberg”) point Jz = J, R = 1/
√

2π,

corresponding to a marginal irrelevant operator. For Jz > J , the operator will be relevant

and drive the system into the Néel ordered phase.
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Since the operator is marginally irrelevant at the Heisenberg point, the effective cou-

pling constant λeff(l) scales to zero only logarithmically slowly with length l, and logarith-

mic corrections arise[19]. This seems to make an accurate determination of the critical

behavior from numerical finite-size scaling essentially hopeless, unless exponentially large

chains can be studied. However, it is known from numerical studies that the marginal

coupling constant λ can be decreased by adding a positive next-nearest-neighbor coupling

J2

H →
∑

i

(J ~Si · ~Si+1 + J2
~Si · ~Si+2). (3.38)

The coupling λ passes through 0 at a critical point, which has been estimated numerically

to be at J2/J ≈ 0.24[20]. For larger J2/J the operator is marginally relevant and the

system renormalizes to a spontaneously dimerized phase. In particular, at J2/J = 1/2,

the exact ground-states are the nearest neighbor dimer states. Right at the critical point,

the marginal operator is absent, and hence finite-size scaling becomes very accurate even

with chains of modest lengths l < 30 since corrections drop off at least as fast as 1/l. The

model with the critical value of J2/J represents the critical point to which the nearest

neighbor model and all models with J2 less than the critical value flow logarithmically

slowly under renormalization. Therefore, we expect the behavior to be the same for the

nearest neighbor model up to logarithmic corrections.

Now that we have managed to get rid of the leading irrelevant operator, we can con-

sider higher order corrections. Since translational symmetry is broken for open boundary

conditions, the local energy boundary operators TL(0) and TL(l) are allowed as a per-

turbation with some unknown coupling constant c

c TL(0) = c

(

∂φL

∂x

)2

(0) =
c

4

(

∂φ

∂x
(0) − Πφ(0)

)2

, (3.39)

with an analogous expression for TL(l). Here, we have also used the analytic continuation

in equation (3.32), which allows a description in terms of left-movers only. Local operators
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are multiplied by a δ-function in the Hamiltonian density and will therefore be marginal

for scaling dimension d = 1 and relevant for d < 1. The operator in equation (3.39) has

dimension d = 2 for all values of Jz and should give corrections of order 1/l to the finite

size spectrum, which will be discussed in the next section.

There is no such local operator for periodic boundary conditions, and the lowest

dimension bulk operator is TLTR of dimension d = 4, where TL,R have been defined in

equation (2.16). Corrections to the finite size spectrum of the periodic chain should

therefore be at least of order 1/l2. Note that the operator cos 4φ/R is also allowed by the

original symmetries of the Hamiltonian, but its scaling dimension of d = 4/πR2 makes it

much more irrelevant for all values of Jz.

3.3 Finite-size Spectrum

As discussed above, there are four different fixed points to consider, corresponding to the

four different possible boundary conditions: periodic or open with even or odd length

(i.e. Sz integer or half-odd-integer).

3.3.1 Periodic boundary conditions

We first consider the case of periodic boundary conditions on a spin-chain. This im-

plies periodic boundary conditions on φ as in equation (3.27) and determines the mode

expansion:

φ(x, t) = φ0 + Π̂
vt

l
+ Q̂

x

l
+

∞
∑

n=1

1√
4πn

[

e−
2πi

l
n(vt+x)aL

n + e−
2πi

l
n(vt−x)aR

n + h.c.
]

. (3.40)

This implies that φ̃ has the mode expansion

φ̃(x, t) = φ̃0 + Q̂
vt

l
+ Π̂

x

l
+

∞
∑

n=1

1√
4πn

[

e−
2πi

l
n(vt+x)aL

n − e−
2πi

l
n(vt−x)aR

n + h.c.
]

. (3.41)
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The aL,R
n ’s are bosonic annihilation operators. Π̂ and Q̂ are canonically conjugate to the

periodic variables φ0 and φ̃0, respectively. Hence their eigenvalues are quantized

Π̂ = m/R, Q̂ = 2πRSz, (3.42)

with Sz and m given in equation (3.27). Note, that φ̃ is also periodic with radius 1/2πR,

as already mentioned in equation (2.18). The Hamiltonian can now be written as[21]

H =
∫ l

0
Hdx =

v

2

∫ l

0



Π2
φ +

(

∂φ

∂x

)2




=
v

2

[

Π̂2

l
+
Q̂2

l
+

2π

l

∞
∑

n=1

n
(

aL†
n a

L
n + aR†

n aR
n

)

]

, (3.43)

with the resulting excitation spectrum

E =
2πv

l

[

1

2

(

2πR2 (Sz)2 +
m2

2πR2

)

+
∞
∑

n=1

n(mL
n +mR

n )

]

. (3.44)

The corresponding wave-function is

ei(Sz2πRφ̃0+mφ0/R)
∞
∏

n=1

(aL†
n )mL

n (aR†
n )mR

n |0〉. (3.45)

We see from equation (2.22) and (3.40) that site-parity takesm→ −m andmL
n ↔ mR

n .

It also multiplies the wave-function in equation (3.45) by eiπ(Sz+m).

Here and in what follows, we always measure parity relative to that of the ground-

state. The ground-state parity itself for an even length chain is (−1)l/2. At the point

Jz = 0, R = 1/
√

4π, this spectrum is that of free fermions with anti-periodic (periodic)

boundary conditions for even (odd) particle number. At the Heisenberg point Jz =

J , R = 1/
√

2π, the spin of left and right-movers is separately conserved and the z-

components are given by

Sz
L,R = (Sz ±m)/2. (3.46)

Sz
L,R are either both integer or both half-odd-integer for even length l. For odd length

one quantum number is half-odd-integer while the other one is integer valued (i.e. Sz
LSz

R

is half-odd-integer valued).
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lE
πv

Even periodic Odd Periodic

0 0+ 1
2

+
, 1

2

−

1 0+, 1−

2 1+, 1− 2 × (1
2

+
), 2 × (1

2

−
), 3

2

+
, 3

2

−

3 0+, 0−, 1+, 1−

4 2 × (0+), 0−, 1+, 2 × (1−), 2+ 4 × (1
2

+
), 4 × (1

2

−
), 3 × (3

2

+
), 3 × (3

2

−
)

5 2 × (0+), 0−, 2 × (1+), 3 × (1−), 2+, 2−

Table 3.1: Low energy spectrum for periodic boundary conditions. Relative parity and
total spin are given.

The energy can then be written as

E =
2πv

l

[

(Sz
L)2 + (Sz

R)2 +
∞
∑

n=1

n(mL
n +mR

n )
]

. (3.47)

This spectrum has SU(2)L × SU(2)R symmetry for this value of R. Note, for instance,

that for even l the lowest four excited states have total spin quantum numbers (sL, sR) =

(1/2, 1/2), corresponding to a degenerate triplet and singlet under diagonal SU(2). We

can take higher values of Sz
L and Sz

R and can always find degenerate states to group the

excited states into SU(2) multiplets. It is useful to divide the spectrum into four sectors

corresponding to sL integer or half-odd-integer and sR integer or half-odd-integer. We

the write (sL, sR) = (Z,Z) + (Z + 1/2, Z + 1/2) for l even and (Z,Z + 1/2) + (Z +

1/2, Z) for l odd where Z represents the integers. Parity interchanges all left and right

quantum numbers and multiplies wave-functions by (−1) in the (Z + 1/2, Z + 1/2) and

(Z + 1/2, Z) sectors. Although periodic boundary conditions for even or odd length

chains give identical equations (3.40 - 3.47), we can clearly distinguish two different fixed

points with different excitation energies for the two cases, Sz integer or half-odd-integer.

The states of the first six energy levels have been worked out in table 3.1 for the periodic

chain with even and odd length l at the Heisenberg point. We can test the predicted

spectrum numerically by exact diagonalization on a finite system with the algorithm in
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Figure 3.3: Numerical low energy spectrum for periodic, even length l = 20 spin chain.
The integer values El/πv of the numerically accessible states agree with the theoretical
predictions. The velocity vπ = 3.69 was used (see figure 3.5).

appendix B. To get rid of the logarithmic correction, we chose a next nearest neighbor

coupling of J2 = 0.24J as discussed above. Figures 3.3 and 3.4 show the excellent

agreement for all the states that were accessible with our algorithm (see appendix B).

Moreover, we can see in figure 3.5 that for this choice of the Hamiltonian, the corrections

to the spectrum E(l/π)v drop off exactly as 1/l2 as predicted in section 3.2 for periodic

boundary conditions.

3.3.2 Open boundary conditions

We now turn to the case of free boundary conditions on the spins corresponding to fixed

boundary conditions on φ, as in equation (3.30). The mode expansion is now:

φ(x, t) = 2πR
(

1

2
+ Sz x

l

)

+
∞
∑

n=1

1√
πn

sin(
πnx

l
)
[

e−iπnt/lan + h.c.
]

(3.48)
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Figure 3.4: Numerical low energy spectrum for periodic, odd length l = 19 spin chain
(vπ = 3.69).

with Sz integer (half-odd-integer) for l even (odd). The spectrum now takes the form[22]

E =
πv

l

[

2πR2 (Sz)2 +
∞
∑

n=1

nmn

]

. (3.49)

These results can also be derived when we consider a single left-moving boson on twice

the range −l to l and periodic or antiperiodic boundary conditions as in equation (3.33).

Note, that parity [i.e. x → l − x for fixed boundary conditions or x → −x for the

single boson] takes am → (−1)mam. It also multiplies wave-functions by (−1)S
z

for l

even (for odd l we only have site-parity, which does not change the phase of the wave

function). Thus

P = (−1)
∑

∞

p=0
m2p+1+Sz

= (−1)
∑

∞

p=1
pmp+(Sz)2 (3.50)

for l even. For l odd, (Sz)2 − 1/4 is even, so we may write a similar formula:

P = (−1)
∑

∞

p=1
pmp+(Sz)2−1/4. (3.51)
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Figure 3.5: Renormalization group flow towards the asymptotic spectrum of the periodic
chain. The lowest excitation gap 0+, 1− is fitted to l E = a + b/l2 for even lengths
(a = 3.69, b = 3.94).

At the Heisenberg point, this can be expressed in terms of the excitation energy

P = (−1)lEex/vπ, (3.52)

where the ground-state energy of πv/4l, for l odd, is subtracted from Eex; i.e. the

energy levels are equally spaced, and the parity alternates. Again we measure parity

relative to the ground-state, which is (−1)l/2 or +1 for an even or odd-length open

chain, respectively. There is now a single SU(2) symmetry at the Heisenberg point

corresponding to two possible sectors with total spin s integer for l even or s half-odd-

integer for l odd.

The states of the first six energy levels have again been worked out in table 3.2 for open

boundary conditions at the Heisenberg point. We can test this spectrum numerically with

the algorithm in appendix B and find excellent agreement at the critical point J2 = 0.24J



Chapter 3. Scaling and Finite Size Effects 28

lE
πv

Even Open Odd Open

0 0+ 1
2

+

1 1− 1
2

−

2 0+, 1+ 1
2

+
, 3

2

+

3 0−, 2 × (1−) 2 × (1
2

−
), 3

2

−

4 2 × (0+), 2 × (1+), 2+ 3 × (1
2

+
), 2 × (3

2

+
)

5 2 × (0−), 4 × (1−), 2− 4 × (1
2

−
), 3 × (3

2

−
)

Table 3.2: Low energy spectrum for open boundary conditions. Relative parity and total
spin are given.

(see figures 3.6 and 3.7). Figure 3.8 shows that corrections to the energy gaps E(l/πv)

now drop off as 1/l, as expected for open boundary conditions. Note, however, that this

is a length dependent renormalization of the velocity v, since the corrections come from

the boundary energy operator in equation (3.39). [see also the discussion before equation

(5.83)]. Therefore we estimate the velocity as vπ = 3.65 − 4.6/l in figures 3.6 and 3.7,

which gives good results.
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Figure 3.6: Numerical low energy spectrum for the open, even length l = 20 spin chain
(vπ = 3.42).

Figure 3.7: Numerical low energy spectrum for the open, odd length l = 19 spin chain
(vπ = 3.42).
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Figure 3.8: Renormalization group flow towards the asymptotic spectrum for the open
chain. The lowest excitation gap E(l/πv) is fitted to l E = a+ b/l for both even and odd
length chains (a = 3.65, b = −4.6).



Chapter 4

Impurities

We are now in the position to calculate the effect of any perturbation on the chain in

terms of our renormalization group and scaling analysis. Since we are able to express

perturbing spin operators in terms of the boson fields, we can determine the relevance of

the perturbation by looking at the corresponding scaling dimension.

Although a variety of possible perturbations can be considered[9], we will only consider

a local change of coupling constants between spins within the chain, which can model

many kinds of defects or impurities. We can obtain a more or less complete picture

by focusing on two simple cases, which can later be generalized with respect to their

symmetry properties: The perturbation of one coupling constant (“link”) within the

chain and the equal perturbation of two neighboring links. We will mainly consider

the isotropic model Jz = J unless otherwise indicated, since it seems to be the most

interesting case experimentally[4].

4.1 One Perturbed Link

A generic local lattice distortion in a quasi one-dimensional spin compound could be

described by the small perturbation of one link in a periodic chain J ′~Sm · ~Sm+1, as shown

in figure 4.9. Although such a perturbation has special link parity symmetry, we will argue

later that the following renormalization group analysis is valid for all local perturbation

that are not site parity symmetric. The S−
mS

+
m+1 + S+

mS
−
m+1 part of the interaction is

31
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J’

Figure 4.9: A quantum spin chain with one altered link.

given by

S−
mS

+
m+1 + S+

mS
−
m+1 ≈ i(−1)m(ψ†

LψR − h.c.), (4.53)

ignoring derivative terms of higher dimension as well as the uniform part which has the

same form as the free Hamiltonian density with scaling dimension d = 2. Using the

bosonization formula of equation (2.9) and rescaling the boson field following equation

(2.13), we obtain

S−
mS

+
m+1 + S+

mS
−
m+1 ≈ (−1)mconst. sin

φ

R
. (4.54)

which has scaling dimension d = 1/4πR2 and is therefore more relevant than the uniform

contribution for all positive values of Jz.

The uniform part of Sz
mS

z
m+1 is known to have a scaling dimension of d = 2 from the

free Hamiltonian. The staggered part, i.e. the cross-term between uniform and staggered

parts of Sz can be written in terms of the fermion currents:

[JL + JR] (m)
[

ψ†
LψR(m+ 1) + h.c.

]

+
[

ψ†
LψR(m) + h.c.

]

[JL + JR] (m+ 1) (4.55)

The individual terms can be written as a completely normal ordered four-Fermion oper-

ator together with an additional term from Wick-ordering of the form

JL(m)ψ†
LψR(m+ 1) → : ψ†

LψLψ
†
LψR : − i

2π
ψ†

LψR. (4.56)

We can ignore all normal ordered terms since they reduce to irrelevant derivative oper-

ators. After combining all remaining terms together, we obtain the same operator as in



Chapter 4. Impurities 33

equations (4.53) and (4.54), for all values of R

Sz
mS

z
m+1 ≈ (−1)mconst. sin

φ

R
. (4.57)

While this follows from symmetry at the Heisenberg point, it is not a priori obvious in

the general case. These results can also be obtained by using the bosonic representation

of the spin operators of equation (2.17) and the operator product expansion. In the bulk,

the operator in equations (4.54) and (4.57) corresponds to a staggered interaction. The

scaling dimension is given by d = 1/4πR2 and a staggered interaction is therefore relevant

for all positive values of Jz Such a staggered interaction may be induced by phonons,

which leads to the so called spin-Peierls transition to a spontaneously dimerized, ordered

phase.

Since this operator has a scaling dimension of d = 1/2 at the Heisenberg point, we

conclude that it is relevant even as a local perturbation. Under the presence of such a

perturbation, the energy corrections to the periodic chain spectrum should increase as

l∆E ∝
√
l as the cutoff is lowered according to the discussion in section 3.2. While this

establishes that the periodic chain fixed point is unstable under this perturbation, we

also know that a local perturbation should not affect the bulk behavior of the system.

In particular, we expect that correlation functions of points which are far away from

the impurity compared to their relative distance are not affected by the presence of the

impurity and can still be calculated by the field theory as presented in chapters 2 and

3. A reasonable conclusion to draw from this scenario is that the system renormalizes to

another, more stable conformal fixed point, which is characterized by a different boundary

condition, but uses the same field theory description. This is in analogy with the ideas

which were discussed in section 1.2 (see also figure 1.1).

In the case of one perturbed link, we can easily analyze where the periodic chain fixed

point will renormalize to. Since we expect a slightly weakened link to become weaker



Chapter 4. Impurities 34

under renormalization, the obvious guess for the stable fixed point is the chain with open

boundary conditions. A slightly strengthened link will grow as the cutoff is lowered, and

the two strongly coupled spins will eventually lock into a singlet which decouples from

the rest of the chain, so that we expect the stable fixed point again to be the open chain,

but now with two sites removed.

To test this assumption, we analyze the scaling dimension of a weak link across the

open ends. In the field theory, this is described by the product of two independent

boundary operators at the weakly coupled ends

Sz
1S

z
l ∝ ∂φL

∂x
(1)

∂φL

∂x
(l)

S+
1 S

−
l ∝ e4πiRφL(1)e−4πiRφL(l), (4.58)

where we have used the boundary condition in equation (3.32). Since the scaling dimen-

sions of independent operators simply add, we find that the Sz
1S

z
l operator has a scaling

dimension of d = 2 independent of Jz, while the S+
1 S

−
l part has a scaling dimension of

d = 4πR2 which is also irrelevant as a local perturbation for all positive values of Jz.

Thus, a weak link across the open ends renormalizes to zero. The open chain fixed point

is therefore indeed stable, and our assumptions above are consistent. At the Heisenberg

point all operators from a perturbation of one weak link across the open ends of a chain

have d = 2, and we expect that corrections to the open chain spectrum should flow to

zero as 1/l according to the discussion in section 3.2.

We can generalize these findings since the operator in equation (4.54) is always the

most relevant operator that can be produced by a local perturbation. A general pertur-

bation in the chain will therefore produce this operator unless special symmetries (e.g.

site parity) are present. Since relevant coupling constants will in general renormalize to

zero or infinity, we conclude that the periodic chain fixed point flows to the more stable

open chain fixed point as the temperature is lowered, if a local perturbation is present.



Chapter 4. Impurities 35

Figure 4.10: Flow away from the periodic chain fixed point due to one altered link for
an odd length chain with 7 ≤ l ≤ 23. The lowest excitation gap 1

2

+
, 1

2

−
is fitted to

lE = a l1/2, which is the predicted scaling.

At the open chain fixed point, decoupled singlets may also be left over, and the effective

length of the chain may be reduced by an even number of sites.

We can test the scaling analysis from above numerically by looking at the energy

corrections l∆E of the energy gaps if a small perturbation is present. Since we want

to determine the scaling exponents accurately, all numerical simulations were done with

a next nearest neighbor coupling J2 = 0.24J present, to avoid logarithmic corrections.

Perturbations from the periodic point should correspond to a scaling with l∆E ∝
√
l as

mentioned above, which is indeed the case as shown in figure 4.10. A weak coupling across

open ends of the chain should lead to corrections to the spectrum l∆E ∝ 1/l+ O(1/l2),

which is demonstrated nicely in figure 4.11.
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Figure 4.11: Renormalization group flow towards the open chain fixed point due to one
weak link for an odd length chain with 7 ≤ l ≤ 23. The corrections to the lowest
excitation gap 1

2

+
, 1

2

−
is fitted to l∆E = a/l + b/l2, exhibiting the predicted 1/l scaling

up to higher order.

4.2 Two Perturbed Links

Since the operator in equation (4.54) does not respect site parity, we expect fundamentally

different behavior for site parity symmetric perturbations. As a generic case of a site

parity symmetric perturbation, we will consider the equal perturbation of two neighboring

links in the chain as shown in figure 4.12. Since the operator in equation (4.54) is

alternating, we immediately find that the most relevant site parity invariant operator is

the derivative

d

dx
sin

φ

R
. (4.59)

Because the derivative increases the scaling dimension by one, this operator has scaling

dimension d = 1 + 1/4πR2, corresponding to d = 3/2 at the Heisenberg point. It is
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J’ J’

Figure 4.12: A quantum spin chain with two altered links.

therefore irrelevant as a local perturbation. The uniform parts of the interaction have

dimension d = 2 as discussed before and are even more irrelevant.

The situation at the open chain fixed point is completely different, however, because

the open ends are now coupled to an external spin-1/2. The corresponding boundary

operators at l

Sz
l S

z
imp ∝ ∂φL

∂x
(l)Sz

imp

S−
l S

+
imp ∝ e−4πiRφL(l)S+

imp (4.60)

now have scaling dimensions of d = 1 and d = 2πR2, respectively, since the impurity spin

is dimensionless. The boundary operators at x = 0 have corresponding expressions. The

coupling of open ends to an external spin is therefore found to be marginally relevant

at the Heisenberg point for anti-ferromagnetic coupling and marginally irrelevant for

ferromagnetic sign. We therefore expect the open chain to renormalize to the more

stable periodic chain if a site symmetric antiferromagnetic perturbation is present. The

chain effectively “heals” in this scenario.

These predictions can be tested numerically as before. Figure 4.13 shows the pre-

dicted scaling with 1/
√
l for site symmetric perturbations from the periodic chain which

correspond to the scaling dimension of d = 3/2 as discussed in section 3.2. Figure 4.14

establishes the marginally relevant scaling for two weak anti-ferromagnetic links of the

open ends to an additional spin, while the marginally irrelevant case of two ferromagnetic
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Figure 4.13: Flow towards the periodic chain fixed point for two altered antiferromagnetic
links. The 1

2

+
, 1

2

−
gap is fitted to lE = a/l1/2, which is the predicted scaling.

links is shown in figure 4.15. We can see that the logarithmic corrections increase and

decrease relative to the original coupling in the two cases. Since logarithmic scaling is

slow we have to also consider the irrelevant 1/l contribution in the two figures to obtain

a good fit. Although this three parameter fit is not entirely convincing, we can show that

the logarithmic contribution is essential to achieve a good fit as presented in figures 4.14

and 4.15. Even other three parameter fits which we tested cannot reproduce an equally

good fit without taking the logarithmic contribution into account.

4.3 Relation to Other Problems

Both link and site parity symmetric impurities that we have discussed above correspond

to special cases of models studied in the context of defects in one-dimensional quantum

wires[23, 24]. In these papers spinless fermions were considered, which are equivalent
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Figure 4.14: Flow away from the open chain fixed point for two weak antiferromagnetic
links. Corrections to the 1

2

+
, 1

2

−
gap are fitted to ∆E/E = (a+b/l+c ln l), demonstrating

relevant logarithmic scaling (ac > 0). The dotted line is the best fit for c = 0.

Figure 4.15: Flow towards the open chain fixed point for two weak ferromagnetic links.
Corrections to the 1

2

+
, 3

2

−
gap are fitted to ∆E/E = (a + b/l + c ln l), demonstrating

irrelevant logarithmic scaling (ac < 0). The dotted line is the best fit for c = 0.
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to the xxz spin chain by the Jordan-Wigner transformation. The Heisenberg model

corresponds to a particular value of the repulsive interaction. The flow of a single modified

link to the open chain fixed point corresponds to the perfectly reflecting fixed point[23].

The “healing” discussed here corresponds to resonant tunneling[24]. In that work, it was

necessary to adjust one parameter to achieve the resonance condition (even with exact

site-Parity maintained). This parameter, a local chemical potential at the impurity site,

corresponds to an external magnetic field term h Sz
0 at the impurity site. In the spin

problem this is naturally set to zero by spin-rotation symmetry or time-reversal. Thus

resonance (healing) occurs without fine-tuning in the spin chain.

The case of two equally perturbed links J ′ also has an interesting equivalent in the

two-channel Kondo problem[9], which has been realized independently in reference [25].

The description in the field theory language is completely analogous in the spin sector

of the Kondo problem if we identify the marginal coupling constants J ′ of the spins at

the ends to the impurity spin in figure 4.12 with the Kondo coupling. The operators in

equation (4.60) can be identified with the spin currents that couple to the impurity in the

Kondo effect. The two ends of the spin chain are effectively independent of each other

and can be regarded as being described by two independent fields which play the role

of the two spin channels in the Kondo effect. The central spin in figure 4.12 represents

the impurity spin in the Kondo case. The overscreened Kondo problem is known to

renormalize to a non-trivial intermediate coupling fixed point[26], which corresponds to

the healed chain. For higher impurity spin, we recover the normal underscreening of

the Kondo problem in the spin chain model as well. It is, however, important to realize

that the spins in the chain are not equivalent to the spins of the electrons in the Kondo

problem, although the boson theory describing them is identical. The Kondo problem

additionally has charge excitations which do not couple to the impurity and can therefore

be neglected.
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JK JRKKY JK

Figure 4.16: The equivalent spin chain model to the two impurity Kondo problem.

We can carry this analogy over to the single channel Kondo problem as well. In this

case, we imagine a semi-infinite spin chain with the open end coupled to the impurity

spin. As before, anti-ferromagnetic coupling J ′ is marginally relevant, and the stable

fixed point is the open end with one extra site added (i.e. coupling J ′ = J). This

corresponds to the strongly coupled fixed point in the Kondo effect. We see that we

recover the famous π/2 phase shift of the fermions according to equation (2.4). As in the

Kondo effect, the effect of the renormalization can be described by the so called fusion

with a s = 1/2 primary field[8]. For higher impurity spin we obtain the correct size of

the effective left-over spin s−1/2 at the strong coupling fixed point J ′ → ∞ as well, and

the usual underscreening of the Kondo problem is recovered[26].

Recently, it has been discovered that the two-impurity Kondo problem has an analogy

in a spin chain problem as well[8, 27]. In the equivalent spin chain model, two spin-1/2

impurities are coupled together with an RKKY coupling JRKKY , and each of the spins

is coupled separately to one of the open ends of the chain with a Kondo coupling JK

as shown in figure 4.16. In this case, both coupling constants are relevant in the weak

coupling limit, but a healed chain unstable fixed point JRKKY = JK = J separates the

two strong coupling stable phases. The two open ends of the spin chain now play the

role of the electron spin sectors at the two impurity sites in the Kondo problem. This

scenario is just another case of a link symmetric perturbation as discussed in section 4.1.

The two stable fixed points correspond to open chains with a possible decoupled singlet
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and two sites removed if JRKKY scales to infinity. From the analysis above, we conclude

that the non-trivial fixed point should be unstable with scaling dimension d = 1/2.

These analogies are very useful since the spin chain Hamiltonians can be treated with

a variety of numerical techniques, which might give some better insight in correlation

functions and the size of the screening cloud in the Kondo effect. Moreover, it is easy

to visualize non-trivial fixed points for spin chain problems, and additional fixed points

may be found by simply adjusting the corresponding coupling constants.



Chapter 5

Susceptibilities

Now that a good theoretical understanding of the effect of impurities is established,

it is necessary to make clear predictions on how this can be seen in an experiment. As

indicated above, a µSR experiment on quasi one-dimensional magnetic compounds seems

to be a good choice to observe the predicted effects. In this setup, we expect that the

temperature dependence of the effective susceptibility at the muon site will be different

from the results of a conventional susceptibility measurement due to the renormalization

of the induced perturbation. In section 5.4 we will present the idea of the experimental

setup in more detail. But before we can make any definite predictions for an experiment,

it is necessary to take a closer look at the susceptibility of the spin chain and the effect

of perturbations on this susceptibility in general. In this chapter we primarily discuss

the field theory predictions for the susceptibility, while most of the Monte Carlo results

are presented in chapter 6.

The local susceptibility χi in the z-direction at site i is given by

χi(T ) ≡ ∂

∂h
〈Sz

i 〉|h=0 =
∫ β

0
dτ
∑

j

〈Sz
j (τ)S

z
i (0)〉 =

1

T

∑

j

〈Sz
jS

z
i 〉, (5.61)

where h is the uniform magnetic field on the chain. We can drop the time dependence of

the expectation value, because the total spin-z Sz commutes with the Hamiltonian. We

also have set the Bohr magneton times the gyromagnetic ratio gµB and the Boltzmann

constant kB to one. The susceptibility is then measured in units of 1/J . This local

susceptibility will be different in the bulk and near a boundary since it is directly related

43
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to the correlation function. In some cases we will refer to the total susceptibility χtotal of

the chain, which is simply the sum of all local susceptibilities

χtotal ≡
∑

i

χi (5.62)

The following calculations assume that we are in the scaling limit T ≪ J , l ≫ 1, so

that the field theory analysis is valid. A “thermal length” is naturally defined by v/T ,

and the width of the boundary layer is given by v/TK , where TK has been mentioned in

section 1.2. The meaning of the thermal length will become clearer shortly in equation

(5.64). For our analysis, we require that the system size l is very large compared to all

other scales in the system, in particular compared to v/T , i.e. T l/v ≫ 1. The ultraviolet

cutoff can then always be reduced down to the temperature T .

5.1 Periodic Chain Susceptibility

Because the periodic chain is translationally invariant, the local susceptibility will be in-

dependent of the site index i. All spins in the chain therefore have the same susceptibility

χ, which defines the bulk susceptibility per site. Using equation (2.24) we find that the

sum over the Sz correlation function in equation (5.61) is given by

∑

j

〈Sz
jS

z
i 〉 =

−1

16π3R2

∫ l/2

−l/2
dx

(

1

(x+ vt)2
+

1

(x− vt)2

)

. (5.63)

This expression is useful for calculating the susceptibility of the free boson model, i.e.

ignoring all irrelevant operators of the theory. Note, that the alternating part in equation

(2.24) does not contribute when summed over and can therefore be neglected. To get a

finite temperature result, we first make a Wick rotation to imaginary time τ , which we

associate with the inverse temperature β. A conformal transformation of the space time

continuum onto a cylinder with circumference β and length l → ∞ then yields the finite
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temperature correlation functions according to equation (A.107)

x± vt→ x± ivτ → −ivβ
π

sin

[

(ix∓ vτ)π

vβ

]

. (5.64)

The bulk susceptibility for the free boson model is thus given by

χ =
β

16π3R2

∫ ∞

−∞
dx







[

vβ

π
sin

(

(vτ − ix)π

vβ

)]−2

+

[

vβ

π
sin

(

(vτ + ix)π

vβ

)]−2






.

(5.65)

The integral can be done by the change of variables: u = tan τπ
β

and w = −i tan ixπ
vβ

[28],

giving

I =
∫ ∞

−∞
dx

(

vβ

π
sin

(ix+ vτ)π

vβ

)−2

=
∫ 1

−1
dw

π(1 + u2)

vβ(u+ iw)
=

2π

vβ
, (5.66)

which is independent of τ or u as it should be since the total spin-z Sz is conserved. The

final result for the bulk susceptibility per site of the free boson model is therefore[29]

χ =
1

v(2πR)2
, (5.67)

which is independent of temperature. This expression agrees with the zero temperature

expressions from the analytical Bethe ansatz[12]. We can improve this formula for the

spin chain in the field theory treatment by using perturbation theory in the irrelevant

operators, which will give us temperature dependent corrections to this expression. We

know from conformal invariance that finite size scaling should be analogous to finite

temperature scaling upon identifying l = v/T , so that we can use the same analysis as

in section 3.2.

5.1.1 Contributions from the leading irrelevant operator

The first order contribution to the bulk susceptibility from the leading irrelevant oper-

ator cos(2φ/R) vanishes. The second order contribution is determined by our scaling
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arguments in section 3.2 and the scaling dimension d = 1/πR2, giving:

χ(T ) → 1

v(2πR)2
+ const. T 2(1/πR2−2). (5.68)

For 1/πR2 > 3, Jz < J/2 the exponent will get replaced by 2, because in this case TLTR

from equation (2.16) is the leading irrelevant operator. For Jz > J cos−1(π/5) ≈ .809J

we notice that the correction leads to an infinite slope at zero temperature.

At the Heisenberg point Jz = J, R = 1/
√

2π, we expect a logarithmic correction

according to section 3.2, because the leading irrelevant operator is marginal. These cor-

rections have been calculated by using the non-abelian bosonization of the spin chain[10],

in which the low energy effective field theory description is given by the k = 1 Wess-

Zumino-Witten (WZW) non-linear σ-model. The uniform part of the spin density is

given by the conserved current operators, ~JL, ~JR for left and right-movers:

~Sx ≈ ~JL(x) + ~JR(x). (5.69)

In the WZW model ~JL and ~JR are uncorrelated and their self-correlations are given by

〈Ja
L(τ, x)J b

L(0, 0)〉 =
δab

8π2(vτ − ix)2

〈Ja
R(τ, x)J b

R(0, 0)〉 =
δab

8π2(vτ + ix)2
. (5.70)

The leading irrelevant operator is marginal and is now given by

−8π2v√
3

g ~JL · ~JR. (5.71)

Using first order perturbation theory gives a correction to χ that involves four current

operators

χ =
1

2πv
+ vβ2 8π2g√

3

∫ l/2

−l/2
dx
∫ l/2

−l/2
dy〈[Jz

L + Jz
R](0)[Jz

L + Jz
R](x) ~JL · ~JR(y)〉. (5.72)
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Due to the fact that the left and right currents are uncorrelated, this expression factorizes

into a product of two two-point Green’s functions, one for left-movers and one for right-

movers according to equation (5.70). Using translational invariance, the spatial integrals

factorize into two independent integrals of the form of equation (5.66), giving

χ =
1

2πv
+ vβ2 8π2g√

3

∫ l/2

−l/2
dx
∫ l/2

−l/2
dy (〈Jz

L(0)Jz
L(y)〉〈Jz

R(x)Jz
R(y)〉

+〈Jz
R(0)Jz

R(y)〉〈Jz
L(x)Jz

L(y)〉)

=
1

2πv
+ vβ2 8π2g√

3





(

1

8π2

2π

vβ

)2

+

(

1

8π2

2π

vβ

)2




=
1

2πv
+

g

v
√

3
. (5.73)

Again, the correction is naively temperature-independent, since g is dimensionless. How-

ever, this formula can be improved by replacing g with g(T ), the effective renormalized

coupling at temperature T . By integrating the lowest order β -function, g(T ) is given

by[19]

g(T ) ≈ g1

1 + 4πg1 ln(T1/T )/
√

3
. (5.74)

Here g1 is the value of the effective coupling at some temperature T1. Both g1 and g(T )

must be small for this formula to be valid. We may write this more compactly, as

g(T ) ≈
√

3

4π ln(T0/T )
, (5.75)

for some temperature T0. Thus we obtain the leading T -dependence of χ

χ(T ) =
1

2πv
+

1

4πv ln(T0/T )
. (5.76)

As mentioned before, we can adjust g1 and T0 by introducing a next nearest neighbor

coupling J2, and at J2 ≈ 0.24J we expect T0 → ∞. However, for the model in equation

(1.1), Jz = J, J2 = 0, we expect a finite T0 and a logarithmic divergence of the slope at

T = 0.
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Figure 5.17: χ(T ) from the Bethe ansatz. χ(0) = 1/Jπ2 is taken from equation (5.67).

As shown in figure 5.17, we have calculated the complete bulk susceptibility curve

for this case by use of the numerical Bethe ansatz of Takahashi[3, 30]. The bulk sus-

ceptibility obeys Curie’s law for large temperatures and goes through a maximum at

T ≈ 0.640824J, χ ≈ 0.147/J before the slope starts to increase again below an inflection

point at T ≈ 0.087J . We will use this curve as the unperturbed reference point for our

Monte Carlo simulations, which of course give identical results for this case, but with

larger error-bars. The existence of the maximum has been known for a long time[31] and

is used in experiments to establish the one-dimensional characteristics and determine the

coupling strength J [4, 5]. Our calculations give an additional prediction of an inflection

point at T ≈ 0.087J , which might be observable in some very highly one-dimensional

materials.
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Figure 5.18: Field theory [equation (5.76), T0 ≈ 7.7J ] versus Bethe ansatz results for
χ(T ) at low temperature.

According to figure 5.18 our field theory predictions agree reasonably well with the

low temperature susceptibility behavior for a value of T0 ≈ 7.7J . The curve starts to

deviate from our first order calculation as corrections of order (1/ lnT )3 and T 2 become

important. The magnitude of these corrections are not known, but lnT0/T ≫ 1 should

be a sufficient condition for the validity of equation (5.76) which is consistent with figure

5.18. The divergent slope is not accessible by experiments, because of a finite ordering

temperature in quasi one-dimensional spin compounds, but the onset of this behavior

may have been observed in some cases[5].

The logarithmic scaling behavior has been observed before in numerical Bethe ansatz

calculations for finite size systems[19]. We can compare the result in the finite length
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Figure 5.19: Estimates for the effective coupling g from lowest order perturbation theory
correction to the finite-size energy of ground-state, first excited triplet state, first excited
singlet state[19] and to the susceptibility, using l ↔ v/T . The renormalization group
prediction of equation (5.75) is also shown.
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limit lT/v → 0 from reference [19] directly with our calculation in the finite temperature

limit lT/v → ∞ upon identifying l = v/T , which appears to be the appropriate relation

(see figure 5.19).

It is possible to continue the expansion in the irrelevant operators to higher orders in

perturbation theory which will give higher order corrections in T . In the limit lT/v ≫ 1

the system size is always much larger than the finite temperature correlation length, and

we expect that finite length corrections to the periodic chain susceptibility are exponen-

tially small in lT/v. Because we have translational invariance we can therefore write the

total susceptibility of the periodic chain as χtotal = lχ(T ), where χ is independent of the

system size l up to exponentially small corrections.

5.2 Open Chain Susceptibility

The situation is somewhat different for the open chain since translational invariance is

broken. In this case it is possible to have an additional impurity contribution to the total

susceptibility which is independent of length

χimp ≡ lim
l→∞

(

∑

i

χi − lχ

)

, (5.77)

where χi is now the local susceptibilities at site i of the open chain and χ is the bulk

susceptibility per site from the previous section. This impurity susceptibility comes from

local irrelevant operators as in equation (3.39) in the field theory, which will be discussed

in section 5.2.2. The boundary condition condition itself does not contribute to the

uniform part of the susceptibility and therefore does not affect the impurity susceptibility

as will be explained at the end of section 5.2.1. An impurity susceptibility is also present

for any local perturbation on the periodic chain, and if no local operators were present,

neither fixed point in the field theory would have an impurity susceptibility contribution.

(Note, that the open chain in the lattice model corresponds to the open field theory
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B

Figure 5.20: The open ends of the broken chain are expected to be more susceptible.

fixed point from section 3.3.2 only up to irrelevant operators and therefore always has an

impurity susceptibility).

It seems intuitively clear that the open chain will be more susceptible at the ends

than bulk spins in the periodic chain as indicated in figure 5.20. To calculate this effect,

we have to take into account that the correlation functions will be different near the

boundary as described in section 3.1.2 and that there will be a correction due to the

leading irrelevant operator in equation (3.39).

5.2.1 Contributions from the boundary condition

Let us first consider the effect of the boundary condition itself. Although the boundary

condition is not responsible for the impurity susceptibility as mentioned above, we do

expect that the correlation functions and therefore the local susceptibility will be affected.

According to equation (5.61) one index j in the expectation value 〈Sz
i S

z
j 〉 is always

summed over, so that the alternating part of the second operator Sz
j does not contribute

to the local susceptibility. Because the boundary condition relates left and right movers

according to equation (3.32), there is now however a possibility for a non-zero cross term

of the uniform part of Sz
j and the alternating part of Sz

i , which gives an alternating

contribution to the local susceptibility as a function of the site index i relative to the
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boundary. We therefore choose to separate the local susceptibility into a sum of an

alternating and a uniform part, corresponding to the alternating and uniform parts of

Sz(x) in equation (2.17):

χx =
1

T

∫

dy〈Sz(x)Sz(y)〉

=
1

T
〈{Sz

uni(x) + (−1)xSz
alt(x)}

∫

dySz
uni(y)〉

= χuni
x + (−1)xχalt

x (5.78)

This separation should be valid in the scaling limit, but at short distances it is of course

somewhat ambiguous (e.g. within a few lattice spacings of the boundary).

The corresponding expression for χalt
x can be non-vanishing, because it is now ex-

pressed in terms of a three point Green’s function (without the boundary condition, it is

a vanishing two point function). After expressing the cosine in equation (2.17) in terms

of exponentials and using equation (3.32) we find

χalt
x ∝ β

∫ ∞

−∞
dy

〈

e−i
√

2πφL(x,t′)ei
√

2πφL(−x,t′)∂φL

∂x
(y, t)

〉

∝ β
∫ ∞

−∞
dy

√
2x

(y + vt− x− vt′)(y + vt+ x− vt′)
, (5.79)

according to equation (A.108) with scaling dimensions d1 = d2 = 1/4 and d3 = 1 at the

Heisenberg point. Here, the index x measures the distance from the boundary in units of

the lattice spacing. We can evaluate this expression for finite T by using equation (5.64)

χalt
x ∝

∫ ∞

−∞
dy

√

vβ sinh 2πx
vβ

β sinh π
vβ

(y + x+ ivτ) sinh π
vβ

(y − x+ ivτ)

∝
∫ ∞

−∞
dy

√

vβ sinh 2πx
vβ

β(cosh2 π
vβ

(y + ivτ) + sinh2 π
vβ

(y + ivτ) − cosh 2πx
vβ

)
. (5.80)

This integral can be done if we set u = coth π
vβ

(y + ivτ), du = − π
vβ

dy
sinh2 π

vβ
(y+ivτ)

. The

final result is

χalt
x ∝

∫ 1

−1
du

√

vβ sinh 2πx
vβ

u2 + 1 − (u2 − 1) cosh 2πx
vβ
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Figure 5.21: The local susceptibility near open ends from Monte Carlo simulations for
β = 15/J .

∝ x
√

vβ sinh 2πx
vβ

. (5.81)

Note, that the alternating part may increase as we increase the distance x from the

boundary if we are at low temperatures. In particular at T = 0 we expect the alter-

nating part to increase exactly with
√
x, which seems very counter-intuitive. (Note,

however, that experimental systems always contain the exponential drop-off from finite

temperatures.) This surprising effect has been checked by Monte Carlo simulations using

the algorithm in appendix C. The local susceptibility as a function of distance from the

open ends is shown in figure 5.21 for β = 15/J .

Using this Monte Carlo data, we can extract the uniform and alternating parts as

shown in figure 5.22 (as mentioned before this is somewhat ambiguous very close to the

boundary). The alternating part fits the predicted form 0.52(x+2)/
√

β sinh 2π(x+ 2)/vβ

up to a constant α = 0.52 and a shift of two sites. This functional dependence holds
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Figure 5.22: The uniform and alternating parts of the local susceptibility near open ends
from Monte Carlo simulations for β = 15/J . We compare this data to the theoretical

prediction for the alternating part 0.52(x+ 2)/
√

β sinh 2π(x+ 2)/vβ.

rather well for all temperatures that were sampled.

It is important to notice that the uniform part of the susceptibility does not acquire

any change from the boundary condition in equation (3.32) because the uniform part of

Sz
i is a sum of left and right movers and not a product. In particular we can rewrite the

integral over the correlation function of the uniform part with the use of equation (3.32)

χtotal =
1

4π2R2

∫ ∞

0
dx
∫ ∞

0
dy

〈

∂φ

∂x
(x)

∂φ

∂x
(y)

〉

=
1

4π2R2

∫ ∞

0
dx
∫ ∞

0
dy

〈(

∂φL

∂x
(x) +

∂φL

∂x
(−x)

)(

∂φL

∂x
(y) +

∂φL

∂x
(−y)

)〉

=
1

2π2R2

∫ ∞

−∞
dx
∫ ∞

−∞
dy

〈

∂φL

∂x
(x)

∂φL

∂x
(y)

〉

(5.82)

which gives the same result as the periodic case in equations (5.63-5.67).
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5.2.2 Contributions from the leading irrelevant boundary operator

Although the local corrections due to the boundary condition are large, there will be

no impurity contribution to the total susceptibility since the alternating part does not

contribute under the integral and the uniform part does not change. This is in complete

agreement with the statement that the impurity susceptibility comes entirely from the

irrelevant boundary operators. In this section we will consider the contribution from the

leading irrelevant boundary operator in equation (3.39) with some unknown coupling

constant c. This boundary operator is present at each end, TL(0) and TL(l), but the two

operators are independent at the open chain fixed point and we may consider only the

operator at the origin and then generalize our findings for both ends.

The impurity correction in equation (5.77) to the susceptibility from TL(0) can be

calculated to first order with a simple trick, which has been used before in the context

of the Kondo problem[32]. The operator in equation (3.39) is proportional to the local

energy density, so that its effect to first order in perturbation theory is simply a length

dependent renormalization of the velocity v for any bulk quantity. In particular for the

bulk susceptibility to first order we can write

cv
∫ l

−l
dx
∫ l

−l
dy
∫ l

−l
dz

〈

δ(z)TL(z)
∂φL

∂x
(x)

∂φL

∂x
(y)

〉

→ c

l
v
∫ l

−l
dx
∫ l

−l
dy
∫ l

−l
dz

〈

TL(z)
∂φL

∂x
(x)

∂φL

∂x
(y)

〉

(5.83)

The integral over dz can now be reabsorbed to first order in the free Hamiltonian by

rescaling v → v(1 + c/l). In the thermodynamic limit, the effect for all translational

invariant quantities is then simply a rescaling of the temperature T → T/(1 + c/l) in

the partition function. In particular, the susceptibility per site can be calculated as a

function of the coupling constant c

χ(c, T ) =
1

T

∫

dx 〈Sz
xS

z
0〉c,T
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=
1

T

∫

dx 〈Sz
xS

z
0〉c=0,T/(1−c/l)

= χ

(

c = 0,
T

1 − c/l

)

1

1 − c/l

≈ χ+
χimp

l
. (5.84)

At T = 0 the correction corresponds to a shift cχ/l in the susceptibility per site. The

sum over all sites gives us the impurity correction to the susceptibility χimp ≈ cχ, which

is independent of length as it should be in the limit l → ∞ in equation (5.77).

Although this argument can give us the impurity correction to the total susceptibility,

it is not sufficient to predict the local corrections δχx due to the irrelevant operator in

equation (3.39). These can be calculated by doing first order perturbation theory in the

coupling constant c of the operator in equation (3.39)

δχx ∝ cβ2
∫ ∞

−∞
dy

〈

:

[

∂φL

∂x
(0)

]2

:
∂φL

∂x
(x)

∂φL

∂x
(y)

〉

, (5.85)

where we again only consider the boundary operator at 0 for simplicity. After replacing β

with an integral over dτ to take the proper time-correlations into account we can calculate

this expression by using the usual boson Green’s functions and Wick ordering:
〈

∂φL

∂x
(x+ ivτ ′′)

∂φL

∂x
(ivτ)

〉〈

∂φL

∂x
(y + ivτ ′)

∂φL

∂x
(ivτ)

〉

∝ (x− ivτ + ivτ ′′)−2(y + ivτ ′ − ivτ)−2. (5.86)

The finite temperature result for the local susceptibility correction can now be derived

from equation (5.64)

δχx ∝ cβ
∫ β

0
dτ

(

vβ

π
sin

iπ(x− ivτ + ivτ ′′)

vβ

)−2
∫ ∞

−∞
dy

(

vβ

π
sin

π(iy − vτ ′ + vτ)

vβ

)−2

∝ c
∫ β

0
dτ

(

vβ

π
sin

π(vτ − vτ ′′ + ix)

vβ

)−2

, (5.87)

where we also used equation (5.66). The integral over dτ gives −π cot[π(vτ − vτ ′′ +

ix)/βv]/v2β, which cancels for the given limits of integration and any finite x. For x = 0,
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however, we can get a non-zero value, which can be determined by doing the integral

over all x using equation (5.66). Therefore, the local correction to the uniform part of

the susceptibility is given by

δχx = cδ(x)χ. (5.88)

This result simply says that the impurity susceptibility χimp = cχ from equation (5.84) is

only added directly at the open ends, but we have to keep in mind that our field theory

analysis is valid only in the scaling limit so that we have to allow some finite width of

a few lattice spacings for the delta-function. In addition we still have the alternating

part from equation (5.81), which does not contribute when summed over x, but gives a

large local contribution. This picture agrees with the numerical findings in figure 5.22,

although the separation into the alternating and uniform part is somewhat ambiguous

right at the origin.

In chapter 4 we discussed some cases in which the boundary conditions did not only

correspond to the usual field theory fixed points, but also had sites removed or additional

decoupled impurity spins. In particular, the periodic chain with one strengthened link

renormalizes to the open chain with two sites removed. The impurity correction to the

susceptibility is now 2(c−1)χ, which may be positive or negative. Likewise, the unstable

fixed point in section 4.2 represents an open chain with a decoupled impurity spin. In

this case the impurity susceptibility has an additional Curie contribution proportional to

1/T from the decoupled spin.

5.3 Susceptibility Contributions from Perturbations

To study the effect of perturbations on the lattice Hamiltonian, it is useful to review

the renormalization group arguments which have been successfully applied in the Kondo

problems[32, 33]. These renormalization group arguments are directly related to the



Chapter 5. Susceptibilities 59

K
unstable stable

21

T/T = 1

Figure 5.23: Renormalization group analysis of the cross-over from an unstable to a
stable fixed point as the temperature is lowered.

discussion in section 1.2, which might be helpful in understanding the general ideas. At

the fixed points the system is completely scale invariant, but as soon as we introduce a

perturbation we expect that an energy scale TK is introduced, which simply corresponds

to the temperature where we expect the breakdown of perturbation theory. For stable

(unstable) fixed points the description of the free Hamiltonian is then approximately

valid for temperatures below (above) TK . If there is a renormalization from an unstable

to a stable fixed point, we expect the energy scales at the two fixed points to be related,

so that there is really only one energy scale TK that governs the cross-over.

In the case where a small perturbation creates all local operators near the fixed

point, we usually only have to consider the leading operator with the smallest scaling

dimension d, since all corrections due to the more irrelevant local operators vanish under

renormalization. We can then determine the relation between TK and the bare coupling

constant λ by a simple renormalization argument. According to the discussion in section
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3.2 we expect the breakdown of perturbation theory when λT d−1 becomes of order one

for a local perturbation, so that

T 1−d
K ∝ λ. (5.89)

For marginally relevant perturbations (i.e. bλ < 0) with d = 1 this formula is replaced

by TK ∝ e1/bλ due to equation (3.37). The cross-over from an unstable to a stable fixed

point is universal since it is only governed by one energy scale, and impurity corrections

should be functions only of the dimensionless ratio T/TK . This idea is illustrated in

figure 5.23, assuming that there is one relevant operator at the unstable fixed point and

one leading irrelevant operator at the stable fixed point. If we ignore all other higher

irrelevant terms the cross-over is described by one universal trajectory, which represents

the x-axis in figure 5.23. Each point on the x-axis is labeled by only one parameter T/TK

which is decreasing along the x-axis and all impurity corrections are functions only of

this parameter. In the limit T ≪ J we can write the impurity susceptibility as

χimp =
1

TK

f
(

T

TK

)

, (5.90)

where the factor of 1/TK has to be inserted for dimensional reasons. The other higher or-

der irrelevant operators are represented by the y-axis in figure 5.23 and can be neglected

for most purposes. Consider for example if we start close to the unstable fixed point, i.e.

with only a small relevant coupling constant as well as other arbitrary irrelevant coupling

constants as indicated by the trajectory (1) in figure 5.23. The irrelevant coupling con-

stants become small very quickly and the actual renormalization trajectory (1) follows

the x-axis very closely for several orders of magnitude in the parameter T/TK . In this

sense the cross-over function in equation (5.90) is universal. This equation is also useful

for an arbitrary perturbation which may start closer to the stable fixed point as indicated

by trajectory (2), corresponding to a larger value of TK . The trajectory still approaches

the universal cross-over function represented by the x-axis, but equation (5.90) is now
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valid only in an asymptotic region T/TK → 0.

This analysis fails if there is more than one leading irrelevant (or relevant) coupling

constant, since each coupling constant may set an independent cross-over energy scale.

In the case of two coupling constants c and λ with a leading scaling dimension d equation

(5.90) must be replaced by

χimp =
1

T
g
(

cT d−1, λT d−1
)

, (5.91)

This expression becomes equivalent to equation (5.90) if one of the coupling constants is

set to zero, which can be seen by using equation (5.89).

For the two-channel spin-1/2 Kondo problem the asymptotic behavior has been de-

termined to be[34, 35]

χimp ∝ ln(TK/T )/TK , (5.92)

for T ≪ TK . Curie’s law has to be recovered for T ≫ TK , so that χimp ∝ 1/T in

that regime. If the initial Kondo coupling J ′ is weak, equation (5.92) reduces to χimp ∝

ln(J/T )evπ/J ′

/J at low temperatures, which is less divergent than the unperturbed Curie

law behavior for any finite J ′. The scaling of TK with J ′ follows from the discussion

that lead to equation (5.89) and the fact that the corresponding operator is marginally

irrelevant (b = 1/vπ).

5.3.1 Two perturbed links

The case of two weak links of the spin chain is very closely related to the two-channel

spin-1/2 Kondo effect as discussed in section 4.3, and we therefore expect the same

logarithmic divergence as in equation (5.92) of the impurity susceptibility at low temper-

atures. Starting from the weak coupling limit J ′ → 0 equation (5.92) is valid for T ≪ TK .

In this limit we can keep only the most divergent part of the impurity contribution (i.e.
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drop any constant terms) which results in the relation

χimp ∝ ln
(

J

T

)

evπ/J ′

J
, (5.93)

since the marginal coupling constant of the “Kondo interaction” in equation (4.60) is

given by J ′ to first order. The complete analytic form of the cross-over function is

difficult to determine, but we can easily see that we have to recover Curie law behavior

χimp ∝ 1/T in the opposite limit T ≫ TK , corresponding to a nearly free impurity spin.

The divergent part of the impurity susceptibility is expected to come mostly from the

central “impurity spin” in figure 4.12, which is clear from the analogy to the two-channel

Kondo effect and the analysis when J ′ is small (i.e. when the “impurity spin” produces

a divergent Curie law susceptibility).

A small perturbation of two links from the periodic chain fixed point of δJ ≡ J − J ′

is the more interesting scenario for a µSR experiment. In this case there is no local

operator in the Hamiltonian at the unperturbed fixed point, and all local field theory

operators will have coupling constants of order δJ or higher. In this case we only have

to consider the leading irrelevant operator which is given in equation (4.59) with scaling

dimension of d = 3/2 at the Heisenberg point. We can use equation (5.89) to predict

the low temperature behavior of the impurity susceptibility for small perturbations δJ

on the lattice model. Since δJ produces the leading irrelevant operator to first order

λ ∝ δJ/J3/2 + O(δJ2) according to the analysis in section 4.2 we can write

χimp ∝ −δJ
2

J3
ln
(

T

J

)

, (5.94)

where the powers of J were inserted by dimensional analysis. This expression follows

directly from equations (5.89) and (5.92). Note, that we have inserted powers of J only

to relate coupling constants in the lattice models to coupling constants in the field theory

description with the correct units. However, J does not appear as an energy scale in the
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field theory description, because we lowered the ultraviolet cutoff all the way to the

temperature and J has been absorbed in the definition of the spin-wave velocity v.

In summary, the impurity susceptibility χimp increases monotonically with decreasing

temperature or increasing perturbation δJ .

5.3.2 One perturbed link

A similar analysis can be applied for the perturbation of one link from the periodic chain

δJ with the leading operator in equation (4.54) of dimension d = 1/2. By using perturba-

tion theory in the leading relevant operator with coupling constant of order λ ∝ δJ/
√
J

we see that the leading order correction to the susceptibility is proportional to δJ2/J .

This is because the first order contribution to the susceptibility 〈∂xφ∂xφ sinφ/R〉 has a

vanishing expectation value, which can be seen by equation (A.105). Since TK ∝ δJ2/J

according to equation (5.89), we conclude that the cross-over function in equation (5.90)

has an asymptotic behavior of f(r) → const/r2 as r → ∞. The simplest assumption for

small temperatures is f(0) = const.

There is one complication, however, which causes a problem near the open chain

fixed point, because there are now two dimension d = 2 leading irrelevant boundary

operators. The effect of the operator from equation (3.39) with coupling constant c

has been discussed above, but the operator from equation (4.58) must also be taken

into account, which has a coupling constant λ ∝ J ′/J2 for a weak link. The relative

magnitude of the two leading operators changes with J ′. For bare coupling constants

J ′ → 0, which correspond to the open chain fixed point, the energy scale is therefore

determined by two independent parameters c and J ′. Therefore, we have to consider the

more general case of equation (5.91). We can expand g to first order by using the notion

that both first order corrections are independent of temperature according to equation
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(5.84) and the fact that f(0) = const. The resulting relation is

χimp =
1

T
g(cT, λT ) → cχ+ const. J ′/J2 (5.95)

where χ is the bulk susceptibility per site and c is the coupling constant of the local

operator TL in equation (3.39). We have also used λ ∝ J ′/J2 and equation (5.84).

Equation (5.95) reduces to equation (5.90) as λ→ 0 or c→ 0.

These findings can be directly carried over to the case of a very large link J ′ → ∞,

which also corresponds to the open chain fixed point but with two sites removed. In

this case there is an effective virtual coupling of order J2/J ′ across the open ends, which

now determines the leading order of λ and the same analysis as above can be applied.

However, it is not clear if the impurity susceptibility is positive or negative for large J ′ as

discussed at the end of section 5.2.2, and therefore we cannot make any reliable scaling

arguments in this limit.

For a bare coupling constant δJ → 0, which corresponds to the periodic chain fixed

point, there is only one leading relevant operator with d = 1/2. Now, the energy scale is

determined by only one parameter λ ∝ δJ/
√
J According to equation (5.89) this energy

scale becomes smaller as we approach the periodic chain TK ∝ δJ2/J , which just repre-

sents an expected small cross-over temperature near the unstable fixed point. This has

a very interesting consequence for the zero temperature impurity susceptibility, because

equation (5.90) predicts χimp ∝ 1/TK ∝ J/δJ2, which means a large impurity suscep-

tibility close to the periodic chain. The sign of the overall constant of proportionality

cannot be determined, because we are in the open chain fixed point regime T < TK and

the two leading irrelevant operators may partially cancel. This large T = 0 impurity

susceptibility is of little experimental relevance, however, because as soon as the temper-

ature is increased beyond δJ2/J we find ourselves in the periodic fixed point regime, and

χimp ∝ TK/T
2 ∝ δJ2/T 2 which gives a small impurity susceptibility as expected.
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5.4 A Muon Spin Resonance Experiment

Now that we have a good understanding of the local and impurity susceptibilities, it would

be nice to find experimental evidence for the predicted effects. As we mentioned in the

introduction one possible experiment to consider is a Muon Spin Resonance experiment on

quasi one-dimensional spin-1/2 compounds, in which the muon would perturb the system

and also probe the system locally at the impurity site[36]. The following discussion will

focus on this particular experiment, but it would of course be possible to use the Monte

Carlo results in chapter 6 for other kinds of experiments.

5.4.1 Experimental Setup

Positive muons are relatively long living particles (τ ≈ 2.2 × 10−6 sec) which carry a

positive charge and a spin-1/2 and have about 200 times the mass of the electron. In a

µSR experiment, a low energy beam of muons is sent into the magnetic material to be

sampled. The beam is polarized, i.e. all muon spins are pointing in the same direction

perpendicular to a small applied magnetic field (see figure 5.24). The muons enter the

setup one at a time, and a timer is started for each muon. Once in the sample, the muons

quickly find chemically preferred sites, and the magnetic moment of the spin precesses in

the local magnetic field. Because weak interactions violate parity, the muon then decays

into a positron and two neutrinos in a way that the positron is most likely ejected in the

direction of the muon spin. The location where the positron hits one of the detectors

gives some information about the direction of the muon spin before the decay. Given

this direction and the time spent inside the sample, we can infer the strength of the local

magnetic field in which the muon precessed. Typically about 10,000-100,000 such events

per second can yield sufficient data within one or two hours. If a small external magnetic

field H is applied, this setup effectively measures the local susceptibility of the sample,
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Figure 5.24: Schematic Muon Spin Resonance setup: One Muon at a time enters through
the thin timer and stops inside the sample where its spin precesses. Decay positrons are
detected in the two counters.

weighted with a dipole interaction at the chemically preferred site of the muon.

Unfortunately, the impurity susceptibility is not necessarily directly related to the

µSR signal since the muon measures the local magnetic field ~B, which is the sum of the

dipole fields from all spin sites and the applied field ~H. The dipole moment at each site

j is proportional to the local susceptibility χj, so that an applied magnetic field in the

z-direction Hz results in a magnetic field ~B at the muon site

~B = Hz



ẑ +
∑

j

3r̂j(r̂j · ẑχj) − ẑχj

|~rj|3



 , (5.96)

where ~rj is the location of site j relative to the muon. The second term in equation (5.96)

is proportional to the so called Knight shift. The measured signal depends crucially on the

perpendicular distance d⊥ of the muon from the chain as shown in figure 5.25 as well as

on the direction of the applied field Hz relative to the chain. Although we determined the

z-component of the local susceptibility, this coordinate is not related to the orientation

of the chain. The field Hz can therefore be applied in any direction relative to the chain,

in particular parallel, perpendicular, or on a powdered sample. In general, it is useful to



Chapter 5. Susceptibilities 67

d j

d ⊥

µ+

jr

Figure 5.25: The location of the muon relative to the chain for the link parity symmetric
case.

define an “effective” susceptibility at the muon site which is given by the second term in

equation (5.96) divided by the applied magnetic field

χeff ≡
∑

j

χj
3(ẑ · r̂j)

2 − 1

|~rj|3
(5.97)

The different cases for the various field directions will be discussed in chapter 6, but

for simplicity in this section we consider only the effective susceptibility χeff at the muon

site for a powdered sample as an rough indication of the muon signal

χeff =
∑

j

χj

|~rj|3
, (5.98)

where we performed an integration over the solid angle in equation (5.97).

So far we have discussed how the muon is used as a magnetic probe in the system,

but a very important effect of the muon is of course the fact that it acts as an impurity

as well. Although we use the dipole interaction to probe the system, we do not expect

that this will produce a significant perturbation on the chain, since it is small compared

to the exchange interaction, the coulomb interaction, and even the interchain coupling.

The main effect of the muon therefore is a lattice distortion from inserting a positive
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charge in the system as shown in figure 5.25 for a link symmetric site. It is reasonable

to assume that the lattice distortion will drop off at least as fast as the derivative of the

coulomb force i.e. as 1/r3 and belongs to the same universality class as a short range

distortion. In cases where the muon binds directly to ions in the lattice or an electron

the distortion may be even more localized. The effect on the exchange interaction J can

only be roughly estimated by a previous experiment that observed a 20% shift in the

hyperfine levels under the influence of the muon[37], which indicates a distortion of the

orbitals and therefore a change of J of the same order of magnitude. Lattice distortions

due to the muon may be in excess of 30%[38]. But even small distortions are bound to

create large changes in J , since it is known from studies on MnO[39] that δJ/J can be

more than one order of magnitude larger than the lattice distortion δa/a, where a is the

lattice spacing.

The magnitude and range of the perturbation will vary from material to material. It

is therefore most appropriate to use a generic model for link and site parity symmetric

perturbations, corresponding to one or two equally perturbed links of various magnitude.

Although it seems unlikely that the effect of the muon will exactly correspond to one of

those two perturbations, it is reasonable to expect that it creates a symmetric pertur-

bation. All preceding calculations do not require the knowledge of the actual form of

the perturbation, but only refer to the leading operator, which is directly related to the

symmetry properties of the perturbation. The renormalization group arguments should

therefore be valid for any generic site or link parity symmetric perturbation of the muon.

Unfortunately, the muon will primarily probe the “non-universal” boundary region,

which is not accessible by the field theory analysis and does depend on the specific

form of the perturbation. As a first attempt to calculate the effective susceptibility

quantitatively, we consider the cases of either two equally or one perturbed isotropic

couplings. Depending on the results of the proposed experiment[36], further simulations
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may be appropriate. The Monte Carlo data for the µSR experiment in section 6.2 should

therefore be taken as a rough estimate of the predicted effects. The detailed signal of

an experiment may look different, but we expect that the size of the corrections to the

local susceptibility will be determined by the renormalization effects and the alternating

operator, both of which are large.

5.4.2 Field Theory Analysis

Let us first consider the site parity symmetric case, which is modeled by two adjacent,

equally perturbed links. We concluded that in this case the logarithmically divergent

part of the impurity susceptibility comes primarily from the local susceptibility of the

central “impurity” spin in figure 4.12. This followed from the analogy to the two channel

Kondo effect and should be true for small J ′ or for T > TK . Since this central spin is

also the closest to the muon we expect that the µSR signal is directly related to the

impurity susceptibility. The induced alternating susceptibility in the chain for small J ′

will be secondary because the affected sites are further away and the magnitude of δχi

will be smaller. Nevertheless, this alternating part is interesting from a theoretical point

of view and we expect interesting behavior in the local susceptibility from the Monte

Carlo simulations. For small coupling J ′ and temperatures T > TK we expect open

chain behavior with an induced alternating part from the boundary condition, which is

positive at the ends. The interesting effect occurs when we lower the temperature or

increase the coupling J ′ so that we approach the periodic chain fixed point. The central

impurity spin is then considered part of the chain, but still has a large local susceptibility

(i.e. a large 〈Sz〉 expectation value when a small magnetic field is applied). But since

the spin is now considered part of a periodic chain equation (2.24) is valid and this

large < Sz〉 expectation value propagates into the chain. In particular it induces a large

alternating part which is of opposite sign of that from the boundary condition, so that
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we should be able to observe a cross-over from a regime where the boundary alternating

part dominates to a regime where the induced alternating part from the impurity spin

dominates. This behavior is discussed again with the Monte Carlo data in section 6.1.3

and figures 6.35 - 6.38.

A similar analysis can be applied for the case corresponding to one weak link in

the chain. We now expect that the two sites connected by the weak link dominate the

Knight shift. Those two sites have a large contribution to the uniform part of the local

susceptibility which is directly related to the impurity susceptibility according to equation

(5.88). However, we now also have to consider the effect of the large alternating part from

equation (5.81), which is of similar magnitude at the two sites. We are somewhat saved

by the fact that there is no cancellation of the two parts in this case and the alternating

part adds to the uniform contribution, so that the muon signal is roughly related to the

impurity susceptibility. If the link is strengthened the effective susceptibility in equation

(5.98) is always decreased because the two closest sites in figure 4.9 lock into a singlet at

low temperatures. Their local susceptibility will therefore be lower and this behavior will

dominate the effective susceptibility at the muon site. In this case it is not even clear

if the impurity susceptibility (which involves a sum over the complete chain) should be

positive or negative as indicated at the end of section 5.2.2. The effect of the perturbation

on the effective susceptibility should be large in all scenarios.

Note, that only the uniform part of the local susceptibility is dependent on the bare

coupling constant J ′ while the alternating part is produced by the boundary condition

itself. The uniform part of the local susceptibility of the first few sites near the impurity

therefore should depend on the coupling constant J ′ while the alternating part far away

should be independent at a fixed temperature (provided that J ′ is small enough that the

open fixed point description is valid).
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Monte Carlo Results

The field theory treatment of the spin chain is very useful in predicting impurity effects

in quasi one-dimensional spin systems, but unfortunately this analysis cannot give us

any quantitative results for the experiments other than the scaling behavior in certain

limits. To tie the theoretical predictions to experiments it is therefore useful to have an

independent method of determining the quantitative effects of impurities. With the help

of the standard quantum Monte Carlo algorithm as described in appendix C we are able

to present these quantitative results, which can provide experimentalists with an initial

estimate of the magnitude of the effects and should also be helpful in separating out the

impurity contribution from other effects in the analysis of the experimental data.

6.1 Impurity Susceptibility Effects

Monte Carlo simulations always have an inherent statistical error associated with them.

In our case there is also a critical slowing down at low temperatures, so that the simu-

lations do not produce useful data for T < J/15 (see also appendix C). Although the

local susceptibilities and the µSR signal have been determined with reasonable accuracy,

the error bars of the impurity susceptibility are rather large. Since we have to sum all

local susceptibilities to calculate the overall impurity susceptibility, its error bars are

larger by a factor of the square root of the system size (i.e. one order of magnitude for

l ≈ 48 − 128). As an example, the temperature dependence of the open chain impurity

susceptibility and the local susceptibility correction (χ1 − χ) of the site closest to the

71
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impurity have been plotted in figure 6.26. The error bars of the local susceptibility are

much smaller, but unfortunately we can normally not extract the impurity susceptibility

directly from this quantity, because it also contains an unspecified alternating contri-

bution, which is apparently large. As predicted, the impurity susceptibility seems to

approach a constant positive value as T → 0. The local susceptibility at the first site

seems to be roughly related to this impurity susceptibility, but with smaller error bars.

The alternating contribution adds so that the signal at the first site is larger than the

uniform impurity susceptibility. However, the accurate determination of the zero temper-

ature impurity susceptibility is difficult, and the computer simulations for this quantity

can only give a trend and a consistency check of our analysis in sections 5.3.1 and 5.3.2.

Figure 6.26 gives a good estimate for the approximate error bars in general for the local

and impurity susceptibilities, respectively. To make the presentation of the Monte Carlo

data less confusing, the error bars of figures 6.27 - 6.38 in this section have been omitted

and should simply be taken from figure 6.26.

6.1.1 One weak link

Figure 6.27 shows the impurity susceptibility of an open chain which has been slightly

perturbed with a coupling J ′ across the open ends. The large error bars as given in

figure 6.26 make this Monte Carlo data not unambiguous, but the findings seem to be

consistent with equation (5.95) which predicts a change in the impurity susceptibility

proportional to J ′. We believe that the apparent crossing for some parameters J ′ is only

produced by the large uncertainties.

The more interesting case is a small weakening by δJ of one link from the periodic

chain. At intermediate temperatures TK < T < J the impurity susceptibility should be

proportional to δJ2 according to section 5.3.2. Figure 6.28 confirms an increase of the

impurity susceptibility in this temperature regime, but higher order irrelevant operators
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Figure 6.26: The open chain impurity susceptibility as a function of temperature. The
solid line is only drawn for visual guidance and does not necessarily reflect an accurate
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Figure 6.27: The impurity susceptibility for a small coupling J ′ across the open ends as
a function of temperature.

seem to alter the scaling dependence, which appears to be linear with δJ . Perturbation

theory in the lattice model actually does predict a linear dependence on δJ . The scaling

prediction with δJ2 comes from perturbation theory in the field theory Hamiltonian with

the leading relevant operator only, which does not seem to be valid at the intermediate

temperatures 0.3J < T < J . Other irrelevant operators [e.g. TL(0) from equation (3.39)]

become important in this regime, which do contribute to first order in perturbation theory

and also have coupling constants of order δJ . Hence, the linear change with δJ in the

impurity susceptibility is consistent with the field theory analysis.

For temperatures below the small cross-over scale TK ∝ δJ2/J we expect that the

impurity susceptibility should go as J/δJ2. If a negative proportionality constant is

assumed, the numerical findings are consistent with this prediction. However, our Monte

Carlo data is not good enough to give a reliable confirmation of the sharp cross-over at
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Figure 6.28: The impurity susceptibility for a small perturbation δJ of one link in the
chain as a function of temperature. The solid lines are only drawn for visual guidance
and do not necessarily reflect an accurate estimate.

very low temperatures as we approach the periodic chain.

6.1.2 Two weak links

As discussed in section 5.3.1 we expect a divergent impurity susceptibility as T → 0

for any finite weakening of two adjacent links. For small perturbations δJ , equation

(5.94) predicts a scaling of the impurity susceptibility with δJ2, which is consistent with

figure 6.29. However, the large error bars in figure 6.26 also make this Monte Carlo data

somewhat ambiguous. It is therefore instructive to look at the correction to the local

susceptibility of the central spin closest to the impurity in figure 4.12, because of the

smaller error bars associated with local susceptibilities. This central spin is equivalent

to the “impurity spin” in the Kondo problem and presumably carries the divergent part

of the impurity susceptibility. Figure 6.30 seems to indicate a saturation of the impurity
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susceptibility at TK ≈ 0.3J , δJ = 0.1J , which might be interpreted as cross-over from

a Curie-law behavior to a weaker logarithmic scaling. This would imply that the cross-

over temperatures for all other coupling constants considered are too small to observe,

because TK ∝ J/δJ2. This would indicate that the “healing” process as described in

section 4.2 is very slow, as might be expected from the dimensionalities of the leading

operators, which are only marginal relevant and only weakly irrelevant at the two fixed

points. Figure 6.30 also seems consistent with equation (5.94).

Figure 6.31 shows the impurity susceptibility for small bare coupling constants J ′

to the impurity spin. It is again instructive to look at the local susceptibility of the

“impurity spin”, which can be compared with the Curie-law behavior of a completely

decoupled spin as shown in figure 6.32. Since the cross-over temperature is much lower

than the lowest accessible temperature, we cannot observe the predicted behavior with

−evπ/J ′

lnT , but the Monte Carlo data certainly is consistent with this scaling function.

6.1.3 Alternating Parts

Predictions for the alternating part of the impurity susceptibility can be tested much more

easily, because it only involves local susceptibilities with much smaller uncertainties. The

functional dependence of the alternating part has already been confirmed in figure 5.22,

but it is interesting to note that the strong staggered behavior persists even for small

perturbations of one link in the periodic chain as shown in figure 6.33. In fact, we expect

the staggered part to be asymptotically independent of the bare coupling constant in

the limit T ≪ TK and x > v/TK , which is confirmed in figure 6.34. At T = J/15, the

staggered part is only very weakly dependent on J ′ as long as J ′ is small (which also

means v/TK is small). For perturbations of the order of J ′ ≈ 0.5J we find a different

amplitude at short distances from the boundary, but far away from the boundary all
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Figure 6.29: The impurity susceptibility for a small perturbation δJ of two links in the
chain as a function of temperature.
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Figure 6.30: The local susceptibility correction of the central spin closest to the impurity
for a small perturbation δJ on two links in the chain as a function of temperature.
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Figure 6.31: The impurity susceptibility for a small coupling J ′ of the open ends to an
impurity spin as a function of temperature.
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Figure 6.33: The local susceptibility as a function of distance from a weakened link
J ′ = 0.75J at T = J/15.

curves seem to follow a universal shape within the error bars (see figure 6.26 for an

estimate of the error bars of the local susceptibility).

For site parity symmetric perturbations, on the other hand, we expect the opposite

behavior in the limit T ≪ TK and x > v/TK , corresponding to no alternating part due

to the boundary condition. Unfortunately, we cannot test this behavior because of the

low cross-over temperatures, but we can observe a competition between the alternating

part due to the boundary condition (the “boundary contribution”) according to equation

(5.81) and the alternating part which has been induced by the impurity spin according

to equation (2.24) as discussed in section 5.4. The boundary contribution is positive at

the first site away from the impurity, while the induced alternating part from the central

spin is negative. The induced alternating part becomes stronger as the temperature is

lowered, but drops off fast with 1/x where x is the distance from the impurity. The



Chapter 6. Monte Carlo Results 80

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40 45 50

A
lte

rn
at

in
g 

P
ar

t o
f t

he
 lo

ca
l S

us
ce

pt
ib

ili
ty

Sites

J’=       0
J’=  0.1J
J’=0.25J
J’=  0.5J

Figure 6.34: The alternating part of the local susceptibility as a function of distance from
the weakly coupled link J ′ across the open ends at T = J/15.

boundary contribution decreases as J ′ → J , but always dominates for larger distances

from the impurity (unless T ≪ TK). This behavior is demonstrated in figures 6.35 - 6.38.

For bare coupling constants close to the open chain J ′ → 0 the boundary alternating

part completely dominates, but as we get closer to the periodic chain J ′ → J we only

see a small boundary alternating part far away from the impurity while the induced

alternating part dominates near the impurity site.

6.2 Muon Knight Shift

Since the measured Knight shift depends strongly on the direction of the applied magnetic

field we want to distinguish three cases of interest: field direction perpendicular or parallel

to the chain or a powdered sample. The signal also depends on the perpendicular offset

(distance) d⊥ of the muon from the chain as shown in figure 5.25, but generally it is
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Figure 6.35: The local susceptibility as a function of distance with the open ends coupled
with J ′ = 0.1J to an impurity spin at the first site at T = J/15.
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Figure 6.36: The local susceptibility as a function of distance with the open ends coupled
with J ′ = 0.25J to an impurity spin at the first site at T = J/15.
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Figure 6.37: The local susceptibility as a function of distance with the open ends coupled
with J ′ = 0.5J to an impurity spin at the first site T = J/15.
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Figure 6.38: The local susceptibility as a function of distance from two slightly weakened
links J ′ = 0.75J at T = J/15.



Chapter 6. Monte Carlo Results 83

sufficient to choose only two different values for d⊥ corresponding to one-half or one units

of lattice spacing in order to get a good impression on the impurity effects. The distance of

the individual sites from the muon along the chain dj is always taken to be either half-odd-

integer or integer values for link or site parity symmetric locations, respectively. Figure

5.25 shows the geometrical arrangement with the example of a link parity symmetric

location. We can simply use the effective susceptibility in equation (5.97) to derive the

expected muon signal from the local susceptibilities in the Monte Carlo simulations. Since

this effective susceptibility is to be compared with the unperturbed bulk susceptibility in

figure 5.17, we always consider χeff normalized by a geometrical factor γ, which is simply

obtained by setting all χj = 1 in equation (5.97)

γ ≡
∑

j

3(ẑ · r̂j)
2 − 1

|~rj|3
(6.99)

The case of the powdered sample has been discussed in section 5.4 where angular aver-

aging yielded equation (5.98). Using equation (5.97) we can immediately compute the

effective susceptibility at the muon site for the other two cases. If the field is applied

parallel to the chain, we find:

χeff =
∑

j

(

3d2
j/|~rj|2 − 1

) χj

|~rj|3
. (6.100)

where ~rj is the location of the spin at site j relative to the muon and dj is the horizontal

offset along the chain of site j from the impurity (i.e. |~rj| =
√

d2
⊥ + d2

j). The analogous

expression for an applied field perpendicular to the chain is

χeff =
∑

j

(

3d2
⊥/|~rj|2 − 1

) χj

|~rj|3
. (6.101)

Note, that the arithmetic mean of the expressions for the two field directions reduces

to the effective susceptibility of a powdered sample. We should mention that there is a

possible fourth case when the applied field is perpendicular to both the chain orientation
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Figure 6.39: The effective normalized susceptibility in a powdered sample for small per-
turbations on one link and d⊥ = 0.5 as a function of temperature.

and the vertical offset d⊥. In this case the normalized effective susceptibility reduces to

the effective susceptibility of the powdered sample in equation (5.98), so that we do not

need to discuss it separately.

6.2.1 One perturbed link

Figures 6.39 and 6.40 show the effective susceptibility at the muon site with a vertical

offset of d⊥ = 1/2 and d⊥ = 1 in units of lattice spacing, respectively, in a powdered

sample for a small perturbation on one link of the periodic chain. The error bars in figure

6.39 will serve us as an estimate for the relative error of the predicted muon signal in

figures 6.39- 6.73.

The maximum seems to be shifted to lower temperatures with increasing pertur-

bation, and the overall amplitude of the signal is increased. Apparently, the predicted
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Figure 6.40: The effective normalized susceptibility in a powdered sample for small per-
turbations on one link and d⊥ = 1 as a function of temperature.

renormalization of the weakened link is responsible for the observed effects. In particular,

we expect the contributions of both the impurity susceptibility and the alternating part

to increase as we lower the temperature as shown in figure 6.26. In addition the renor-

malization of the weak link across the open ends enhances this effect. These increased

susceptibility contributions at low temperatures are responsible for the shifted maximum

and the larger overall signal. In a µSR experiment, the location of the maximum as well

as the ratio of the maximum susceptibility to the low temperature susceptibility will give

an indication of the strength of the perturbation.

The opposite effect is observed when one link is strengthened as shown in figures 6.41

and 6.42. The maximum seems to be shifted to lower values and the overall amplitude

is reduced. This effect has to be attributed to the formation of a singlet by the two

strongly coupled spins. The observed upturn of the signal at low temperatures on the
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Figure 6.41: The effective normalized susceptibility in a powdered sample for one
strengthened link and d⊥ = 0.5 as a function of temperature.

other hand might be a renormalization effect of the small virtual coupling across the

open ends. When the perturbation is strong enough to produce bare coupling constants

that correspond to the open chain (i.e. J ′ small) a complete vanishing of the maximum

is observed as shown in figures 6.43 and 6.44. In this case the renormalization effects

dominate even at intermediate temperatures. All observed effects become weaker as the

distance d⊥ of the muon is increased, because bulk spins will influence the signal more

for larger distances d⊥.

If a magnetic field is applied perpendicular to the orientation of the chain the same

qualitative picture can be observed, as shown in figures 6.45 - 6.50. Equation (6.101)

indicates that the spins closest to the impurity are sampled much more, because the first

term drops off with 1/|~rj|5. Therefore, the effects which we observed for a powdered

sample are much more pronounced. However, the upturn of the signal for a strengthened
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Figure 6.42: The effective normalized susceptibility in a powdered sample for one
strengthened link and d⊥ = 1 as a function of temperature.
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Figure 6.43: The effective normalized susceptibility in a powdered sample for strong
perturbations on one link and d⊥ = 0.5 as a function of temperature.
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Figure 6.44: The effective normalized susceptibility in a powdered sample for strong
perturbations on one link and d⊥ = 1 as a function of temperature.

link at low temperatures is not observed in figures 6.47 and 6.48 since this effect comes

from the second sites in the chain.

Figures 6.51 - 6.53 show the analogous effects for an applied field parallel to the

chain. The same features can be observed, but again with different magnitude (this

anisotropy effect might help to determine the actual location of the muon in the sample).

If, however, d⊥ is chosen so that the geometrical normalization factor γ for equation

(6.100) or (6.101) becomes very small, we can see very pronounced impurity effects.

Since the absolute signal of the unperturbed susceptibility is very small in this case,

small perturbation can produce big relative changes of arbitrary sign. As an example,

we simulated a vertical offset of d⊥ = 1 which reduces the geometrical factor γ for a field

parallel to the chain by a factor of 200 compared to d⊥ = 0.5. The resulting signal is

shown in figures 6.54 - 6.56 which shows completely different behavior than the previous
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Figure 6.45: The effective normalized susceptibility for an applied field perpendicular to
the chain, small perturbations on one link and d⊥ = 0.5 as a function of temperature.
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Figure 6.46: The effective normalized susceptibility for an applied field perpendicular to
the chain, small perturbations on one link and d⊥ = 1 as a function of temperature.
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Figure 6.47: The effective normalized susceptibility for an applied field perpendicular to
the chain, one strengthened link and d⊥ = 0.5 as a function of temperature.
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Figure 6.48: The effective normalized susceptibility for an applied field perpendicular to
the chain, one strengthened link and d⊥ = 1 as a function of temperature.
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Figure 6.49: The effective normalized susceptibility for an applied field perpendicular to
the chain, strong perturbations on one link and d⊥ = 0.5 as a function of temperature.
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Figure 6.50: The effective normalized susceptibility for an applied field perpendicular to
the chain, strong perturbations on one link and d⊥ = 1 as a function of temperature.
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Figure 6.51: The effective normalized susceptibility for an applied field parallel to the
chain, small perturbations on one link and d⊥ = 0.5 as a function of temperature.

figures.

6.2.2 Two perturbed links

Let us now consider the analogous cases for a site symmetric perturbation on two adjacent

links in the chain. The muon signal will be dominated by the strong local susceptibility

of the impurity spin for any weakened coupling 0 < J ′ < J . Monte Carlo simulations

confirm this picture for a powdered sample in figures 6.57 - 6.60 (see also figures 6.30 and

6.32). The measured effect again decreases with distance d⊥. The maximum can only

be observed for small perturbations and is shifted by large amounts even for J ′ = 0.9J

since the strong logarithmic impurity susceptibility dominates the behavior for any larger

perturbation. This behavior is much stronger than the corresponding cases for one weak

link, which may be somewhat surprising, since we expect healing of the chain in this
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Figure 6.52: The effective normalized susceptibility for an applied field parallel to the
chain, one strengthened link and d⊥ = 0.5 as a function of temperature.
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Figure 6.53: The effective normalized susceptibility for an applied field parallel to the
chain, strong perturbations on one link and d⊥ = 0.5 as a function of temperature.
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Figure 6.54: The effective normalized susceptibility for an applied field parallel to the
chain, small perturbations on one link and d⊥ = 1 as a function of temperature.
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Figure 6.55: The effective normalized susceptibility for an applied field parallel to the
chain, one strengthened link and d⊥ = 1 as a function of temperature.
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Figure 6.56: The effective normalized susceptibility for an applied field parallel to the
chain, strong perturbations on one link and d⊥ = 1 as a function of temperature.

scenario. However, as we saw in section 6.1.2 the healing process is very slow so that the

impurity susceptibility is initially Curie like and apparently becomes very large before

the renormalization effects contribute. Even after complete renormalization to a healed

chain the remaining impurity susceptibility is still logarithmic divergent.

A strengthening of two links also produces a significant change in the signal, corre-

sponding to a shifted maximum to higher temperatures, an overall lowered signal, and a

curious downturn at low temperatures as shown in figures 6.61 and 6.62. Although we

do not have any reliable renormalization arguments for this case, the Monte Carlo data

provides an interesting estimate for the µSR signal.

The Monte Carlo data for the two field directions perpendicular and parallel to the

chain in figures 6.63 - 6.73 give virtually identical results because it is always the impurity

spin that dominates the behavior. For a special choice of d⊥ = 1 and a field parallel to
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Figure 6.57: The effective normalized susceptibility in a powdered sample for small per-
turbations on two links and d⊥ = 0.5 as a function of temperature.

the chain, the geometrical factor γ is again very small. The effect of perturbations is

therefore artificially inflated as shown in figures 6.71 - 6.73. The effect is only large

relative to the unperturbed signal, but small in absolute terms.

6.3 Conclusions

In summary we have managed to analyze the interesting renormalization behavior of im-

purities in quantum spin-1/2 chains and their effects on the susceptibility (which turned

out to be quite exotic in some cases). Numerical simulations are always consistent with

our analysis and support the validity of the methods of boundary critical phenomena.

We were able to propose a µSR experiment on quasi one-dimensional spin-1/2 com-

pounds, which might be able to show some of the predicted effects. Since the impurity

effect of the muon will be strongly dependent on the particular material, we do not expect
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Figure 6.58: The effective normalized susceptibility in a powdered sample for small per-
turbations on two links and d⊥ = 1 as a function of temperature.
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Figure 6.59: The effective normalized susceptibility in a powdered sample for strong
perturbations on two links and d⊥ = 0.5 as a function of temperature.
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Figure 6.60: The effective normalized susceptibility in a powdered sample for strong
perturbations on two links and d⊥ = 1 as a function of temperature.
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Figure 6.61: The effective normalized susceptibility in a powdered sample for two
strengthened links and d⊥ = 0.5 as a function of temperature.
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Figure 6.62: The effective normalized susceptibility in a powdered sample for two
strengthened links and d⊥ = 1 as a function of temperature.
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Figure 6.63: The effective normalized susceptibility for an applied field perpendicular to
the chain, small perturbations on two links and d⊥ = 0.5 as a function of temperature.
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Figure 6.64: The effective normalized susceptibility for an applied field perpendicular to
the chain, small perturbations on two links and d⊥ = 1 as a function of temperature.
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Figure 6.65: The effective normalized susceptibility for an applied field perpendicular to
the chain, two strengthened links and d⊥ = 0.5 as a function of temperature.
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Figure 6.66: The effective normalized susceptibility for an applied field perpendicular to
the chain, two strengthened links and d⊥ = 1 as a function of temperature.
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Figure 6.67: The effective normalized susceptibility for an applied field perpendicular to
the chain, strong perturbations on two links and d⊥ = 0.5 as a function of temperature.
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Figure 6.68: The effective normalized susceptibility for an applied field parallel to the
chain, small perturbations on two links and d⊥ = 0.5 as a function of temperature.
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Figure 6.69: The effective normalized susceptibility for an applied field parallel to the
chain, two strengthened links and d⊥ = 0.5 as a function of temperature.
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Figure 6.70: The effective normalized susceptibility for an applied field parallel to the
chain, strong perturbations on two links and d⊥ = 0.5 as a function of temperature.
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Figure 6.71: The effective normalized susceptibility for an applied field parallel to the
chain, small perturbations on two links and d⊥ = 1 as a function of temperature.
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Figure 6.72: The effective normalized susceptibility for an applied field parallel to the
chain, two strengthened links and d⊥ = 1 as a function of temperature.
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Figure 6.73: The effective normalized susceptibility for an applied field parallel to the
chain, small perturbations on two links and d⊥ = 1 as a function of temperature.
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that the numerical simulations of our generic models will be able to describe the expected

signal in full detail. However, we are confident that our Monte Carlo data provides a

rough quantitative estimate of the effects and describes the generic renormalization be-

havior, which seems to depend only on the symmetry properties of the perturbation (e.g.

the shift of the maximum and the increase of the signal can most likely be observed for

most any link symmetric weakening of links in the chain.) The Monte Carlo simulations

can be extended for any material once the location of the muon and its effect on the

chain have been estimated.

The main conclusion which can be drawn from the field theory analysis as well as

from the numerical simulations is the fact that impurities have a surprisingly large effect

on the susceptibility in these one-dimensional systems. The impurity effects on the

measured Knight shift for a muon in the chain are of the same order of magnitude as

the unperturbed susceptibility and may even dominate the signal. On the other hand, in

µSR experiments on higher dimensional magnetic compounds the impurity effect of the

muon is neglected in most cases.



Appendix A

Field Theory Formulas

In this appendix we would like to give a short summary of the central (1+1) dimensional

field theory formulas, which have been used in this thesis. These formulas are explained

and derived in references [18] and [40] in a pedagogical way. Reference [10] may also be

of some use. We will not attempt to reproduce the derivation in a compressed form, since

it is not possible without assuming a common background.

Green’s functions of left- and right-movers always separate into a product, unless

they are related by a boundary condition. We can therefore look at the expressions for

left- and right-movers separately and simply add the scaling dimensions d = dL + dR.

The two-point boson Green’s function can be calculated directly from the infinite length

mode expansion:

〈φL(x, t)φL(0, 0)〉 = − 1

4π
ln i(x+ vt) + const.

〈φR(x, t)φR(0, 0)〉 = − 1

4π
ln i(x− vt) + const., (A.102)

where the constant is cutoff dependent. The Green’s function for the boson derivative is

given by the second derivative of equation (A.102)

〈

∂φL

∂x
(x, t)

∂φL

∂x
(0, 0)

〉

= − 1

4π(x+ vt)2

〈

∂φR

∂x
(x, t)

∂φR

∂x
(0, 0)

〉

= − 1

4π(x− vt)2
(A.103)

so that the usual fermion current scaling dimension d = 1 is recovered. Equation (A.102)
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also implies a scaling dimension of dL = γ2/8π for eiγφL , since

〈

eiγφL(x,t)e−iγφL(0,0)
〉

∝
〈

: eiγ[φL(x,t)−φL(0,0)] :
〉

eγ2〈φL(x,t)φL(0,0)〉

∝ e− ln i(x+vt)γ2/4π =
( −i
x+ vt

)γ2/4π

(A.104)

which is in complete agreement with bosonization in equation (2.9) and fermionic Green’s

functions. This equation can be generalized to

〈ei
∑

j
γjφL(zi)〉 ∝

∏

j 6=k

(

−i
zj − zk

)γjγk/8π

, (A.105)

where zi = xi + vti. This relation is useful for equation (3.35). We also see that single

powers of eiγφL have a vanishing expectation value.

From equation (2.10) it is clear that the commutator of the left- and right-moving

bosons is i/4 which is essential for the bosonization formulas (2.9) to work. For fixed

boundary conditions the commutation relation is modified at the origin because left-

and right-movers are related there. It takes some careful analysis of the finite length

mode expansion in equation (3.48) to obtain the correct value of the commutator at

the boundary. This calculation has been done by Eugene Wong (unpublished), and the

results are

[φL, φR] = 0, x = y = 0

i
2
, x = y = l

i
4
, else (A.106)

Conformal transformations are represented by analytic functions in the complex plane

ω(z), and chiral primary operators OL are defined as operators which transform as

OL(z) →
(

dω

dz

)dL

OL(ω), (A.107)
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where dL is the scaling dimension of OL. In this sense conformal transformations gener-

alize scale transformations, Lorentz transformations and translations all of which can be

represented by an analytic function ω(z) in the complex plane for (1+1) dimensions. One

application of equation (A.107) is the the transformation ω(z) = e2πz/vβ which gives the

well known result in equation (5.64) for finite temperature correlation functions. Note,

that ω is periodic in imaginary time with radius β.

Conformal invariance dictates a unique form for three-point Green’s functions of pri-

mary operators

〈

OL
1 (z1)OL

2 (z3)OL
3 (z3)

〉

∝ (z1 − z2)
−(d1+d2−d3)(z1 − z3)

−(d1+d3−d2)(z2 − z3)
−(d2+d3−d1)

(A.108)

where di, i = 1, 2, 3 are the scaling dimensions of the three primary operators OL
i and

zi = xi + vti.



Appendix B

Exact Diagonalization Algorithm

The algorithm we used starts from a normalized initial trial vector Ψ1 and successively

minimizes the energy expectation value in each iteration step by forming the linear com-

bination Ψ̃2 = bΨ1 +HΨ1. The explicit formulae are

b =
1

2∆2

(∆3 −
√

∆2
3 + 4∆2∆4), (B.109)

so that the normalized improved ground state is given by

Ψ2 =
bΨ1 +HΨ1

(b2 + 2b〈H〉 + 〈H2〉) 1

2

. (B.110)

where

∆2 = 〈H2〉 − 〈H〉2

∆3 = 〈H〉〈H2〉 − 〈H3〉

∆4 = 〈H2〉2 − 〈H〉〈H3〉 (B.111)

Here, we used the notation 〈Hn〉 = 〈Ψ1 |Hn|Ψ1〉. The new energy expectation value is

given by

〈Ψ2 |H|Ψ2〉 = 〈H〉 −
√

∆2
3 + 4∆2∆4

b2 + 2b〈H〉 + 〈H2〉 (B.112)

The algorithm terminates when we are close enough to the ground state so that the

energy cannot be lowered much further. Clearly, all symmetries of Ψ1 are preserved in

each step, so the algorithm can be used to find ground states in different sectors of H,

which are characterized by convenient quantum numbers.
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We decided to work in the orthonormal Sz-basis because the next nearest neighbor

coupling requires excessive computations in the valence bond basis[41], which keeps track

of the total spin. The basis states can be represented by integer bit strings, and the

Hamiltonian was implemented as a procedure that manipulates and then stores the bit

strings and their coefficients as they are created. For numerical convenience we used

the Exchange Hamiltonian, which differs by a factor of two and a constant from the

Heisenberg Hamiltonian in equation (1.1) with J = Jz. The various tricks to optimize

the algorithm include a hashing technique[15], extrapolation to the exact ground state,

and reusing previously created information on how to update basis states. The resulting

ground state can be used as an initial starting state for a similar Hamiltonian with only

slightly modified parameters. The extrapolation is based on the fact that the actual

ground state energy is approached exponentially and simply uses the last three iteration

values to find an improved result. This can give reliably at least two more digits accuracy.

In all problems the translational invariance is broken by the impurity. Taking into

account the limited remaining available symmetries of our problem, we can handle only

about 22 sites on a SUN workstation (about 8 sites less than what can be done for a

periodic chain in the valence bond basis). Some calculations were done on a NEC SX3/44

supercomputer because supercomputers generally allow for about four more sites. Work-

ing in the valence bond basis with s = 0 and using translational and parity invariance we

can find the exact ground state to 8 digits accuracy of a periodic chain of 24 sites in only

15 seconds CPU time on a NEC SX3/44 supercomputer. This needs to be compared

to 20 min CPU time on a SPARCstation2 when working in the Sz-basis on the same

problem.



Appendix C

Monte Carlo Algorithm

The goal is to make predictions of measurements of physical quantities expressed in terms

of quantum mechanical operators at finite temperatures. The expectation value of any

operator A is given in terms of the partition function Z =
∑

k〈k|e−βH |k〉:

〈A〉 =

∑

k〈k|Ae−βH |k〉
Z

(C.113)

where the sum is over all basis states |k〉 of the system and β = 1/T . For example, the

local susceptibility at site i would be given by:

χi = β

∑

k〈k|
∑

j S
z
jS

z
i e

−βH |k〉
Z

= β〈
∑

j

Sz
jS

z
i 〉 (C.114)

To calculate these sums exactly, we would first need to diagonalize H in the Hilbert

space to express exp(−βH) and then sum over all eigenstates. Since the dimension of

the Hilbert space grows exponentially with the system size l, the exact diagonalization of

H cannot be done for more than N ≈ 30 spins as indicated in appendix B. In addition

we would have to sum over all eigenvalues to get a finite temperature expression.

To get around this problem of large Hilbert spaces we use the quantum Monte Carlo

method. We first transform the expression in equation (C.113) so that the exponential of

the Hamiltonian can be evaluated approximately by use of the Trotter formula. We can

split the Hamiltonian (1.1) into two parts H = He +Ho, where the two parts involve only

the links ~Si · ~Si+1 with i even or odd, respectively. The two parts are easily diagonalized

separately, but they do not commute. Although exp(−βH) 6= exp(−βHe) exp(−βHo),
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we can write an approximate (Trotter) formula for the expression in (C.113):

〈k|Ae−βH |k〉 ≈ (C.115)

∑

li

〈k|Ae−2βHe/m|l1〉〈l1|e−2βHo/m|l2〉〈l2| ..... |lm−1〉〈lm−1|e−2βHo/m|k〉

This approximation becomes exact in the limit m→ ∞. We have inserted m−1 complete

set of states |li〉 between each of the exponentials and we have to sum over all possible

combinations. While it is now relatively easy to compute the exponentials, we now have

the formidable task of summing over (2N)m possible configurations. Here we make use of

the principle of Monte Carlo integration: we statistically evaluate the sum by randomly

summing expression (C.115) over a lot of different configurations |li〉 and assume that

the average value will give us a good estimate of the complete sum.

This method is assisted by the fact that most configurations give a zero contribution

because the expectation values 〈li|e−βH |li+1〉 are only non-zero for states that obey certain

selection rules. In fact we can evaluate the sums by going between allowed configurations

by using “moves” in configuration space which explicitly obey the selection rules. By just

using two different “moves” we can reach any allowed configuration, which is sufficient

to assure a complete sampling.

Furthermore, by assigning each “move” from an old configuration to a new one a

probability which is proportional to the change in the exponential

〈newi|e−βH |newi+1〉
〈oldi|e−βH |oldi+1〉

we automatically take care of evaluating the expression (C.115) without having to weigh

each contribution separately. This method is called importance sampling. The physical

idea is that the system spends most time in configurations for which the partition func-

tion Z is large. After a certain number of moves we can make a “measurement” of a

quantity by applying the corresponding operator A on the given configuration. Successive
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measurements may not be completely independent of each other unless a large number

of moves have been made. Just like in a physical system, the measurement of a quantity

A has a statistical distribution, and the mean would correspond to the expectation value

〈A〉 in equation (C.113).

The only approximation we have made corresponds to equation (C.115), where a

larger m will yield better results. Fortunately, it is known[42] that the measurements of

〈A〉 will have a leading correction of order 1/m2, so that we can extrapolate analytically

to the infinite m limit. This result follows directly from the accuracy of the Trotter

formula itself.

On the computer this method is implemented in a very straightforward way. As

indicated in equation (C.115) a complete configuration consists of m states, each of

which has N spins which can point up or down. A complete configuration is therefore

simply represented by an N × m array of boolean variables (“spins”). We select two

possible moves: local and global. The local move may flip 4 adjacent spins depending

on their configuration, and the global move may flip all spins at a given site, but for

all m states simultaneously. The probabilities of these moves are known for a given

temperature T = 1/β, and a good random number generator determines if a possible

move will be executed. To derive the detailed nature of the moves and probabilities it

takes some straightforward, but lengthy analysis of the physical system. This is omitted

here because it is rather technical and not important for the understanding of the method.

For more details see for example reference [42].

The update of the array is done in “sweeps” which consist of offering moves at all

possible locations in the array. The actual measurements of χi from equation (C.114)

take less time and are done after each sweep. Good results at lower temperatures require

larger arrays (generally 2m ≈ N > 10J/T is a good estimate). Typically the array has

dimensions of N = 48− 128 by m = 24− 64. Both m and N are even numbers, because
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periodic boundary conditions in the m direction are required. The number of offered

moves per sweep is roughly given by m×N .

Starting from any allowed configuration, a few thousand sweeps are done to bring the

system into equilibrium. To get one good average value we then did 2,000,000 sweeps

and measurements for a given array. For a choice of coupling and temperature, 3-5 of

those average values have to be taken at different values for m, so that a reasonable

extrapolation m → ∞ can be done. For one measurement point a total of roughly

3 × 1010 moves have to be checked and will be offered if possible. How many of these

possible moves will actually be executed strongly depends on the temperature. At higher

temperatures moves are more likely to be performed, which results in a faster update

and lower statistical errors.

It is obvious that the largest possible number of sweeps is desired, so that statistical

errors can be kept to a minimum. For this reason, I ported my program to the vector

supercomputer Fujitsu VPX240 of the HPC Centre, Calgary. The sweeps to update the

array take most of the computer time, and it is highly desirable to offer and perform

the moves in a vectorized way. This is not straight forward, because each move alters

the array and this may affect the outcome of a successive move. It took some extensive

analysis of the detailed nature of the moves to identify the dependencies, but finally it

was possible to separate the array into sublattices, so that all moves can be offered and

performed in vectorized loops.
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