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Nonmagnetic impurities in anS ­ 1y2 Heisenberg antiferromagnetic chain are studied using
boundary conformal field theory techniques and finite-temperature quantum Monte Carlo simulations.
We calculate the static structure function,Simpskd, measured in neutron scattering and the local
susceptibility, xi measured in Knight shift experiments.Simpskd becomes quite large near the
antiferromagnetic wave vector, and exhibits much stronger temperature dependence than the bulk
structure function. xi has a large component which alternates andincreasesas a function of distance
from the impurity.
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Although the spin chain problem has been a popular
topic for theoretical physicists since the early days of
quantum mechanics, the correlation functions of the
antiferromagnetic Heisenberg spin-1/2 chain could only
be calculated with the help of modern quantum field
theory [1]. Adding nonmagnetic impurities to a spin-
chain compound breaks the chains up into finite sections
with essentially free boundary conditions. The correlation
functions in the presence of such a boundary were
calculated only recently [2]. These results provide a
simple application of a general theory of conformally
invariant boundary conditions which has been applied to a
wide variety of quantum impurity problems in condensed
matter and particle physics [3]. These functions exhibit a
universal dependence on the boundary, at long distances
and times. In this paper we wish to focus on a couple
of applications to these results of experimental relevance:
the impurity contribution to the static structure function,
Simpsk, T d, and the local susceptibility,xisT d. We derive
analytic expressions for these quantities using field theory
methods and compare them with finite-T Monte Carlo
simulations using lengths of up tol ­ 128 with a varying
number of time steps up to 64 and several hundred
thousand sweeps through each lattice.

The Heisenberg Hamiltonian for the antiferromagnetic
spin-1/2 chain

H ­ J
X

i

$Si ? $Si11 (1)

is equivalent to a free boson field theory in 1+1 dimen-
sions in the low energy, long-distance limit [4]. The spin
operators are expressed in terms of the bosonf as

Sz
j ø ≠xfy

p
2p 1 as21dj cos

p
2pf , (2)

where a is a constant. The boson Hamiltonian is then
simply given by the free part together with terms which
become irrelevant as the temperature is lowered. Those
irrelevant terms give rise to temperature and finite length
dependent corrections with a characteristic power law.

This theory has been used successfully to calculate
impurity effects [2], the low energy spectrum [5], and
correlation functions [1]. The latter agree well with recent
neutron scattering experiments [6]. Like the expression
for the spin operators in Eq. (2), the correlation functions
also acquire an alternating and a uniform part as a
function of the site indexx. At finite temperature, the
alternating part is given by

kSzsx, t1dSzsy, t2dlalt ! c
p

yb

s21dx2yp
sinhfpsx 2 y 2 yDtdyybg sinhfpsx 2 y 1 yDtdyybg

, (3)

(Dt ; t2 2 t1). We set the lattice spacing to 1. The spin-
wave velocity is known to bey ­ Jpy2 from the Bethe
ansatz. The constantc can be determined numerically
and is given byc ­ a2y2 times an arbitrary normalization
of the two-point function, which we chose to set to 1.
The irrelevant terms in the Hamiltonian give logarithmic
corrections to this expression [5]. In fact, it has been
shown recently that the logarithmic corrections give rise

to an infinite slope of the uniform susceptibility at zero
temperature [7].

The correlation functions in the presence of a boundary
were first calculated in Ref. [2]. There it was argued that
the free boundary condition on the spin operators corre-
sponds, in the continuum limit, to a boundary condition
on the bosons:fs0d ­ fLs0d 1 fRs0d ­

p
py8. Since

fL is a function only ofyt 1 x andfR of yt 2 x, this
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implies that we may simply regard this boundary con-
dition as definingfR to be the analytic continuation of
fL to the negative axisfRsxd ­ 2fLs2xd 1

p
py8.

Whereas the bulk correlation function factorizes into a

product of left and right two-point Green’s functions,
the boundary correlation function becomes a four-point
Green’s function for left-movers. Consequently, while the
uniform part is largely unaffected by an open boundary
condition, the alternating part gets modified to

cs21dx2y p
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2px
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(4)

which reduces to Eq. (3) in the bulk limitxy ¿ jsx 2

yd2 2 y2Dt2j.
Here we have also included the time dependence of the

Green’s function, but we will only calculate the equal-
time spatial Fourier transformSskd, deferring considera-
tion of the full dynamical structure function to later work.
We predict a characteristic impurity contribution to the
structure factor, which may be observable in magnetic
neutron scattering experiments on quasi-one-dimensional
spin-1/2 magnetic compounds (e.g., KCuF3). Doping
with impurities will break the spin chains and thereby in-
troduce the desired open ends. For a finite chain of length
l we can define a structure factorSlskd as

Slskd ;
1
l

lX
x,y­1

kSzsxdSzsydleiksx2yd l!`
! Sskd

1
Simpskd

l
. (5)

The structure function for the finite chains has been
decomposed into a “bulk” partSskd which is independent
of length and an “impurity” part of order1yl: Simpskd ;
liml°!` lfSlskd 2 Sskdg. The bulk part reproduces the
signal of a system without open ends (e.g., an infinite
chain) while the effect of the open boundary condition
is entirely contained in the impurity part. Higher order
O s1yl2d terms will also be present, but can be neglected
if the impurities are dilute. Since each impurity creates
the same contributionSimpskd in the dilute limit, the
experimental signal will contain the impurity part as a
term that scales with impurity concentrationn to first
order:Sexpskd ø Sskd 1 nSimpskd.

From the results of Eqs. (3) and (4), it is clear that we
expect interesting effects for wave vectors neark ø p.
Field theory predictions for smallk 2 p and T are
obtained by Fourier transforming Eqs. (3) and (4). We
assume here that the impurities are dilute enough so
that the infrared cutoff is always given by the inverse
temperatureb ø lyy. The bulk structure function [8]
can then be expressed in terms of the digamma function
c [9] and the reduced variablek0 ; sk 2 pdybyp:

Ssk0d ­ 2cflnsLbJd 2 Recs1y2 2 ik0y2d g , (6)

whereL is a constant depending on the cutoff.

The impurity contribution Simpsk0d is obtained by
Fourier transforming Eq. (4) with the bulk part, from
Eq. (3), subtracted off assuming two open ends. This
subtraction eliminates the ultraviolet divergence, giving
the scaling form

Simpsk0d ­ c
2yb
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w
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#
­ ybfsk0d . (7)

Here u ­ psx 2 ydyyb, w ­ psx 1 ydyyb. Note
that, apart from the logarithmic term in Eq. (6),Ssk0d
and Simpsk0d are functions only of the scaling variable
k0, but we expect corrections from irrelevant operators
and the finite ultraviolet cutoff which become smaller
as T ! 0 and sk 2 pd ! 0, with k held fixed. For
small k0 we have Ssk0d ~ lnsbd 1 const 1 O sk02d
and Simpsk0d ~ ybfconst 1 O sk02dg, so that the
impurity part has a much stronger temperature depen-
dence. At largek0, Ssk0d vanishes exponentially, but
Simpsk0d ! 2ybcypk02.

Our Monte Carlo results forSskd and Simpskd are
shown in Figs. 1 and 2 for four different temperatures. To

FIG. 1. The bulk structure factorSskd according to quantum
Monte Carlo simulations.
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show the predicted scaling form we plotted the results as a
function of the reduced variablek0 in Figs. 3 and 4. The
Monte Carlo simulations agree reasonably well with the
field theory predictions. This comparison with the Monte
Carlo data was used to extract the constantc ­ 0.14 and
L ­ 0.75 in Eq. (6).

We now consider the local susceptibilityxi at any
arbitrary sitei under the influence of a uniform magnetic
field h acting on the complete chain

xisTd ;
≠

≠h
kSz

i l
Å
h­0

­
1
T

X
j

kSz
j Sz

i l . (8)

For a chain with periodic boundary conditions,xi is the
same for all sites because of translational invariance.

If we are dealing with an open boundary condition,
however, the translational invariance is clearly broken and
we would naively expect the open end to be more suscep-
tible. Moreover, it is now possible, in the field theory
treatment, to have a nonzero alternating susceptibility as a
function of site indexxx ­ xuni

x 1 s21dxxalt
x . Using the

analytic continuation of the left-movers onto the negative
half axis from above,xalt

x is given by a nonzero three-
point Green’s function:
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where x is the distance from an open boundary con-
dition. At low temperatures the alternating part ac-
tually increaseswith the distance from the open end

xalt
x

b!`
! a

p
xy

p
2y. Any finite temperature suppresses

this growth exponentially withx, so that we expect a typ-
ical maximum which gets shifted further into the chain
as the temperature is lowered. Furthermore, even at
T ­ 0, the staggered magnetization does not increase in-
definitely with distance from the impurity, but rather os-
cillates with a wavelength,4pyyh, i.e., Maltsx, h, T ­
0d ­ a

p
2yx sinshxy2yd. This exotic behavior is similar

to Friedel oscillations except that the1yr3 decay, which
occurs there, gets enhanced to a

p
r growthdue to a com-

bination of reduced dimensionality and the absence of
charge fluctuations in this pure spin system.

The result from Eq. (9) can be confirmed indepen-
dently with quantum Monte Carlo simulations. The lo-
cal susceptibility as a function of distance from the open
end is shown in Fig. 5 from Monte Carlo simulations at

FIG. 2. The impurity part of the structure factorSimpskd
according to quantum Monte Carlo simulations.

T ­ Jy15. After extracting the uniform and alternating
parts as shown in Fig. 6, we can compare the alternating
part to the predicted form from Eq. (9), where the over-
all constant was chosen to bea ­ 0.58. The field theory
prediction, c ­ a2y2, together with the valuec ­ 0.14
from our MC measurement ofSskd, gives a ø 0.53, in
reasonable agreement with above. While the shape of the
theoretical prediction forxalt

x fits the Monte Carlo results
very well, there is an unexplained shift of about two sites,
which might be due to irrelevant operators. The func-
tional dependence in Eq. (9) holds rather well for all tem-
peraturesb sampled (up to the shift of two sites). For
T ­ Jy15 the shift in the susceptibility due to the impu-
rity is larger than the bulk susceptibility over a distance of
about 25 lattice sites from the impurity. Thus we expect
that it should be possible to observe this effect in nuclear
magnetic resonance Knight shift experiments. Note that
xi , 0 for small eveni, so that those spins will tend to
antialign with the applied field.

FIG. 3. Monte Carlo results for the shifted bulk structure
function, Ssk0d 2 2c lnsLJbd, compared to the field theory
prediction of Eq. (6), withc ­ 0.14 andL ­ 0.75.
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FIG. 4. Monte Carlo results for the scaled impurity part
TSimpsk0d compared to Eq. (7) withc ­ 0.14.

The uniform part of the susceptibility is not directly
affected by the boundary condition, but gets an additional
nonuniversal contribution nearx ­ 0 from an irrelevant
boundary operator [2,10], which also appears to be present
in the Monte Carlo results in Fig. 6. This shift in
the uniform susceptibility is what would be expected
classically, but the large alternating part is a purely
quantum mechanical effect.

In conclusion, we have calculated the effect of impuri-
ties on the neutron scattering cross section and the NMR
Knight shift using both field theory and Monte Carlo
methods. The two methods are in reasonable agreement
and the effects seem large enough to be observable ex-
perimentally. The Knight shift actuallyincreaseswith
distance from the impurity in the limit of zero field and
temperature.

FIG. 5. The local susceptibility vs distance from the open end
according to Monte Carlo simulations atT ­ Jy15.

FIG. 6. The uniform and alternating parts of the local
susceptibility according to Monte Carlo simulations atT ­
Jy15 compared to the field theory equation (9) witha ­ 0.58.
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