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SUPPLEMENTARY MATERIAL

A. Two-photon transition

To describe the two-photon process, we begin with the following Hamiltonian (set Eg = 0) for a single site i in the
rotating-wave approximation:

Hi = Ep|pi〉〈pi|+ Ee|ei〉〈ei|+ {~g0ψ̂†|gi〉〈pi|+H.c.}
+ ~ωcψ̂

†ψ̂ + {~Ωexp(−iωlt)|ei〉〈pj |+H.c.}. (1)

We first perform a unitary state transformation Û(t) = eiŜt with Ŝ = exp{~ωc(ψ̂
†ψ̂+ |pi〉〈pi|)+ ~(ωc +ωl)|ei〉〈ei|},

the above Hamiltonian transforms as H̃ = ÛHÛ † − Ŝ, which results in

H̃i = −~∆p|pi〉〈pi| − ~∆|ei〉〈ei|+ {~Ω|ei〉〈pi|+H.c.}
+ {~g0ψ̂†|gi〉〈pi|+H.c.}.

Here ∆p = ωc −Ep is the detuning between the cavity field and |g〉 → |p〉 transition, ∆ = ωc + ωl −Ee ≡ ∆p +∆e is
the total detuning with ∆e = ωl − (Ee − Ep) denoting the detuning between the Rabi laser and |p〉 → |e〉 transition.
Assuming a large detuning from the intermediate state, which satisfies ∆p ≫ Γ with Γ−1 the lifetime of the iteme-

diate |p〉 state, we can adiabatically eliminate the unpopulated intermediate state and get the effective Hamiltonian

Heff
i = −~∆|ei〉〈ei|+ {~ g

∗
0Ω

|∆p|
ψ̂|ei〉〈gi|+H.c.}. (2)

Then, we go back to a new rotating frame by the unitary transformation exp{−itωc(ψ̂
†ψ̂ + |ej〉〈ej |)}, we arrive at

the following effective two-level atom-cavity coupled Hamiltonian

Ĥi = ωcψ
†ψ + ǫ|ei〉〈ei|+ g(ψ|ei〉〈gi|+H.c.), (3)

with g = ~g∗0Ωl/|∆p| the effective coupling constant and ǫ = ωc −∆ the effective transition frequency.

Finally, we extend the above two-photon transition process to a 1D lattice of atoms coupled to the cavity field, we
derive the generalized Dicke model Hamiltonian (1) in the context. Here, we should mention that each atom of the
1D lattice can be excited independently which is in contrast to Ref. [24], where all the N atoms are in the blockade
regime and excited collectively with only one Rydberg state.

B. Quantum Monte Carlo simulation

Here we describe briefly on Stochastic Cluster Series Expansion (SCSE) method [30], which we extended to our
atom-light coupled system. The main steps are as follows. First, we split the Hamiltonian with the three-sites
operators hi,ν . Then, by the series expansion, the partition function reads

Z =
∑

M,α,{Ô}

(−β)M
M !

〈α|
M∏

m=1

Ôm|α〉

=
∑

M,{Ô},{~α}

(−β)M
M !

M∏

m=1

〈αm|Ôm|αm+1〉.

Here, {~α} = {α1, α2, . . . , αM} are all possible intermediate states with α1 = αM+1. {Ô} = {Ô1, Ô2, . . . , ÔM} represent
all possible sequences of Ôm, with Ôm being any three-sites operator {hi,ν}. The off-diagonal three-sites operator hi,ν
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are given by

hi,1 =
ḡ

2
√
N
ψb†iai,

hi,2 =
ḡ

2
√
N
ψ†bia

†
i ,

hi,3 =
ḡ

2
√
N
ψb†i+1ai+1,

hi,4 =
ḡ

2
√
N
ψ†bi+1a

†
i+1,

and the diagonal operator

hi,5 = −µ− ωc

N
ψ†ψ − µ− ǫ

2
(P (i) + P (i+1)) + V P (i)P (i+1).

To calculate the weights of the above partition function Z, we take hi,1 as an example.

|αm〉 operator |αm+1〉
atom excitation on site i 1 0

photon n− 1 hi,1 n
atom excitation on site i+ 1 1 1

As seen in the Table above, the weight 〈αm|hi,1|αm+1〉 can be represented as a diagram 1 n−1 1
0 n 1 in imaginary time

m, and all the corresponding weights in the partition function Z form a diagram representation. Here the single-
occupation constraint of the atomic excitation has been taken into account.
Then, we perform the conventional directed-loop SSE algorithm to alter the diagram, and employ the Metropolis

to sample the partition function. Finally, the mean value of various observables can be calculated from these samples.
We should mention that the photon field may introduce truncation error to the system. To deal with this point
properly, we set the initial maximum photon number to be nmax. Then during the QMC simulation, once nmax is
reached, it will be raised and the simulation will be restarted at the same time.

C. The finite size scaling

In this section, we perform the finite size scaling for the generalized DM. Although the real experimrnt will be
implemented for finite size with about 100 lattice sites in a cavity, one may wonder whether the new phases predicted
in the our work exist in the infinite system. For this purpose, we have also made a finite size scaling analysis for the
SRS phase. Figure 1 shows the corresponding scaling results in the SRS phase with lattice size N = 100, 150, 200,
250 and 300. we can find that both S(Q)/N and κT scale proportional to N−1 and converge to finite values in the
infinite size limit.

FIG. 1: (color online). The finite size scaling for S(Q)/N and κT at V = 1, ∆ = 3 and β = 500 vs different sizes. µ̃ = −2.905
(−1.105) correspond to the SRS phases on the trajectories of the lower (upper) cuts shown in Fig.3 (a).
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