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We study the effect of impurities in a supersolid phase in comparison to the behavior in the solid and
superfluid phases. A supersolid phase has been established for interacting hard-core bosons on a triangular
lattice which may be realizable by ultracold atomic gases. Static vacancies are considered in this model which
always lower the magnitude of the order parameter in the solid or superfluid phases. In the supersolid phase,
however, the impurities directly affect both order parameters simultaneously and thereby reveal an interesting
interplay between them. In particular, the solid order may be enhanced at the cost of a strong reduction in the
superfluidity, which shows that the two order parameters cannot be in a simple superposition. We also observe
an unusual impurity pinning effect in the solid ordered phase, which results in two distinct states separated by
a first-order transition.
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A bosonic supersolid phase is characterized by the coex-
istence of two seemingly contradictory order parameters, a
solid crystalline order and a superfluid density. This reflects
the spontaneous breaking of two independent symmetries,
namely, translation and a U�1� gauge rotation, which are also
known as diagonal and off-diagonal order, respectively. The
simultaneous breaking of two independent symmetries in the
supersolid phase is counterintuitive and unusual because nor-
mally a spontaneously broken order locks the system into a
single phase. Only when the remaining fluctuations are large
enough, two independent order parameters may exist in one
phase, e.g., due to frustration. Having been predicted 40
years ago,1 supersolids recently received renewed interest af-
ter a possible observation in 4He.2 The presence of mobile
3He impurities appears to be important in those systems,
which are predicted to raise Tc but reduce the superfluid
density.3 While the experiments are still controversially
discussed,4 there is now very strong numerical evidence that
a supersolid phase is realized for interacting hard-core
bosons on a triangular lattice.5–11 Such a model can poten-
tially be realized by ultracold atoms in optical traps.12 Tun-
able superexchange models have already been experimen-
tally created in this rapidly emerging field13 and interacting
hard-core bosons14 have also been discussed. Most recently
also triangular lattices have been possible15 so it appears
likely that supersolidity will soon be a central topic for hard-
core boson models in the ultracold gases community.

While the coexistence of the corresponding two order pa-
rameters is well established numerically in the hard-core bo-
son systems,6 the microscopic interplay between them is still
unclear. We now study the impurity effects on both order
parameters simultaneously in the supersolid phase, in order
to clarify if the two order parameters are in a simple super-
position or how they may interact locally. The use of substi-
tutional impurities in strongly correlated systems has become
a standard tool for understanding the underlying quantum
phases.16–19 In particular, it is possible to study local expec-
tations values around defects20,21 for an analysis of the el-
ementary excitations and direct comparison with theoretical

models. In the supersolid phase we are now able to consider
the effect of static impurities on two coexisting order param-
eters simultaneously.

The model we will consider in this Rapid Communication
is the spin-1/2 model on a triangular lattice

H = − t�
�ij�

�Ŝi
+Ŝj

− + H.c.� + V�
�ij�

Ŝi
zŜj

z − B�
i

Ŝi
z �1�

with antiferromagnetic exchange V in the z direction corre-
sponding to nearest-neighbor repulsion and ferromagnetic
exchange t in the x-y directions, corresponding to the kinetic
energy and B=�−3V in terms of the chemical potential of
the equivalent hard-core boson problem. The simplest impu-
rities are given by lattice vacancies in model �1�.22

The two order parameters in the supersolid are given by

the structure factor S�q= �4 /3� ,0��= ���rŜr
zeiq·r�2� /N2 for the

solid order, and by the superfluid density �s, which is typi-
cally measured using the winding number W in quantum
Monte Carlo �QMC� simulations �s= �W2� /4�t.5–11,23 We use
a modified perturbation theory and the directed-loop stochas-
tic series expansion QMC algorithm24 with finite-size scaling
up to N=324 sites at a temperature of T=0.02 V. In order to
avoid trapping in one of the degenerate states it is also es-
sential to implement parallel tempering in the parameter
space.25,26

For reference we first examine a single vacancy in the
solid phase, which already shows interesting effects. As
shown in the inset of Fig. 1 this phase occurs for small xy
coupling t. The solid order is characterized by a 2/3 filled
state for positive fields with exactly two spins on each tri-
angle pointing up. For negative fields there is an equivalent
1/3 filled ordered phase due to the spin-flip symmetry around
B=0. The vacancy in the XXZ model �1� does not break this
symmetry22 so it is sufficient to consider only positive fields
B�0 in the phase diagram in Fig. 1. The choice of the spin-
down sublattice �pointing against the field� gives a threefold
degeneracy, which is however lifted by the vacancy. In par-
ticular, for 0�B�1.5 V and t=0 the vacancy site must be-
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long to one of the spin-up sublattices, as can be seen by
simple energetic considerations. Therefore the order in the
entire system is pinned by a single defect and only a twofold
degeneracy remains. The average occupation �Sz� on the dif-
ferent sublattices in Fig. 1 shows that this pinning also con-
tinues throughout the supersolid phase. However, the spin
density of the other two sublattices surprisingly point against
the field in the supersolid phase.

For larger fields B�1.5 V there is a transition to a dif-
ferent state, where the order is now pinned on the opposite
sublattice with no remaining degeneracy. Therefore, a single
impurity can in fact induce a transition between two distinct
ordered states of the entire system. The transition line also
depends on the xy coupling t as can be seen by perturbation

theory in the “hopping” terms Hij =−t�Ŝi
+Ŝj

−+H.c.�. Unfortu-
nately, the usual perturbative correction to the wave function
���	�0�+��ij��ij��ij�Hij�0� / �E0−Eij� diverges with the num-
ber of hopping terms, i.e., the system size N. Here �0� is the
ordered state and �ij� has opposite spins exchanged on the
bond i , j relative to �0�. Of course the number of lattice sites
N must be irrelevant in the ordered phase, so the trick is to
modify the perturbation correction to include only those hop-
ping terms which actually affect a local expectation value.14

For example, to calculate the energy correction at one bond
�Eij only the corresponding hopping term is considered

��ij� 	 �0� + �ij��ij�Hij�0�/�E0 − Eij� �2�

and we simply get

�Eij = ��ij�Hij�0��2/�E0 − Eij� = t2/�E0 − Eij� . �3�

For the case of a vacancy, the excitation energy Eij depends
on the location of the bond and it also depends on which
sublattice is pointing down in the ordered state �0�. After
summing over all contributions, we find that the energy dif-
ference between the two possible pinned ordered states is

given by 	E=B− 3V
2 − 7t2

10V +O�t3�. Therefore, the impurity-
driven transition line runs along

B 	 3V/2 + 7t2/10V �4�

as shown in the inset of Fig. 1, which also agrees with our
numerical QMC results.

Using the modified perturbation theory with a restricted
sum in Eq. �2� it is also possible to analytically calculate

local expectation values, e.g., when calculating �Ŝi
z� all hop-

ping terms connecting to the site i are included. The results
give a good indication about the local order around the va-

cancies. In particular, �Ŝi
zŜj

z� and �Ŝi
zŜj

zŜk
z� with i , j ,k on neigh-

boring sites are good indicators of the local solid order,
which are reduced around the vacancy. On the other hand the

quantum fluctuations �Ŝi
+Ŝj

−� on bonds are enhanced as shown
in Fig. 2. Interestingly, the order reduction is not correlated
in space with the fluctuation enhancement and the effect is
also not always strongest directly at the vacancy. The inset in
Fig. 2 shows the distribution of the local expectation values
around the impurity on the lattice directly. The expectation

values �Ŝi
+Ŝj

−� between two nonimpurity sublattices is differ-
ent from those bonds involving the impurity sublattice even
very far from the impurity. This is a secondary effect from
the pinned order and should not be mistaken for an indepen-
dent bond order.

It is not surprising that an impurity generally reduces the
order parameter locally. The main question for the supersolid
phase is now if the vacancy reduces both order parameters as
may be expected for a simple superposition of the two effects
or if an interesting interplay can be observed. The answer to
this question is summarized in Fig. 3, where we plotted the
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FIG. 1. �Color online� The average magnetic moment of the
sublattice which contains the vacancy �solid� and the other two
sublattices �dashed�. Inset: the phase diagram with the impurity
phases and the plot trajectory we use in Figs. 1, 3, and 5 along
t /V=0.08 and then along B /V=0.2.
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〈Ŝ+
i Ŝ−
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FIG. 2. �Color online� �a� �Ŝi
zŜj

zŜk
z� with i , j ,k on one triangle, �b�

�Ŝi
zŜj

z�, and �c� �Ŝi
+Ŝj

−�, where i , j are neighboring sites on sublattices
not occupied by the impurity as a function of distance in the solid
phase �t /V=0.08, B /V=0.65, N=144�. The modified perturbation
theory �solid� agrees very well with the QMC results �dashed�.
Inset: distribution of �Ŝi

+Ŝj
−� and �Ŝi

zŜj
zŜk

z� on the bonds and triangles,
respectively. Darker shaded bonds �red� are increased while tri-
angles �blue� are decreased relative to the gray bulk values.
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impurity contributions of the two relevant order parameters
in the system as we cross the phase boundaries along the
trajectory in the inset of Fig. 1. The dominant parameter in
the phases with one single order is always reduced while the
other parameter remains unchanged close to zero. However,
in the supersolid phase only the superfluid density is strongly
reduced while the solid order is in fact enhanced. It is far
from obvious why the vacancy should enhance the solid or-
der in this case, contrary to what we observed in the solid
phase. The only explanation of the observed behavior is that
the vacancy reduces the superfluid density locally so strongly
that the solid order is revived, which is evidence for a mi-
croscopic competition between the two order parameters.
This result clearly shows that the two order parameters are
not in an independent superposition. It is noteworthy that the
competition and the total change in the order parameters is
strongest close to the second-order phase transitions to the
pure superfluid phase.

The local expectation values in Fig. 4 also demonstrate
the competition of order parameters locally. The local solid

order �Ŝi
zŜj

z� and �Ŝi
zŜj

zŜk
z� close to the impurity is now en-

hanced while the kinetic energy �Ŝi
+Ŝj

−� is strongly reduced.
This is in strong contrast to the observations in the solid
phase in Fig. 2 and the relative changes are also much more
dramatic and correlated in space, which again demonstrates
the direct interplay between both order parameters.

We finally turn to the interesting case of several impurities
in the system. A second vacancy on the same sublattice is
rather trivial, corresponding to the same pinned order, i.e.,
constructive interference of the induced magnetization den-
sity. Remarkably also a second impurity on an opposite sub-
lattice has the same effect since the second impurity simply
lifts the remaining twofold degeneracy exactly in such a way
that both impurities are located on spin-up sublattices. The
order is now completely pinned but all observed effects are
approximately additive, i.e., the impurity contributions to the
order parameters simply double in the entire parameter space
in Fig. 5. Also the observed phase transition between pinned
states in Fig. 1 remains unchanged. This situation is in sharp

contrast to two impurities on different sublattices in an un-
frustrated square lattice,21 which must show destructive in-
terference of the alternating magnetization.

The most interesting case is given by three impurities on
the three different sublattices. The threefold degeneracy of
the lattice is then approximately restored again without pin-
ning and the impurities must interfere destructively. This re-
sults in a surprisingly strong reduction in the solid order S�q�
which now also carries over into the supersolid phase as
shown in Fig. 5 while also the reduction in �s remains strong.
Obviously the effects are not simply additive in this case and
indicate some interesting impurity-impurity interactions.
However, in generic systems impurities break the symmetry
between the three sublattices so that the observed pinning
and order parameter competition described above is the more
general scenario.

0.30.40.50.6 B/V
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

N ∆ρ
s

N ∆S(q)

0.1 0.12 0.14t/V
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0.30.40.50.6

B

0.05

0.1

0.15

0.2

ρ
s

pure
S(q) pure

0.09 0.12 0.15

t

solid
supersolid

superfluid

FIG. 3. �Color online� Scaled impurity corrections to the super-
fluid density N	�s and the structure factor N	S�q�. Inset: order
parameters in a pure system.
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〈Ŝ+
i Ŝ−
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FIG. 4. �Color online� Local expectation values as a function of
geometrical distance analogous to Fig. 2 in the supersolid phase
�t /V=0.08, B /V=0.2, N=144�. Closest to the impurity the values
almost recover the bulk values in the solid phase in Fig. 2. Inset:
analogous to inset 2 but showing the opposite behavior on a relative
color scale.
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FIG. 5. �Color online� The impurity contributions to the struc-
ture factor and the superfluid density for two and three impurities
on different sublattices in a system of 144 sites.
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In summary, we have used a modified perturbation theory
and QMC simulations to analyze impurity effects in a super-
solid in comparison to other phases with single order as re-
alized by the model in Eq. �1�.

In the solid phase a nontrivial pinning of the entire order
by a single defect has been observed. Therefore, impurities
create a first-order transition line between two different
pinned states given by Eq. �4�, which is not seen in the pure
system.

In the supersolid phase the solid order is surprisingly en-
hanced by an impurity, which coincides with a strong reduc-
tion in the superfluid order. This is evidence for an interest-
ing microscopic competition between the two order
parameters, which certainly cannot be in a simple superposi-
tion.

For two impurities a simple addition of the observed ef-
fects can be seen while for three impurities on different sub-
lattices a strong destructive interference changes the physics
completely. For a more complete understanding of the

impurity-impurity interactions on three different sublattices
more research is needed.

In all impurity configurations a very strong reduction in
the superfluid density �s occurs close to the second-order
supersolid-superfluid transition. It is therefore likely that the
superfluid order can be destroyed with a critical density of
impurities, while the solid order may be enhanced. The ex-
treme limit of this effect corresponds to the removal of one
sublattice, i.e., the honeycomb lattice, which indeed results
in an extended solid phase.27
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