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Abstract. The thermodynamics of finite open antiferromagnetic XXZ chains
is studied using field theory, Bethe ansatz and quantum Monte Carlo methods.
For the susceptibility a parameter-free result as a function of the number of sites
L and temperature T beyond the scaling limit is derived. The limiting cases
T/J � 1/L (J being the exchange constant), where the boundary correction
shows a logarithmically suppressed Curie behaviour, and T/J � 1/L, where
a crossover to the ground state behaviour takes place, are discussed in detail.
On the basis of this analysis we present a simple formula for the averaged
susceptibility of a spin-1/2 chain doped with non-magnetic impurities. We
show that the effective Curie constant has a highly non-trivial temperature
dependence and shows scaling in the low temperature limit. Finally, corrections
due to intrachain and interchain couplings and implications for experiments on
Sr2Cu1−xPdxO3+δ and related compounds are discussed.
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1. Introduction

The spin-1/2 Heisenberg chain was probably the first and is probably the most studied
example of a strongly correlated quantum system. The first foundations for exact solutions
date back to the early days of quantum mechanics [1] and large scale numerical simulations
were already being performed in the early 1960s [2]. Due to the interesting behaviour
of this simple model and the connection with many low dimensional antiferromagnetic
materials, the spin-1/2 chain is still heavily studied today. Some of the most fundamental
properties, such as the exact amplitude of the power-law correlation functions [3]–[5] and
the full temperature behaviour of the susceptibility [4, 6], have only been established
since the discovery of high temperature superconductivity led to renewed interest in
low dimensional antiferromagnetism. More recently, corrections from impurities and
boundaries have come into focus [7]–[26], which will also be a topic of this paper.

Boundary thermodynamics are especially relevant for experiments [27]–[31] since even
the most carefully prepared samples contain imperfections which effectively cut the chains,
and corrections to the thermodynamic limit become especially large at low temperatures.
In order to analyse the pure and the impurity contributions it is useful to define the finite
size corrections

δFFS(L) = F (L) − Lfbulk and δχFS(L) = χ(L) − Lχbulk, (1.1)

where F (L) (χ(L)) is the total free energy (susceptibility) of an open system with L sites
and fbulk (χbulk) is the free energy (susceptibility) per site for an infinite pure system.
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In the limit of L → ∞, δFFS and δχFS become L independent thermodynamic boundary
contributions, which will be denoted by FB and χB and discussed in detail later on.
However, in general, L will also take on small values in experimental systems according
to a random distribution.

It is well understood that finite chains with an odd number of sites L have doublet
ground states, which leads to a diverging Curie susceptibility at temperatures below the
first excitation energy T/J � 1/L [7]. Recently, it has been established that the boundary
susceptibility χB(T ) ≡ δχFS(T, L → ∞) is also divergent in the limit T → 0, albeit with a
Curie factor which has a logarithmic temperature dependence [10, 11]. For experimental
systems it is desirable to know the complete crossover between the two limits, which has
to be averaged according to a random distribution. If the impurity concentration is p and
we assume a Poisson distribution, i.e., that the impurity positions are uncorrelated, then
the average susceptibility becomes [12, 26]

χp = p2

∞∑

L=0

(1 − p)Lχ(L) = (1 − p)χbulk + p δχ̄FS, (1.2)

where δχ̄FS = p
∑

L(1 − p)LδχFS(L) and we have assumed that each impurity effectively
removes one site. The typical approximation in experimental papers of estimating
the impurity concentration by the low temperature Curie tail corresponds to setting
δχ̄FS = 1/(8T ) (assuming that each chain segment with odd length acts effectively like a
free spin 1/2). This, however, does not capture the full complexity of the problem and
might, in particular, lead to an underestimation of the impurity concentration by an order
of magnitude.

Several experiments have been studying the prototypical spin-1/2 chain compound
Sr2CuO3 [27, 28, 30, 31] and the doped system Sr2Cu1−xPdxO3 [29] where palladium serves
as a non-magnetic impurity. The analysis of the susceptibility even for the undoped
system has been hampered by large Curie-like contributions at low temperatures making
a detailed test of the theoretical predictions for the susceptibility of the pure system [6]
difficult. In [27, 28] it has been shown that these contributions can be largely suppressed
by annealing the samples. It therefore has been suggested that the Curie-like contribution
is caused by excess oxygen. Each excess oxygen atom would then dope two holes into the
chain. A detailed theoretical analysis of the susceptibility data [26] has shown that it
seems to be possible to consistently describe the data by assuming that these holes are
basically immobile and therefore effectively cut the chain into finite segments. A more
detailed understanding of these experiments is desirable because it might also shed some
light on the general issue of oxygen doping in cuprates, and in particular, in the high
temperature superconductors.

Our paper is organized as follows. In section 2 the effective field theory description
of the spin-1/2 chain is reviewed. In section 3 we calculate the free energy for an open
anisotropic Heisenberg chain of finite length at finite temperature by field theory methods
beyond the scaling limit. Next, we consider the limit L → ∞ with T/J fixed in section 4
where δFFS and δχFS as defined in (1.1) become well defined boundary quantities. In
section 5 we then discuss separately the isotropic model which is the most interesting case
from an experimental point of view. In the limit T/J � 1/L, considered in section 6, a
crossover to the ground state limit takes place and logarithmic corrections to the scaling
limit result are studied in detail. In section 7 we then derive a simple formula which can
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be used to fit the experimentally measured averaged susceptibility χp. We also discuss
here the temperature dependence of the effective Curie constant C ∼ Tδχ̄FS. In any real
material there will be residual couplings bridging between the chain segments (intrachain
couplings) as well as interchain couplings which will usually lead to some sort of magnetic
order at low temperatures. The effect of such couplings will be discussed in section 8. A
comparison between our theoretical predictions and experiments on Sr2Cu1−xPdxO3 [29]
is presented in section 9. Finally, we conclude and give a short summary in section 10.

2. Effective field theory for the spin-1/2 chain

The Hamiltonian for the spin-1/2 Heisenberg chain with open boundaries in an external
magnetic field h is given by

H = J

L−1∑

i=1

[Sx
i Sx

i+1 + Sy
i Sy

i+1 + ΔSz
i S

z
i+1] − h

L∑

i=1

Sz
i , (2.1)

with J > 0 for an antiferromagnetic system. Here, we have introduced an exchange
anisotropy Δ which is convenient to use for obtaining a low energy effective theory by
bosonization. Such a description is now well established [4, 32] and numerical simulations
have shown its applicability for L � 10 and low temperatures T � 0.1J , which is also
the most interesting regime for experiments. In the massless case, −1 < Δ ≤ 1, the
low energy fixed point of (2.1) is the Tomonaga–Luttinger liquid, which belongs to the
universality class of the Gaussian theory with the central charge c = 1.

Ignoring irrelevant operators the Hamiltonian is then equivalent to a free boson model:

H0 =
v

2

∫ La′

0

dx [Π2 + (∂xφ)2] − h

√
K

2π

∫ La′

0

dx ∂xφ, (2.2)

where a′ is the lattice constant. φ is a bosonic field and Π = v−1∂tφ the conjugate
momentum obeying the standard commutation rule [φ(x), Π(x′)] = iδ(x − x′). The
dependence of the Luttinger parameter K on anisotropy Δ is known exactly from the
Bethe ansatz

K =

[
1 − 1

π
cos−1(Δ)

]−1

, (2.3)

as well as the velocity [33]

v =
JK sin(π/K)

2(K − 1)
a′. (2.4)

In the following we will set the lattice constant a′ ≡ 1. In the following we will also set
J ≡ 1 so that whenever v appears it refers to a dimensionless number. In a few places
(e.g. section 7) we have, however, reinserted factors of J for clarity. Factors of a′ can be
easily restored in the final results by dimensional analysis. Using the mode expansion for
open boundary conditions (OBCs)

φ(x, t) =

√
π

8K
+

√
2π

K
Sz

x

L
+

∞∑

n=1

sin (πnx/L)√
πn

(
e−iπn(vt/L)an + eiπn(vt/L)a†

n

)
(2.5)
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the Hamiltonian can also be expressed in terms of bosonic creation and annihilation
operators an:

H0 =
πv

LK
S2

z +
πv

L

∞∑

n=1

n(a†
nan + 1/2) − hSz. (2.6)

The zero-mode operator Sz =
√

K/2π
∫ L

0
dx ∂xφ measures the total magnetization of the

chain and is therefore quantized to take on integer values for chains with an even number
of sites L and half-integer values for odd L.

Up to this point the effective model is easily solvable exactly. The partition function
can be obtained directly by summing over all eigenvalues:

Z0 =
∑

Sz

e−(πv/(KLT ))S2
z+(h/T )Sz

∞∏

n=1

[
2 sinh

( πv

2LT
n
)]−1

= θ

(
e−πv/(KLT ),−i

h

2T

) ∞∏

n=1

[
2 sinh

( πv

2LT
n
)]−1

, (2.7)

where θ(q, u) is the elliptic theta function of the third kind, θ = θ3(q, u) =
∑∞

n=−∞ qn2
ei2nu,

for integer Sz (even L) and of the second kind, θ = θ2(q, u) =
∑∞

n=−∞ q(n+1/2)2ei(2n+1)u,
for half-integer Sz (odd L).

The free energy per site is then given by

f0 = −T

L

{
ln θ

(
e−πv/(KLT ),−i

h

2T

)
−

∞∑

n=1

ln
[
2 sinh

( πv

2LT
n
)]}

, (2.8)

and the susceptibility by

χ0 = − ∂2

∂h2

∣∣∣
h=0

f0 =
1

LT

∑
Sz

S2
ze

−(πv/(KLT ))S2
z

∑
Sz

e−(πv/(KLT ))S2
z

= − 1

4LT

∂2

∂u2

∣∣∣
u=0

ln θ
(
e−πv/(KLT ), u

)
. (2.9)

Note that χ0 has a simple scaling form as a function of LT [7]. The following limiting
cases are of interest:

χ0 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2

LT
exp

[
− πv

KLT

]
LT/v → 0, L even

1

4TL
LT/v → 0, L odd

K

2πv
± 2K2

v

LT

v
exp

(
−πK

LT

v

)
LT/v → ∞.

(2.10)

Here the plus (minus) sign in front of the second term in the last line corresponds to L
odd (even). This term represents the leading finite size correction to the thermodynamic
limit result χ0 = K/(2πv). In the limit T/v � 1/L on the other hand, the susceptibility
for a chain of fixed even length vanishes exponentially because it locks into its singlet
ground state, whereas χ0 for a chain of odd length exhibits a 1/T divergence due to its
doublet ground state.

If we were only interested in the qualitative behaviour we could stop at equation (2.9),
which in some cases is sufficient for agreement with experimental data [8]. However, the
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Figure 1. The scaling behaviour of the susceptibility as a function of LT/v in
equation (2.9) for the isotropic case Δ = 1,K = 1, v = π/2 (black bold lines) for
L even (upper panel) and L odd (lower panel). The symbols denote quantum
Monte Carlo data for chains of different lengths, obtained within the SSE loop
algorithm framework [34].

comparison with quantum Monte Carlo data in figure 1 clearly shows sizable deviations
from the scaling limit result. For more accurate predictions and the understanding of
impurity corrections it is therefore necessary to take the leading irrelevant operator into
account, which is given by [4, 32]

δH = λ

∫ L

0

dx cos(
√

8πKφ). (2.11)

The operator cos(
√

8πKφ) has scaling dimension 2K so this perturbation becomes
marginally irrelevant at the isotropic point K = 1. The next to leading irrelevant operators
at zero magnetic field are of the form ∼(∂xφ)4 and will be neglected in the following unless
explicitly stated otherwise. The coupling strength λ has been obtained exactly using the
Bethe ansatz [4] and is given in a particular normalization as discussed in detail later on
by

λ =
KΓ(K) sin π/K

πΓ(2 − K)

[
Γ (1 + 1/(2K − 2))

2
√

πΓ (1 + K/(2K − 2))

]2K−2

. (2.12)

At the isotropic point Δ = 1 (K = 1) where the interaction (2.11) becomes marginal, the
amplitude λ as given by (2.12) vanishes. Here λ has to be replaced by an RG-improved
coupling constant, and, in general, becomes a function of the different scales T, L, and h.
This will be discussed in detail in section 5.
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Generally, in systems with boundaries, there may be boundary operators in addition
to bulk interactions. However, as was pointed out in [13], in the absence of symmetry-
breaking external fields at boundaries, there are no relevant boundary operators for the
anisotropic Heisenberg chain. The leading irrelevant boundary operator7 has scaling
dimension 2 and is of the form δ(x)(∂xφ)2 [7]. This operator effectively leads to a
replacement of the length L of the system by some effective length L′ as will be discussed
in the next section.

3. Thermodynamics for a finite chain beyond the scaling limit

To calculate the free energy and susceptibility for an open XXZ chain with length L at
finite temperature T beyond the scaling limit (2.8), (2.9), the leading correction (2.11)
has to be taken into account. As this operator is irrelevant for 0 ≤ Δ < 1 it is sufficient to
use perturbation theory. This anisotropic regime will be considered here and in section 4.

In first-order perturbation theory we obtain

δf1 =
λ

L

∫ L

0

dx
〈
cos

(√
8πKφ

)〉
. (3.1)

This term has been considered in [10, 11, 25] in the limit L → ∞ and gives the leading
contribution to the boundary free energy. A bulk contribution, i.e. a term which scales
linearly with L at large L, occurs in second-order perturbation theory in λ [4] (see also
appendix A).

The expectation value can be split into an Sz part (zero mode) and an oscillator part:
〈
exp

(
±i

√
8πKφ

)〉
=
〈
exp

(
±i

√
8πKφ

)〉

Sz

〈
exp

(
±i

√
8πKφ

)〉

osc

=
〈
exp

(
±i

√
8πKφ

)〉

Sz

exp (−4πK〈φφ〉osc) , (3.2)

where we used the cumulant theorem for bosonic modes in the second line. Using the
mode expansion (2.5) we find

〈
exp

(
±i

√
8πKφ

)〉

Sz

=

∑
Sz

e±4πiSzx/Le−πvS2
z/(KLT )ehSz/T

∑
Sz

e−πvS2
z/(KLT )ehSz/T

(3.3)

and

〈φφ〉osc. =

∞∑

l=1

sin2(πlx/L)

πl

(
1 +

2

eπvl/(TL) − 1

)
. (3.4)

The zero-temperature part of (3.4) is divergent and we have to introduce a cut-off α with
dimensions of length, of order a lattice spacing. Doing so and using

∑∞
l=1 zl/l = − ln(1−z)

for |z| < 1 leads to
∞∑

l=1

sin2(πlx/L)

πl
e−απl/L = − 1

2π
ln(απ/L)

+
1

4π
ln
[(

1 − e2πix/Le−απ/L
) (

1 − e−2πix/Le−απ/L
)]

. (3.5)

7 Note that the critical dimension for a boundary operator in (1 + 1) dimensions is 1, whereas it is 2 for bulk
operators.
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Writing the exponential factor of the finite temperature part in equation (3.4) as a
geometric series [35] we find

1

π

∞∑

l=1

∞∑

n=1

(
1

l
− e2πixl/L + e−2πixl/L

2l

)
e−πvnl/(TL) =

1

π

∞∑

n=1

{
− ln

(
1 − e−πvn/(TL)

)

+ 1
2
ln
[(

1 − e2πix/Le−πvn/(TL)
) (

1 − e−2πix/Le−πvn/(TL)
)]}

. (3.6)

Combining equations (3.4), (3.5) and (3.6) gives

exp {−4πK〈φφ〉osc.} =
(απ

L

)2K [(
1 − e2πix/Le−απ/L

) (
1 − e−2πix/Le−απ/L

)]−K

×
∞∏

n=1

[(
1 − e2πix/Le−πvn/(TL)

) (
1 − e−2πix/Le−πvn/(TL)

)

(1 − e−πvn/(TL))
2

]−2K

=

(
2απ

L

)2K [(
1 − e2πix/Le−απ/L

) (
1 − e−2πix/Le−απ/L

)]−K

× sin2K
(πx

L

) η6K
(
e−πv/(TL)

)

θ2K
1 (πx/L, e−πv/(2TL))

. (3.7)

In the last step we have written the oscillator part in terms of the Dedekind eta function

η(w) = w1/24
∞∏

n=1

(1 − wn) (3.8)

and the elliptic theta function of the first kind

θ1(u, q) = 2q1/4 sin u
∞∏

n=1

(
1 − 2q2n cos 2u + q4n

) (
1 − q2n

)
. (3.9)

From (3.3) and (3.7) we now directly obtain the correction to the scaling form of the free
energy (2.8)

δf1 = 2λ̃
(π

L

)2K

η6K
(
e−πv/(TL)

) ∫ 1/2

0

dy
g̃
(
y, e−πv/(KLT ), eh/T

)

θ2K
1 (πy, e−πv/2TL)

× 22K sin2K (πy)
[(

1 − e2πiye−απ/L
)
× h.c.

]−K
, (3.10)

with

g̃ (y, q, w) =

∑
Sz

cos(4πSzy)qS2
zwSz

∑
Sz

qS2
zwSz

(3.11)

and λ̃ = α2Kλ. It is actually λ̃ which is given by equation (2.12), but we will identify
both in the following. Note that the integral in (3.10) is convergent for K < 1/2. In this
case the cut-off α can be dropped in the last line in (3.10) which then becomes equal to
1. For K > 1/2 we can isolate the cut-off independent part by subtracting the Taylor
expansion of the integrand up to sufficient order in y, and then taking α → 0.
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We will discuss this in detail in the following for the correction to the susceptibility
which is readily obtained from (3.10) and reads

δχ1 =
2λ

T 2

(π

L

)2K

η6K
(
e−πv/(TL)

) ∫ 1/2

0

dy
g0

(
y, e−πv/(KLT )

)

θ2K
1 (πy, e−πv/(2TL))

× 22K sin2K (πy)
[(

1 − e2πiye−απ/L
)
× h.c.

]−K
, (3.12)

where we have defined a new function for the zero-mode part

g0 (y, q) = −
∑

Sz
S2

z cos(4πSzy)qS2
z

∑
Sz

qS2
z

+

(∑
Sz

cos(4πSzy)qS2
z

)(∑
Sz

S2
zq

S2
z

)

(∑
Sz

qS2
z

)2 . (3.13)

Because of the modified zero-mode part, the integral is now convergent for K < 3/2 and
the last line can be set equal to one in this case again. For 3/2 < K < 5/2 we can
obtain a convergent integral, i.e. the cut-off independent part, by subtracting just the
first non-vanishing order in a Taylor expansion in y and setting α → 0 then. Noting that

lim
y→0

22K sin2K (πy) η6K
(
e−πv/(TL)

)

θ2K
1 (πy, e−πv/(2TL))

= 1 (3.14)

the cut-off independent part of (3.12) for 3/2 < K < 5/2 is given by

δχ1 =
2λ

T 2

(π

L

)2K
∫ 1/2

0

dy

{
η6K

(
e−πv/(TL)

)
g0

(
y, e−πv/(KLT )

)

θ2K
1 (πy, e−πv/(2TL))

−
2g2

(
e−πv/(KLT )

)

(2πy)2K−2

}
,

(3.15)

where

g2 (q) =

∑
Sz

S4
z q

S2
z

∑
Sz

qS2
z

−

(∑
Sz

S2
zq

S2
z

)2

(∑
Sz

qS2
z

)2 . (3.16)

Now we have to add again the first non-vanishing order in the Taylor expansion in y but
this time we keep the cut-off α giving us the non-universal contribution

δχnu
1 =

16π2λ

T 2

(π

L

)2K

g2

(
e−πv/(KLT )

) ∫ 1/2

0

y2 dy

[(2πy)2 + (απ/L)2]K
. (3.17)

Shifting the upper boundary of integration to infinity, we can evaluate the integral and
find

δχnu
1 =

π3/2λ

2T 2L3
g2

(
e−πv/(KLT )

) Γ(K − 3/2)

Γ(K)
α3−2K . (3.18)

The other non-universal correction stems from the irrelevant boundary operator
∼δ(x)(∂xφ)2. Including this term in the Hamiltonian (2.2) is equivalent to replacing
the length by some effective length L → L′ ≡ L + a. Using this effective length in the
exponentials in (2.9) and expanding to lowest order in a yields

δχ2 =
πva

KT 2L3
g2

(
e−πv/(KLT )

)
. (3.19)
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We see that this correction has the same form as (3.18). We therefore can consider a
in (3.19) as an effective parameter incorporating both corrections. In the thermodynamic
limit g2(e

−πv/(KLT )) → K2T 2L2/(2π2v2) and δχ2 → Ka/(2πvL). In this limit we can
compare the field theory result with a recent calculation of the boundary susceptibility
based on the Bethe ansatz [24, 25] leading to

a = 2−1/2 sin [πK/(4K − 4)] / cos [π/(4K − 4)] . (3.20)

Equation (3.12) for K < 3/2 or (3.15) for K > 3/2 taken together with (3.19) and
(3.20) is therefore a parameter-free result for the susceptibility of an open chain with
length L at temperature T to first order in the Umklapp scattering. In [26] it has been
shown by comparing with quantum Monte Carlo data that this formula does describe the
susceptibility of open chains for L � 10 and T/J � 0.1 very well. Note, however, that
the parameter a in (3.20) has poles at K = (4n + 3)/(4n + 2), n = 0, 1, 2, . . ., with an
accumulation point at K = 1. At these special points a contribution stemming from a
different irrelevant operator will also be divergent while having the same dependence on
temperature and length, and both terms taken together will give something finite. For the
limit L → ∞ this has been investigated in detail in [25]. In particular, it has been shown
in this limit that at K = 3/2 (Δ = 1/2) the two contributions (3.12) and (3.19) ‘conspire’
to produce a logarithmic temperature dependence of the boundary susceptibility.

4. Boundary contributions: the limit L → ∞ with T/J fixed

The boundary free energy can be obtained directly by starting with the integral (3.1) in the
limit L → ∞ and using either boundary conformal field theory [10] or the thermodynamic
limit result for the correlation function [11, 25]. Here we want to show that our more
general result (3.10) for a finite chain reduces to the known result in the thermodynamic
limit. First, we consider the limit L → ∞ for the function g̃ in (3.11). For x � L we can
replace the sums by integrals and find

g̃
(x

L
, e−πv/(KLT ), eh/T

)
≈ e−(4πKT )/(vL)x2

cos

(
2Khx

v

)
L→∞→ cos

(
2Khx

v

)
. (4.1)

We see that g̃ decays fast away from the boundary. If x ∼ L, on the other hand, we can set
x → L − x and because Sz is integer or half-integer cos(4πSz(L − x)/L) = cos(4πSzx/L)
and we get exactly the same result again. In the thermodynamic limit the two boundaries
therefore become independent and each of them yields the same contribution. To
perform the thermodynamic limit for the oscillator part it is easiest to go back to
equations (3.4), (3.5) and (3.6). We want to consider here only the case K < 3/2. In this
case the cut-off in the second line of (3.5) can be dropped, leading to

∞∑

l=1

sin2(πlx/L)

πl
e−απl/L ≈ 1

2π
ln

{
L (2 − 2 cos (2πx/L))1/2

απ

}

L→∞→ 1

2π
ln

{
2x

α

}
. (4.2)

Note that α will later be absorbed again into the coupling constant λ → λ̃ = α2Kλ. For
the finite temperature part we can replace the momentum sum in (3.6) by an integral,
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allowing us to perform the sum over n (‘Matsubara sum’) exactly:

1

π

∞∑

n=1

∞∑

l=1

(
1

l
− e2πixl/L + e−2πixl/L

2l

)
e−πvnl/(TL)

→ 1

π

∞∑

n=1

∫ ∞

0

dk

(
1

k
− e2ikx + e−2ikx

2k

)
e−(vk/T )n

=
1

2π

∞∑

n=1

ln

(
1 +

4T 2x2

n2v2

)
=

1

2π
ln

(
v

2πTx
sinh

(
2πTx

v

))
. (4.3)

Thus we find in the thermodynamic limit

FB = L δf1(L → ∞) = 2λ

∫ ∞

0

dx
cos (2Khx/v)

[(v/(πT )) sinh (2πTx/v)]2K
. (4.4)

This is the result obtained previously from boundary conformal field theory [10] and by
using the result for the correlation function in the thermodynamic limit in (3.1) [11, 25].
For K < 3/2 (Δ > 1/2) the integral is convergent and yields [25]

FB = λ Re

[
B

(
K + i

Kh

2πT
, 1 − 2K

)](
2πT

v

)2K−1

, (4.5)

where B(x, y) = Γ(x)Γ(y)/Γ(x + y). For K > 3/2 the integral (4.4) is divergent and a
cut-off has to be introduced again. Then, the cut-off independent part of the integral is
still given by (4.5) whereas the cut-off dependent terms are regular in h, T [25]. In the
following discussion we will neglect these regular terms. From (4.4) the boundary spin
susceptibility is easily obtained:

χB = −∂2FB

∂h2

∣∣∣
h=0

= −λ

(
K

v

)2

B(K, 1 − 2K)[π2 − 2ψ′(K)]

(
2πT

v

)2K−3

, (4.6)

with ψ′(x) = dψ(x)/dx. Note that for 1 < K < 3/2 (1/2 < Δ < 1), the boundary spin
susceptibility χB shows a divergent behaviour ∼ 1/T 3−2K , as temperature decreases. This
anomalous temperature dependence is also observed in the boundary part of the specific
heat coefficient given by

CB

T
= −∂2FB

∂T 2
= λ

(
2π

v

)2

(2K − 1)(2K − 2)B(K, 1 − 2K)

(
2πT

v

)2K−3

. (4.7)

We would like to stress that in the formulae (4.6) and (4.7) there is no free parameter, and
the pre-factors are exactly obtained. These divergent behaviours are physically understood
as follows. In contrast to the case for the bulk Heisenberg chain in which the ground state
is a spin singlet state, spin singlet formation in the vicinity of boundaries is strongly
disturbed. For the susceptibility, for example, we can write χB =

∫∞
0

χu
B(x) where χu

B(x)
follows from (4.4). Note that the local boundary susceptibility has also an alternating
part [18], which, however, does not contribute to χB. A detailed comparison of numerical
data for the local boundary susceptibility (consisting of the uniform and the alternating
part) and field theory has been presented in [24]. In figure 2, χu

B(x) is plotted for various
temperatures showing that the spins near the boundary are more susceptible than the
spins in the bulk. It should, however, be emphasized that the singular behaviours are
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Figure 2. The uniform part of the local boundary susceptibility χu
B(x) following

from equation (4.4) for K = 1.2 at different temperatures. The boundary
susceptibility χB is obtained by integrating over χu

B(x) leading to a 1/T 3−2K

divergence if K < 3/2.

not due to the presence of boundary operators, but interpreted as a consequence of finite
temperature corrections caused by bulk irrelevant interactions.

At zero temperature with a finite magnetic field, a similar singular behaviour appears
in the field dependence of the boundary spin susceptibility given by

χB(T = 0) = λ

(
K

v

)2

sin(πK)Γ(3 − 2K)

(
Kh

v

)2K−3

. (4.8)

The zero-temperature susceptibility can also be derived from the Bethe ansatz exact
solution by using the Wiener–Hopf method. This has been done in [24, 25] and agrees
with the expression above.

5. The isotropic case Δ = 1

At the isotropic point Umklapp scattering becomes marginal. Instead of using (2.11)
one can write the marginal perturbation in a manifestly SU(2) invariant form. The spin
operators are then represented as

�Si ≈ [ �J +�̄J ] + (−1)i�n,

where �J , �̄J are the left and right SU(2) currents, respectively, and �n denotes the staggered
part of the spin operator. The perturbation in this formulation becomes

δH =

∫
dx

2π

[
g‖JzJ̄z +

g⊥
2

(J+J̄− + J−J̄+)
]
. (5.1)

The small running coupling constants g‖, g⊥ fulfil a set of known renormalization group
(RG) equations [3, 4] and are in general functions of the different scales, T, L and h,
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involved. The perturbation (5.1) can be split into two parts: JzJ̄z ∝ Π2 − (∂xφ)2

and J+J̄− + J−J̄+ ∝ cos(
√

8πφ). The first term can be absorbed in the free electron
Hamiltonian (2.2) by a rescaling of the fields Π and φ. This leads to a renormalization of
the Luttinger parameter K → 1 + g‖/2 + O(g2) (see appendix B for details). With
this replacement in (2.9) we see that the susceptibility at the isotropic point in the
thermodynamic limit is now given by

χbulk(T ) =
1

π2

(
1 +

g(T )

2
+ O(g2)

)
, (5.2)

a result first derived in [6]. The second term leads in lowest order to a replacement
λ → −g⊥/4. More generally, the results for the anisotropic model derived in the previous
sections have to be expanded in powers of 1− 1/K and then re-expressed in terms of the
coupling constants g‖ and g⊥ [4]. For details the reader is referred again to appendix B.
Here we only want to give the main results.

First, we consider the isotropic limit of our first-order result for the boundary
susceptibility (4.6). This leads to

χ
(1)
B = − g⊥

12T
− g‖g⊥

8T

(
1

2
− Ψ′′(1)

π2

)
. (5.3)

The second-order result derived in appendix A also yields a contribution in quadratic
order in g:

χ
(2)
B ≈ g2

⊥
8T

· 0.11. (5.4)

Here the factor 0.11 stems from a numerical evaluation of the integral in (A.9) for K = 1.
With g‖ → g, g⊥ → −g we therefore obtain up to quadratic order in g

χB =
a

π2
+

g

12T
+

g2

8T

(
0.66 − Ψ′′(1)

π2

)
+ O(g3). (5.5)

Here g = g(T ) and is given by [4]

1/g + ln(g)/2 = ln (T0/T ) , (5.6)

with T0 =
√

π/2e1/4+γ where γ is the Euler constant. Note that the scale in the logarithm,
T0, is chosen according to the expansion of the bulk susceptibility. T0 is non-universal and
can be fixed differently to achieve the best possible agreement with the expansion of the
boundary susceptibility at the isotropic point. However, this is not important for χB as
it only influences subleading terms so we keep the scale as set by the bulk part in order
to have a single g in the formula for χ(L, T ) discussed in the following. A more detailed
discussion of this point is presented in appendix B.

In addition, we have added a contribution ∼Ka/(2πv) to (5.5) with some constant
a stemming from the boundary operator as in the anisotropic case. However, the
constant (3.20) obtained by Bethe ansatz in the anisotropic case does have an
accumulation point of singularities at K = 1 making it impossible to extract the value
at the isotropic point from this formula. If one considers, on the other hand, the integral
for the boundary susceptibility derived directly using the Bethe ansatz for the isotropic
case (see equation (36) in [24]), this task is difficult as well because the logarithmic
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Figure 3. Comparison between QMC results (dots) and the field theory
result (5.5). The black solid line corresponds to taking into account only the term
that is first order in g, the blue dashed line is the result with the second-order term
included, and the red dot–dashed line is obtained by adding a constant Ka/2πv
with a = 1.5 (K = 1, v = π/2). The QMC data for χB have been obtained by
subtracting the bulk susceptibility known from Bethe ansatz [6] from numerical
data for χ(L). The chain length L has always been chosen such that TL/v � 4.
In addition, the susceptibility has been calculated for lengths L and L + 1 and
then averaged to further reduce finite size effects (see also equation (5.8) and
figure 4 below).

contributions coming from the cut along the imaginary axis completely dominate. Indeed,
at low temperatures the constant contribution is less important than any of the logarithmic
terms coming from the expansion of χB outlined above. Nevertheless, this constant
becomes important again at higher temperatures (but still T/J � 1) as in the anisotropic
case. We will therefore use it as a fitting parameter when comparing to the numerical
data in figure 3. Note that a now effectively also partly incorporates higher order
logarithmic corrections to (5.5) as well as the constant coming from the boundary operator.
Furthermore, we must in principle replace Ka/(2πv) → (a/π2)(1 + g/2 + g2/4 + · · ·) (see
appendix B). However, because the logs dominate at low temperatures this merely leads
to a small rescaling of a which we will ignore because a is an ‘effective constant’ in any
case. Solving equation (5.6) we can also write the boundary susceptibility as

χB =
1

12T ln(T0/T )

(
1 − ln ln(T0/T )

2 ln(T0/T )
+ · · ·

)
. (5.7)

This means that even in the limit T/v � 1/L we find a Curie-like contribution albeit
with a ‘Curie constant’ which depends logarithmically on temperature.

If T/v becomes of order 1/L the susceptibility can no longer be split into a bulk and
a boundary contribution. However, we can still subtract the known bulk contribution
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Figure 4. QMC data for the susceptibility δχFS at temperature T = J/30 as a
function of chain length. These data have been obtained by subtracting the bulk
susceptibility known from the Bethe ansatz [6] from numerical data for χ(L).
The red squares (blue circles) correspond to even (odd) chain length. The lines
represent the approximation (5.8).

and define a quantity δχFS as in equation (1.1). In a first approximation, we can
use the thermodynamic limit result for χB, equation (5.5), and add the leading finite
size corrections stemming from the scaling part (the second term in the last line of
equation (2.10)). This leads to

δχFS(L, T ) ≈ χB(T ) ± 8L2T

π2
(1 + g) exp[−2LT (1 + g/2)], (5.8)

where the plus (minus) sign refers to chains of odd (even) length and we have replaced
K → 1 + g/2 with g determined by equation (5.6). A comparison between this formula
and QMC data is shown in figure 4. Note that equation (5.8) implies an almost perfect
cancellation of finite size corrections when calculating the susceptibility for lengths L and
L+1 and then taking the average. This property has been used to improve the numerical
data for χB presented in figure 3.

To obtain the result for χ(L, T ) at the isotropic point in general, we have to consider
both parts of the perturbation (5.1): first, we have to replace K → 1 + g/2 in the
exponentials of (2.9). For the correction (3.12) we can only obtain a result to first order
in g because we do not know the analytical solution of the integral and therefore cannot
easily expand it around K = 1. The result to first order in g is readily obtained by just
replacing λ → g/4 and evaluating the integral for K = 1. Now, however, the running
coupling constant g depends on two scales: the length L and temperature T . There is no
general solution of the renormalization group equations if two different scales are involved.
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Figure 5. Comparison for Δ = 1 between QMC results (symbols) and the field
theory result (lines) with a = 4 for chains of different length L.

At low enough energies, however, the smaller length scale will always dominate and the
running coupling constant becomes [4]

1/g + ln(g)/2 = ln
(√

2/πe1/4+γmin[L, v/T ]
)

. (5.9)

In addition, the constant a stemming from the boundary operator is still present and we
will use it again as a fitting parameter. Note that a now will be different from the one
obtained by fitting the numerical data for χB as it also partly incorporates the logarithmic
terms now taken into account only to lowest order.

To summarize, the susceptibility for the isotropic case is given by χ(L, T ) = χ0 + δχ1

with the replacements K → 1 + g(L, T )/2 + a/L in the exponentials of (2.9) and
λ → g(L, T )/4 in (3.12). A comparison between this formula and QMC data for chains
of different lengths is shown in figure 5. Here we find that a ≈ 4 works best describing
the numerical data over a wide temperature range and for different even and odd chain
lengths very accurately8.

The disadvantage of this formula for χ(L, T ) is that the integral in (3.12) has to be
evaluated numerically for each length and temperature considered. In the next section
we will derive a much simpler formula in the limit T/J � 1/L. We find empirically
that this formula describes the susceptibility over a much larger range of temperatures
than anticipated, making it useful for fitting experimental data without the necessity of
evaluating the integral in (3.12) and without having a free fit parameter.

8 In [26] we used a = 5.8. This difference is due to the fact that in this article we expanded in a, i.e., we used (3.19)
as well as a second-order solution for (5.6). Here we put a directly into the exponentials of (2.9) and solve (5.6)
numerically.
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6. The ground state limit: LT/v → 0

Next, we want to consider the limit LT/v → 0. We have already shown in equation (2.10)
that the scaling part of the susceptibility shows a Curie-like divergence if the chain
length is odd and an exponentially suppressed behaviour if it is even. For the first-
order correction (3.12) we will concentrate again on the case K < 3/2 where the
cut-off can be dropped. In the limit LT/v → 0 we find η(e−πv/(TL)) → e−πv/(24TL),
θ1(πy, e−πv/(2TL)) → 2e−πv/(8TL) sin(πy) and

g0

(
y, e−πv/(KTL)

)
→

{
0 L odd

−2 cos(4πy)e−πv/(KTL) + 2e−πv/(KTL) L even.
(6.1)

Here we have expanded g0 only to first power in the small parameter e−πv/(KTL). For
L odd the first non-vanishing contribution is second order. As the scaling part shows
a power-law divergence in this case, any exponentially small corrections can be safely
neglected in any case. For L even, on the other hand, they are important as the scaling
part is also exponentially small. In the even case we can now evaluate the integral and
find

δχ1(LT/v → 0) =

⎧
⎨

⎩

0 L odd

2λ

T 2

(π

L

)2K Γ(3 − 2K)

Γ(2 − K)Γ(3 − K)
e−πv/(KTL) L even.

(6.2)

Finally, let consider the contribution δχ2. For L odd g2(e
−πv/(KLT )) → 0 in lowest order

whereas g2(e
−πv/(KLT )) → 2e−πv/(KLT ) for L even. This leads to

δχ2 =

⎧
⎨

⎩

0 L odd

2πv

KT 2L3
e−πv/(KTL) · a L even.

(6.3)

For the susceptibility in the limit LT/v → 0 we therefore find

χ(LT → 0) =

⎧
⎪⎪⎨

⎪⎪⎩

1

4LT
L odd

2

LT
e−πv/(KTL)

[
1 + λ

βπ2K

L2K−1T
+

πv

KL2T
a

]
L even,

(6.4)

where β = Γ(3 − 2K)/[Γ(2 − K)Γ(3 − K)]. So corrections to the scaling limit result in
first order in e−πv/(TL) are only present in the case of even chain length. However, even in
this case these corrections are suppressed by additional powers of 1/(LT ). So one might
think that equation (6.4) is of purely academic interest. However, as we will show below,
it enables us to derive a simple formula for the susceptibility of the isotropic chain which
works over a much larger range of temperatures and lengths than anticipated.

In the isotropic case we have to replace K → 1 + g‖(L)/2 in the scaling part (2.9).
Furthermore λ → −g⊥(L)/4, so (6.4) at the isotropic point reads

χ(LT → 0) =

⎧
⎪⎪⎨

⎪⎪⎩

1

4LT
L odd

2

LT
e−π2/(2TL)

[
1 +

π2

4LT
g‖(L) − π2

4LT
g⊥(L) +

π2

2L2T
a

]
L even,

(6.5)

doi:10.1088/1742-5468/2008/02/P02015 17

http://dx.doi.org/10.1088/1742-5468/2008/02/P02015


J.S
tat.M

ech.
(2008)

P
02015

Thermodynamics of impurities in the anisotropic Heisenberg spin-1/2 chain

where v = π/2 has been employed. Note that with g‖ → g, g⊥ → −g, the replacement
K → 1 + g‖(L)/2 in the scaling part and the first-order contribution in λ → −g⊥(L)/4
produce exactly the same correction (π2/(4LT ))g(L) in the brackets in (6.5). Here g(L)
is given by (5.6) with L being the relevant scale in this limit. We want to stress that the
two terms yielding exactly the same contribution in the limit considered here contribute
very differently in the thermodynamic limit. Whereas the g‖ part leads to a correction to
the bulk susceptibility, the g⊥ part determines the boundary susceptibility.

Ignoring the contribution ∼a which comes from the boundary operator and is
suppressed by an additional power of L we can therefore obtain exactly the same expansion
by making the replacement 1/K → 1− g(L) in the exponentials of (2.9). That is, we can
absorb the first-order correction δχ1 into the scaling form. This leads to the formula

χ =
1

LT

∑
Sz

S2
z exp [−(π2/(2LT ))(1 − g(L))S2

z ]∑
Sz

exp [−(π2/(2LT ))(1 − g(L))S2
z ]

. (6.6)

This formula should be valid in the limit LT/v → 0 when only the ground state and the
lowest excited states contribute to the sum over Sz. One easily verifies that equation (6.5)
is indeed reproduced in this limit: for L odd we take only the states Sz = ±1/2 into
account and the correction 1− g(L) cancels out. For L even we consider the ground state
Sz = 0 and the first excited state Sz = ±1. Expanding in g(L) then leads to (6.5).

So starting from our general result for the susceptibility of finite open chains we have
found that the correction to the excitation energy of the lowest excited states with Sz ± 1
in the isotropic case is given by E → (πv/L)[1 − g(L)]. This agrees with the findings
in [14]. Corrections to higher excited states are not of such a simple form, and, in general,
it is therefore not possible to absorb these corrections into the scaling part.

Empirically, however, we find that (6.6) works quite well over a much larger range
of lengths and temperatures than one might anticipate. In figure 6 we compare this
formula again to QMC data. Although the agreement at higher temperatures where the
susceptibility becomes constant is not perfect, the errors in this region are only about 3%.

7. The averaged susceptibility and the effective Curie constant

In this section we want to discuss the averaged susceptibility of the isotropic Heisenberg
chain for a concentration of chain breaks p as defined in equation (1.2). Here we have
assumed that we have a completely random (Poisson) distribution of impurities. However,
we could obtain χp for any other distribution as well. χp can be calculated by using our
field theory results in section 5 for L � 10 and T/J � 0.1 in combination with exact
diagonalization or QMC results for shorter chains. This method has been used in [26]
to analyse susceptibility data for Sr2Cu1−xPdxO3+δ [29]. On the basis of our analysis of
the limits LT/v → 0 and LT/v → ∞ in the previous sections we want to derive here a
simple formula which allows us to determine the concentration of chain breaks by fitting
the measured susceptibility.

We have seen that there are no corrections to the scaling limit result in the limit
LT/v → 0 for odd chains. For even chains the susceptibility is exponentially small in
this limit in any case, so even chain segments practically do not contribute to the average
in (1.2). In the opposite limit we can write χ(L) = Lχbulk + χB. We now assume that the
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Figure 6. Comparison for Δ = 1 between QMC results (dots) and the field theory
result (6.6) in the limit LT/v → 0 (lines).

crossover occurs at some length Lc = γJ/T where γ is a crossover parameter which we
expect to be of order 1. For the average susceptibility we can therefore write

χp ≈ p2

4T

Lc∑

L odd

(1 − p)L + p2
∞∑

Lc

(Lχbulk + χB)(1 − p)L

=
p

4T

1 − p

2 − p

(
1 − (1 − p)γ/T

)
+ (1 − p)γ/T

[(
1 − p +

pγ

T

)
χbulk + pχB

]
(7.1)

and we use the field theory result for the bulk susceptibility [4]

χbulk =
1

π2

(
1 +

g(T )

2
+

3g3(T )

32
+
√

3πT 2

)
, (7.2)

where the T 2 term stems from the irrelevant operators with scaling dimension 4. The
boundary susceptibility χB is given by (5.5) with a = 1.5 as in figure 3. A comparison
between QMC data for χp and (7.1) with γ = 1 for various impurity concentrations is
shown in figure 7.

The impurity part and an effective Curie constant C can then be defined according
to equation (1.2) by

pδχ̄FS = χp − (1 − p)χbulk = p
C

T
. (7.3)

This effective Curie constant is shown in figure 8. Note that only in the extreme low
temperature limit is the usual Curie constant C → 1/4 · (1− p)/(2− p) ≈ 1/8 (half of the
chains contribute a Curie constant of 1/4 for p � 1) recovered. However, C(2−p)/(1−p)
as a function of T/p shows an almost perfect collapse (scaling) for different impurity
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Figure 7. Tχp for p = 0.01, 0.03, 0.05, 0.07, 0.1 from bottom to top. The black
dots are obtained by using QMC data for χ(L) and the lines represent the fitting
formula (7.1) with γ = 1.

Figure 8. The effective Curie constant as defined in equation (7.3) for p =
0.01, 0.03, 0.05, 0.07, 0.1 (from bottom to top) as a function of T/p.

concentrations if T/p � 1/2. At higher temperatures this scaling no longer holds because
the boundary contribution χB is not a scaling function in T/p. The non-trivial temperature
dependence of the effective Curie constant, in particular the finite temperature minimum,
and the scaling at temperatures T � p/2 provide a way to test this scenario experimentally.
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21L L11

J’ non-magnetic impurity

Figure 9. Two chain segments with length L1 and L2, coupled by a weak
intrachain coupling J ′ � J .

8. Interchain and intrachain couplings

In any real system there are residual couplings between the chain segments in the principal
chain direction (intrachain couplings). In addition, there are also perpendicular couplings
between the chains (interchain couplings) which at low enough temperatures will destroy
the one dimensionality of the system and usually induce some sort of magnetic order.
In Sr2CuO3, for example, the nearest neighbour Heisenberg coupling along the chain
direction (b axis) is estimated to be J ∼ 2200 K whereas the couplings along the other
axis are orders of magnitude smaller (Ja ∼ 5 K, Jc ∼ 10−3 K) [28]. Furthermore, it has
been pointed out that the next nearest neighbour coupling along the chain direction is
probably not that small, J2 ∼ 140 K [36]. This irrelevant coupling will only cause small
corrections to the susceptibility of an isolated chain segment by changing the marginally
irrelevant coupling constant λ. However, it induces a coupling between different chain
segments even when the nearest neighbour exchange J is absent due to a non-magnetic
impurity. Note that there is no frustration in this case and J2 just acts as an effective
coupling J ′ between the chain ends as shown in figure 9. Although the next nearest
neighbour coupling across an impurity can differ from the one across a magnetic ion, we
will assume that it is still of the same order of magnitude, i.e., J ′ ∼ J2.

The susceptibility of the weakly coupled chains is given by

χ =
1

LT

〈(
L1∑

i=1

Sz
1i +

L2∑

j=1

Sz
2j

)2〉
, (8.1)

with L = L1 + L2. Here Sz
1i (Sz

2j) denotes the z component of the spin on chain 1 (2) at
site i (j). For J ′ � J we can treat this coupling using perturbation theory. In zeroth

order this leads to χ(0) = (L1χ
(0)
1 + L2χ

(0)
2 )/L. In first order only the longitudinal part of

the coupling contributes and we obtain

δχ = − 2J ′

LT 2

〈
L1∑

i=1

Sz
1iS

z
11

〉〈
L2∑

j=1

Sz
2jS

z
21

〉

= − 2J ′

LT 2
〈Sz

1totS
z
11〉 〈Sz

2totS
z
21〉 = −2J ′

L
χ11χ21, (8.2)

where χl1 = ∂〈Sz
l1〉/(∂h) is the susceptibility of the boundary spin Sz

l1 and Sz
ltot =

∑Ll

i=1 Sz
li

(l = 1, 2). The extra factor of 1/T arises due to time-translational invariance and the
imaginary time integral in the first-order perturbation theory formula. Because of the
broken space-translational invariance, the local susceptibility is position dependent and
the boundary spins are more susceptible than the spins deep inside the chain. These
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effects have been studied in detail in [17, 18, 24]. As we are here just interested in an
order of magnitude estimate of the effect of intrachain coupling on χp we can replace the

susceptibility of the boundary spin χl1 by the average susceptibility per site χ
(0)
l . This

leads to δχ ≈ −2(J ′/L)χ
(0)
1 χ

(0)
2 . Assuming further that for an impurity concentration p

all chain segments have length L ∼ 1/p we find

δχp ∼ J ′pχ2
p. (8.3)

At T � pv we have χp ∼ p/(8T ). The correction (8.3) therefore becomes of order χp at
T ∼ J ′p2.9 For temperatures T � J ′p2 intrachain coupling can therefore be neglected.

Although first-order perturbation theory can give us the temperature scale where
intrachain coupling becomes important, it is not sufficient once this scale is approached.
This can be seen by a scaling analysis. We have Sz ∼ ∂xφ with scaling dimension 1.
In nth-order perturbation theory in the intrachain coupling J ′, the longitudinal part
of the coupling therefore yields χ(n) ∼ (TL)−1(J ′/TL2)n. We can therefore write the
susceptibility in scaling form:

χ ∼ 1

LT

(
1 +

J ′

L2T
+

J ′2

L4T 2
+

J ′3

L6T 3
+ · · ·

)
. (8.4)

Replacing again L ∼ 1/p we find for the averaged susceptibility

χp ∼ p

T

(
1 +

J ′p2

T
+

(
J ′p2

T

)2

+

(
J ′p2

T

)3

+ · · ·
)

. (8.5)

This means that at temperatures where intrachain coupling J ′ can no longer be neglected,
T ∼ J ′p2, perturbation theory in J ′ breaks down. At temperatures T � J ′p2 < Jp, on
the other hand, we can obtain an effective model by replacing all segments of odd length
by S = 1/2 spins. The couplings between these effective S = 1/2 will then be random
with a very broad distribution. According to Fisher [37] we might therefore expect that
a system of weakly coupled chain segments renormalizes at very low temperatures to the
infinite random fixed point. In any realistic system, however, there will be also interchain
couplings between the chain segments preventing the system from reaching this fixed
point.

An interchain coupling between two chain segments is shown in figure 10. In first-
order perturbation theory we obtain in this case

δχ(1) = − 2J̃

LT 2

n∑

k=1

〈
L1∑

i=1

Sz
1,iS

z
1,k

〉〈
L2∑

j=1

Sz
2,jS

z
2,n+1−k

〉

= − 2J̃

LT 2

n∑

k=1

〈
Sz

1totS
z
1,k

〉 〈
Sz

2totS
z
2,n+1−k

〉
= −2J̃

L

n∑

k=1

χ1,kχ2,n+1−k, (8.6)

where χl,k denotes the local susceptibility of the lth chain at site k. To simplify matters,
we consider the case of two chains with equal lengths L1 = L2 = L which completely
overlap, i.e., n = L. In this case equation (8.6) becomes

δχ(1) = −2J̃

L

L∑

k=1

χ1,kχ2,k. (8.7)

9 Note that there is a factor p missing in [26].
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L1

L

J
~

1

1

n

n 2

Figure 10. Two chain segments with length L1 and L2 have an overlap of n sites
and are coupled by an interchain coupling J̃ .

At T � pv we can again set χ1,k ∼ χp ∼ p/T which leads to δχ
(1)
p ∼ J̃p2/T 2. This

becomes of order χp at temperatures T ∼ J̃p. As J̃ is of order of the Néel temperature
TN this scale is completely irrelevant. However, for a system with open boundaries the
local susceptibility has also a staggered part [12, 18] which will contribute to (8.7). This
is a consequence of the Sz operator having a staggered part, Sz

k,st ∼ c(−1)k cos
√

2πφ,
where c is a constant. For a chain with odd length in the ground state limit, T � 1/L,
we find [12]

χst
k =

1

T
〈Sz

totS
z
k,st〉 ≈

1

T

∑

±
〈±|Sz

totS
z
k,st|±〉 ≈ (−1)k c

T

√
π

2L
sin

πk

L
, (8.8)

where |±〉 are the ground states with Sz
tot = ±1/2, respectively. This leads to δχ(1) ∼

J̃/(LT 2) ∼ J̃p/T 2 and therefore dominates compared to the contribution originating from
the uniform part of the local susceptibility. It becomes of order χp at temperatures T ∼ J̃ .

Finally, we want to consider the ‘clean limit’, T � pv. In this case, the Néel
temperature TN can be determined by treating the interchain coupling in mean field
theory. This leads to the well known condition

zJ̃χst(TN) = 1, (8.9)

where χst is the staggered susceptibility, i.e., the staggered response to the effective
staggered field originating from the other chains, and z is the coordination number.
Because χst(T ) ∼ 1/T we obtain that TN ∼ J̃ . The same condition for the breakdown of
one dimensionality in this limit is obtained by considering the contribution of the staggered
part of the Sz operator to the susceptibility in second-order perturbation theory in the
interchain coupling.

We therefore conclude that our results for the averaged susceptibility χp in the

previous sections are applicable as long as T � Min (J̃ , p2J ′).

9. Experimental situation

The best known realization of the spin-1/2 Heisenberg chain is Sr2CuO3. Here copper is
in a 3d9 configuration and has spin 1/2. The Heisenberg couplings between these spins are
spatially very anisotropic as already mentioned in the previous section. For T � Ja ∼ 5 K,
interchain coupling can therefore be neglected and the magnetic properties are described
by the one-dimensional isotropic Heisenberg model.
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The doped compound Sr2Cu1−xPdxO3 has been studied by Kojima et al [29]. Here
palladium has spin zero and therefore serves as a non-magnetic impurity. Impurity
concentrations from x = 0.5% up to x = 3% have been studied. This means that x2J2

with J2 ∼ 140 K is small even compared to Ja. In this material the limit where our theory
is applicable is therefore set by the interchain coupling, T � Ja ≈ 5 K.

The theoretical analysis of the susceptibility measurements on Sr2Cu1−xPdxO3 is
hampered by the fact that even the pure system Sr2CuO3 already shows Curie-like
contributions at low temperatures [27, 28]. It has been observed that these contributions
can be significantly reduced by annealing and two explanations have been offered: excess
oxygen might be present in the as grown compound. Most likely, each excess oxygen
would then dope two holes into the chain leading to two Zhang–Rice singlet type states
as in the high Tc compounds. Assuming that these holes are relatively immobile, they
effectively act as chain breaks. In this scenario the Curie type contribution in the ‘pure
compound’ is caused by the mechanism described in this paper. Indeed, it has been
shown [26] that the susceptibility data for the as grown crystal sample in [28] can be well
described by assuming a concentration of chain breaks, p = 0.6%. For the powder samples
studied by Ami et al [27] an alternative explanation was proposed by Hill et al based on
the observation that Sr2CuO3 decomposes into Sr2Cu(OH)6 under exposure to air and
water [38]. The copper spins 1/2 in Sr2Cu(OH)6 are only weakly coupled according to
Hill et al and can therefore induce a true Curie contribution as opposed to the more
complicated behaviour expected in the chain break scenario. It is, however, hard to see
how this could also explain the Curie-like contributions observed for single crystals by
Motoyama et al [28]. We therefore believe that the excess oxygen scenario is the most
plausible explanation in this case.

The Sr2Cu1−xPdxO3 samples investigated by Kojima et al have not been annealed
so we expect chain breaks due to excess oxygen in addition to the ones caused by
palladium. Furthermore, it can certainly not be excluded that there may indeed be
additional true paramagnetic impurity contributions caused by decomposition or other
mechanisms. This makes a thorough theoretical analysis very difficult. In [26] such
an analysis has been performed under the assumptions that true paramagnetic Curie
contributions can be neglected and that excess oxygen will lead to immobile holes acting as
additional chain breaks. The measured susceptibility χexp then consists of a temperature
independent part χ′ due to core diamagnetism and Van Vleck paramagnetism and χp

coming from the Heisenberg chains with impurity concentration p. Here p = x + δ has
to be considered as a fitting parameter consisting of the nominal palladium concentration
x and the concentration of additional chain breaks δ due to excess oxygen. A best fit of
the experimental data was obtained in [26] with the two parameters p, χ′ as displayed in
table 1. For the sample with a nominal Pd concentration of 3% our best fit has yielded
p = 2.4%, i.e., less than the nominal concentration. One might speculate that the Pd
ions cluster, or that some go in at interstitial positions instead of replacing Cu ions, thus
reducing the number of chain breaks created.

Here we want to go one step further and compare the effective Curie constant
extracted from the experimental data

Cexp =
T

p
[χexp − χ′ − (1 − p)χbulk] (9.1)
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Figure 11. The effective Curie constant (9.1) extracted from susceptibility data
for Sr2Cu1−xPdxO3 [29]. The nominal Pd concentration is x = 0.5% (black
circles), x = 1% (red squares), and x = 3% (blue diamonds). The solid lines
denote the theoretical result (7.3) for p = 1.2%, 1.4%, and 2.4% (from bottom to
top).

Table 1. Concentration x of Pd ions in experiment compared to impurity
concentration p and constant contribution χ′ yielding the best theoretical fit.
The first line corresponds to the ‘as grown’ sample of Sr2CuO3 from [28].

x (exp.) p (theory) χ′ (emu mol−1)

0.0 0.006 −7.42 × 10−5

0.005 0.012 −7.7 × 10−5

0.01 0.014 −7.5 × 10−5

0.03 0.024 −7.5 × 10−5

with the theoretical prediction. We will use the same values for the concentration of chain
breaks p and the constant contribution to the susceptibility χ′ as in table 1. For χbulk we
employ the field theoretical result (7.2). The result is shown in figure 11. Although the
agreement is far from perfect we see that the Curie constant extracted from experiment
does indeed show a non-trivial temperature dependence. In particular, there is a finite
temperature minimum although at higher temperatures than predicted theoretically. The
maximum at low temperatures and subsequent drop of the Curie constant, on the other
hand, are clearly caused by the interchain couplings which can no longer be neglected
in this temperature regime. Given that the procedure for extracting the Curie constant
is quite sensitive to the values of J , p, and χ′ used, the agreement is quite remarkable,
supporting that the Curie-like contribution is mainly caused by an effective concentration
of chain breaks p and that possible additional paramagnetic Curie contributions are
relatively small.

For a more detailed comparison with theory, it would be desirable to repeat the
experiment with annealed samples, carefully estimating any residual true paramagnetic
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Curie terms in the pure system, so that the nominal Pd concentration directly corresponds
to the concentration of chain breaks created.

10. Conclusions

We have studied the effect of chain breaks (non-magnetic impurities) on the
thermodynamic properties of spin-1/2 chains by field theory methods. Using first-order
perturbation theory for the leading irrelevant operator (Umklapp scattering) we have
derived a parameter-free result for the thermodynamic properties of a finite length XXZ
chain with open boundaries beyond the scaling limit. We have shown that this result
reduces to the previously known expressions for boundary contributions in the limit of
infinite chain length. To obtain results for the isotropic case, we expanded the results for
the anisotropic model in terms of 1 − 1/K and re-expressed this expansion in terms of a
small running coupling constant g fulfilling a set of known RG equations. For boundary
contributions like the boundary susceptibility χB this leads to multiplicative logarithmic
corrections. Whereas results in first order in g can be easily obtained by just replacing
the Umklapp scattering amplitude, λ → g/4, the consistent calculation of the correction
of order gn generally requires nth-order perturbation in the Umklapp scattering. For
the boundary susceptibility we presented the result up to order g2 using second-order
perturbation theory in λ.

For the susceptibility of a finite length isotropic Heisenberg chain we were able to
derive a simple formula by studying the ground state limit LT/v → 0. In this limit the
first-order correction in the Umklapp scattering can be absorbed into the scaling limit
result. Surprisingly, we find by comparing with QMC data that the simple parameter-
free formula for χ(L, T ) obtained this way works very well over a much larger range of
temperatures and lengths than anticipated. This simple formula is useful for analysing
susceptibility data for finite length Heisenberg chains.

We then discussed the average susceptibility χp for impurity concentration p assuming
a Poisson distribution. Using the results for χ(L, T ) in the limiting cases LT/v → 0 and
LT/v → ∞ we derived an effective fitting formula for χp which reproduces QMC results
with high accuracy. This formula can be used to fit experimental data, thus allowing us
to determine the (effective) impurity concentration.

Taking into consideration that any real material will have interchain (J̃) as well as
longer ranged intrachain couplings (J ′) which can bridge over a chain break we discussed
the limitations of the theoretical analysis for χp presented here. Our main result is that

such couplings can be ignored provided that T � Min(J̃ , p2J ′). Note that J ′ is suppressed
by a factor p2 so that even relatively large couplings between the segments can be ignored
provided that the impurity concentration is small. For most materials it will therefore be
the loss of one dimensionality due to J̃ which marks the point where our theory no longer
applies.

For Sr2CuO3 this scale is about 5 K whereas J ∼ 2000 K, making it an ideal candidate
for study of the thermodynamics of impurities in a Heisenberg chain experimentally over
a large temperature range. In this work we concentrated on analysing susceptibility data
given by Kojima et al [29] for Sr2Cu1−xPdxO3. We extracted the effective Curie constant
and showed that it agrees qualitatively with the theoretical prediction. The impurity
concentration, however, seems to be different from the nominal Pd concentration. A
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plausible explanation is the presence of excess oxygen leading to additional chain breaks,
a scenario already discussed in [27, 28]. It might be possible to avoid these additional
chain breaks by annealing, which seems to make a more detailed comparison with theory
in the future feasible.

Our results might also shed light on some aspects of the high Tc cuprate physics.
In YBa2Cu3O6+δ we have quasi-one-dimensional CuO chains in addition to the CuO2

planes common to all high Tc cuprates. By changing the oxygen content δ the charge
concentration in the planes is changed. At the same time, this leads to the removal
of spins from the chain. If we assume a Zhang–Rice singlet type state with immobile
holes this again leads to chain breaks in the same way as in Sr2CuO3+δ. Indeed, Friedel
type spin density oscillations have been observed in YBa2Cu3O6.5 by NMR [39]. Such
oscillations are expected if spin chain segments with open boundaries are present [18]. A
thorough analysis of these data and possible new experiments on Sr2Cu1−xPdxO3 or similar
compounds might give us a better understanding of oxygen doping and the formation of
Zhang–Rice singlet states in the cuprates.
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Appendix A. Second-order perturbation theory

The free energy in second order in the Umklapp scattering is given by

f2 = −λ2

2

T

L

{∫ L

0

∫ β

0

d2x d2τ

×
〈

cos

(√
8πKφ(x1, τ1) +

2Khx1

v

)
cos

(√
8πKφ(x2, τ2) +

2Khx2

v

)〉

−
[∫ L

0

∫ β

0

〈
cos

(√
8πKφ(x1, τ1) +

2Khx1

v

)〉]2}
. (A.1)

We want to evaluate this contribution here only in the thermodynamic limit L → ∞ where
it splits into a bulk and a boundary contribution. In this limit the two-point correlation
function for OBC at zero temperature is given by

〈φ(x1, τ1)φ(x2, τ2)〉 = − 1

4π

(
ln
[
(x1 − x2)

2 + v2(τ1 − τ2)
2
]

− ln
[
(x1 + x2)

2 + v2(τ1 − τ2)
2
])

. (A.2)
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The exponentials of the bosonic field φ can then by obtained by using the cumulant
theorem:

〈
exp

(
±i

√
8πKφ(x, t)

)〉
= exp (−4πK〈φ(x, t)φ(x, t)〉) (A.3)

and
〈
exp

(
i
√

8πKφ(x1, τ1)
)

exp
(
±i

√
8πKφ(x2, τ2)

)〉

= exp
(
−4πK[〈φ2(x1, τ1)〉 + 〈φ2(x2, τ2)〉 ± 2〈φ(x1, τ1)φ(x2, τ2)〉]

)
. (A.4)

Using the fact that 〈sin(
√

8πKφ)〉 ≡ 0, the susceptibility is given by

χ2 = −2λ2 T

L

(
K

v

)2 {∫ ∫
d2x d2τ

×
[
(x2

1 + x2
2)
〈
cos

(√
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)
cos

(√
8πKφ(x2, τ2)

)〉

− 2x1x2

〈
sin

(√
8πKφ(x1, τ1)

)
sin

(√
8πKφ(x2, τ2)

)〉]

− 2

T 2

[∫
dx

〈
cos

(√
8πKφ(x)

)〉] [∫
dx x2

〈
cos

(√
8πKφ(x)

)〉]}
. (A.5)

Using (A.3) and (A.4) the correlation functions can be evaluated. The usual conformal
mapping then allows us to obtain the second-order correction at finite temperature:

χ2 = −λ2

L

K2

v3

(
πT

v

)4K−5 ∫ πTL/v

0

d2x

∫ π

0

dτ

×
{

(x1 − x2)
2

[
sinh(x1 + x2 + iτ) sinh(x1 + x2 − iτ)

sinh(2x1) sinh(2x2) sinh(x1 − x2 + iτ) sinh(x1 − x2 − iτ)

]2K

+ (x1 + x2)
2

[
sinh(x1 − x2 + iτ) sinh(x1 − x2 − iτ)

sinh(2x1) sinh(2x2) sinh(x1 + x2 + iτ) sinh(x1 + x2 − iτ)

]2K

− 2(x1 + x2)
2

[
1

sinh(2x1) sinh(2x2)

]2K
}

. (A.6)

If we are far from the boundary, x1, x2 � 1, then only the first term contributes and the
integral gives a contribution to the bulk susceptibility:

χbulk
2 = −λ2

L

K2

v3

(
πT

v

)4K−5 ∫ πTL/v

0

d2x

∫ π

0

dτ

× (x1 − x2)
2

[
1

sinh(x1 − x2 + iτ) sinh(x1 − x2 − iτ)

]2K

→ −λ2K2

v3

(
πT

v

)4K−4 ∫ ∞

0

dx

∫ π

0

dτ
x2

[
1
2
(cosh 2x − cos 2t)

]2K
. (A.7)
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This integral can be evaluated analytically yielding the known result [4, 25]

χbulk
2 =

λ2

32πv3
Γ2(1/2 − K)Γ2(1 + K) sin(2πK) [Ψ′(1 − K) − Ψ′(K)]

(
πT

v

)4K−4

. (A.8)

To obtain the boundary contribution χB
2 we have to subtract (A.7) from (A.6). As the

kernel will then go to zero away from the boundary, we can shift the upper bound in the
integration to infinity leading to

χB
2 = χ2 − χbulk

2 = −λ2

L

K2

v3

(
πT

v

)4K−5 ∫ ∞

0

d2x

∫ π

0

dτ

× [sinh 2x sinh 2y (cosh 2(x + y) − cos 2t) (cosh 2(x − y) − cos 2t)]−2K

×
{

(x2
1 + x2

2)

[[
(cosh 2(x + y) − cos 2t)2K − (cosh 2(x − y) − cos 2t)2K

]2

− [2 sinh 2x sinh 2y (cosh 2(x + y) − cos 2t)]2K
]

− 2x1x2

[
(cosh 2(x + y) − cos 2t)4K − (cosh 2(x − y) − cos 2t)4K

− [2 sinh 2x sinh 2y (cosh 2(x + y) − cos 2t)]2K
]}

. (A.9)

The integral is convergent for K < 3/2 (Δ > 1/2) and can be evaluated numerically. Note
that this is the result for a semi-infinite chain, i.e., this result has to be multiplied by a
factor of 2 for an open chain segment.

Appendix B. RG-improved coupling constants in the isotropic case

The coupling constants in (5.1) fulfil the following set of RG equations [4]:

dg‖
d ln r

= − 2g2
⊥

2 − g‖
,

dg⊥
d ln r

= − 2g‖g⊥
2 − g‖

. (B.1)

Here r denotes the appropriate RG scale (T or L in the cases considered here). Following
Lukyanov [4] the solution to this set of equations can be parametrized as

g‖ = 2(1 − 1/K)
1 + q

1 − q
, g⊥ = −4(1 − 1/K)

√
q

1 − q
, (B.2)

where

q(1 − q)2K−2 =

(
r

r0

)4−4K

. (B.3)

Here r0 is a constant which can be chosen freely.
This is the set-up which quite generally allows us to obtain results for the isotropic

model by expanding the results for the anisotropic model in a power series in (1 − 1/K).
From the scaling part (2.9) we obtain for the bulk susceptibility

χ
(0)
bulk =

K

2πv
=

K

π2
=

1

π2

∞∑

n=0

(1 − 1/K)n → 1

π2

∞∑

n=0

(g‖
2

)n

. (B.4)
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Note that the power series in g‖ produces terms higher order in q apart from the q0

term required. In particular, g‖/2 = (1 − 1/K)(1 + 2q + O(q2)) with (1 − 1/K)q ∼
(1 − 1/K)T 4K−4. Such a term is indeed present when expanding the second-order
contribution in λ, equation (A.8), in powers of (1 − 1/K) and fixes the scale r0 in (B.3).
In other words, the scale in (B.3) is uniquely fixed because we have two equations for the
two unknowns: the pre-factor of g‖ is fixed through (B.4) and the expansion of (A.8) fixes
the scale to

q(1 − q)2K−2 =

[
T e−1/4

√
π Γ (1 + 1/(2K − 2))

v Γ (1 + K/(2K − 2))

]4K−4
Γ2(K)

Γ2(2 − K)
. (B.5)

Comparing with the expression for the coupling constant λ, equation (2.12), we see that
we can write

λ = (K − 1)
√

q(1 − q)K−1e(K−1)/2
[ v

2πT

]2K−2

, (B.6)

which in lowest order in (1 − 1/K) and q reduces to

λ = −g⊥
4

. (B.7)

Next, we consider the first-order result for the boundary susceptibility (4.6).
Using (B.6) we find

δχ1 = K2(1 − K)e(K−1)/2B(K, 1 − 2K)
[
π2 − 2ψ′(K)

] √q(1 − q)K−1

π2T
. (B.8)

Expanding this expression in (1 − 1/K) and q yields

T δχ1 =
(1 − 1/K)

3

√
q + (1 − 1/K)2

(
1

2
− ψ′′

π2

)
√

q − (1 − 1/K)2

3
q3/2 + · · · . (B.9)

For the first two terms we can write

T δχ1 = −g⊥
12

− g‖g⊥

8

(
1

2
− ψ′′

π2

)
; (B.10)

however, this does not reproduce the third term in (B.10) correctly. To obtain agreement
also in order (1 − 1/K)2q3/2 the scale in (B.5) has to be changed. This leads to minimal
improvements only, as this term is not only second order in (1 − 1/K) but also third
order in

√
q. We therefore keep the scale as determined from the expansion of the

bulk susceptibility, equation (B.5), which is convenient for describing χ(L, T ) at the
isotropic point. More important than the third term in (B.10) is actually the second-order
contribution (A.9) derived in the previous section. This contribution can be expressed as

χB
2 =

4

π3T
K2(K − 1)2eK−1q(1 − q)2K−2(−2I), (B.11)

where I denotes the integral in (A.9) and the factor 2 has been added to account for the
two boundaries. To lowest order in (1 − 1/K) we therefore obtain

χB
2 = − 8

π3T
(1 − 1/K)2q I(K = 1) → − g2

⊥
2π3T

I(K = 1) (B.12)
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and a numerical evaluation yields I(K = 1) ≈ −0.83. Finally, with g‖ → g and g⊥ → −g
equations (B.10) and (B.12) yield (5.5).

g as a function of temperature T can be found as follows: using the first equation
of (B.2) we can write q = [g − 2(1 − 1/K)]/[g + 2(1 − 1/K)]. Now we can put this into
q(1 − q)2K−2 and expand in (1 − 1/K) leading to

q(1 − q)2K−2 ≈ 1 +

[
−4

g
+ 2 + 2 ln

(
4

g

)
+ 2 ln(1 − 1/K)

]
(1 − 1/K). (B.13)

On the other hand, we can expand (B.5) leading to

[
T e−1/4

√
π Γ (1 + 1/(2K − 2))

v Γ (1 + K/(2K − 2))

]4K−4
Γ2(K)

Γ2(2 − K)

≈ 1 + [1 + 2 ln 2 + 2 ln(1 − 1/K) − 4γ − 2 ln π + 4 ln(2T/J)] . (B.14)

Comparing (B.13) and (B.14) finally leads to (5.6).
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