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Abstract
Although photon Bose–Einstein condensates have already been used for studying many interesting
effects, the precise role of the photon–photon interaction is not fully clarified up to now. In view of
this, it is advantageous that these systems allow measuring both the intensity of the light leaking
out of the cavity and its spectrum at the same time. Therefore, the photon–photon interaction
strength can be determined once via analysing the condensate broadening and once via examining
the interaction-induced modifications of the cavity modes. As the former method depends
crucially on the concrete shape of the trapping potential and the spatial resolution of the used
camera, interferometric methods promise more precise measurements. To this end, the present
paper works out the impact of the photon–photon interaction upon the cavity modes. A quantum
mechanical description of the photon–photon interaction, including the thermal cloud, builds the
theoretical backbone of the method. An exact diagonalisation approach introduced here exposes
how the effective photon–photon interaction modifies both the spectrum and the width of the
photon gas. A comparison with a variational approach based on the Gross–Pitaevskii equation
quantifies the contribution of the thermal cloud in the respective applications.

1. Introduction

Observing photon–photon interactions is a demanding task. Classical electrodynamics considers light as a
linear phenomenon, such that two crossing light beams only interfere with each other, but do not scatter.
However, the advent of quantum electrodynamics changed this view, since in this theory electromagnetic
fields can polarise the vacuum. Halpern was the first to express the idea of light-by-light scattering within the
Dirac theory of electrons and positrons [1]. Afterwards, [2, 3] formalised the idea already to the modern
picture, as figure 1(a) portrays it. Here, two photons interact by polarising the vacuum via the production of
a virtual electron–positron pair. The pair then recombines back into two photons with different wave vectors.
Subsequently, [4] works out the corresponding modification of the Maxwell equations in vacuum, which is
nowadays referred to as the Euler–Heisenberg Lagrangian. However, the authors of [4] point out, that this
only works with photons in the Röntgen- or gamma-ray regime, since the energy needs to be high enough
for supporting the electron–positron pair creation. The later works [5, 6] support these findings by applying
the more modern S-matrix apparatus. Since this process appears in fourth-order perturbation theory, the
cross-section for this kind of photon–photon interaction is proportional to the fourth power of
Sommerfeld’s constant. Therefore, only particle accelerators allow access to this kind of processes. In 2017
the ATLAS experiment at the Large Hadron Collider was able to observe light-by-light scattering in vacuum
for the first time [7].

Embedding photons in non-linear materials increases the photon–photon interaction significantly. One
prominent example for such a non-linear process is the Kerr effect [8], see figure 1(b). Here, the refractive
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Figure 1. Possible photon–photon interaction processes. (a) Interaction vertex in vacuum. Two incoming photons produce a
virtual electron–positron pair, which recombines again. (b) Photons in non-linear media, here represented via their density |ψ|2,
interact with the non-linear medium. This effectively introduces a Kerr interaction between two photons via changes of the
refractive index ∆n.

Figure 2. Photon–photon interaction in photon BEC setups. (a) Mechanism of thermo-optic interaction. The photon density
|ψ|2 heats the medium to a temperature ∆T. This shifts the refractive index by ∆n, which effectively introduces a photon–photon
interaction. (b) Timescales of thermo-optic interaction. The timescales of the photon population and the external pump pulse are
the fastest timescales, whereas the scale of the temperature diffusion is the slowest one.

index of the material changes with the photon density, leading to effects like the self-focusing of a light beam
or the existence of optical solitons. Such experiments are performed in effectively two-dimensional setups.
This is remnant from light propagation in, e.g. glass cylinders, where the coordinate along the optical axis,
due to the paraxial approximation, acts as the time coordinate and the remaining two dimensions as true
spatial dimensions [9, 10]. A second possibility relies on confining the light together with the non-linear
medium inside a cavity. As the cavity mirrors impose Dirichlet boundary conditions upon the light field, a
standing wave emerges along the optical axis, freezing out the motion along this direction. However, the used
photons are usually prepared in a dissipative state, as light leaks out of the apparatus and has to be reinjected
by an external light source for achieving a steady state.

However, filling a microcavity with a dye solution offers the possibility to create light, the steady-state
spectral distribution of which resembles thermal equilibrium [11, 12]. In these systems, also a small effective
photon–photon interaction emerges, which does not stem from a Kerr effect but from a thermal
non-linearity, the mechanism of which figure 2(a) sketches. This originates from a heating of the dye
molecules, which do not emit back all absorbed photons into the photon gas, but instead convert them into
vibronic excitations. As a consequence, the dye solution heats up, changing its refractive index. As the heat
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diffuses through the experimental setup, the resulting effective thermo-optic photon–photon interaction is
non-local in space and retarded in time, which represents the main difference to the photon–photon
interactions sketched in figure 1. Since the temporal retardation is large compared to the remaining
experimental timescales, see figure 2(b), the thermo-optic photon–photon interaction effectively
corresponds to a potential, which increases linearly in time [13, 14]. As the thermo-optic interaction turns
out to be weak, only the photon Bose-Einstein condensate(phBEC) regime allows determining its strength by
measuring the condensate width [11]. However, due to the smallness of the effective photon–photon
interaction, this method lacks of precision.

Instead, spectroscopic measurements promise an increased precision by measuring the small energy
shifts, which the thermo-optic photon–photon interaction induces during a single pump pulse. The basis of
the theoretical description of this thermo-optic interaction is a detailed model for the diffusion of the
temperature produced in a single pump pulse. As the temperature slowly builds up, an adiabatic
approximation of the corresponding quantum mechanical modelling grants access to the instantaneous
eigenvalues. This allows determining the effective photon–photon interaction strength from the energy
difference between two eigenmodes. Whilst [14] works out the corresponding basic theory and applies
first-order perturbation theory for deriving some initial results, this paper goes beyond and works out in
detail both the energy shifts and the condensate broadening by applying exact diagonalisation (ED) [15].

The ED of the underlying second-quantised Hamiltonian represents a powerful method in case of
increased effective photon–photon interactions. For instance, [16] predicts this situation at the dimensional
crossover from 2D to 1D, where a significant trap anisotropy enhances the photon–photon interaction via an
increased photon density. Experimentally, microstructured mirrors provide such anisotropic traps [17–19].
However, the thermal cloud leads to a stronger increase of the condensate width and to a possible
overestimation of the effective photon–photon interaction, provided the theoretical modelling only
considers the phBEC ground state. To avoid this, the ED method combines the investigation of the
thermodynamic behaviour of the non-interacting phBEC [20] with the influence of the thermo-optic
interaction upon the phBEC ground state at the dimensional crossover [16].

The present paper is structured as follows: section 2 starts with a short summary of the underlying
second-quantised Hamiltonian and uses ED for working out the new eigenmodes of the harmonically
trapped photon gas. Moreover, the corresponding condensate width is compared to former results and
special attention lies on the temperature dependence of both the eigenenergies and the width of the photon
gas. Subsequently, section 3 deals with the dimensional crossover and presents the corresponding results.
Section 4 summarises the main findings of the paper.

2. ED of harmonic potential

This section provides a concise introduction to the model used for describing the thermo-optic interaction,
which is based on [13] and worked out more rigorously in the preceding paper [14]. Afterwards, ED serves as
a method for benchmarking both the perturbative results on the energy spectrum derived in [14] and the
variational approach performed in [13]. The last part of this section goes beyond these findings and
investigates the impact of finite temperatures on both the energy spectrum and the cloud width.

2.1. Model
As the phBEC itself varies on timescales, which are much faster than the produced temperature, see
figure 2(b), [14] breaks down the quantum mechanical description of the thermo-optic interaction to an
effective potential, which increases linearly in time. Hence, the second-quantised Hamiltonian,

Ĥ(t) =
∑

nn′
Hn,n′(t)â†n(t)ân′(t) , (1)

bears an adiabatic time dependency introduced by the temporal retardation of the thermo-optic
photon–photon interaction. The bosonic creation and annihilation operators â†n(t), ân′(t) belong to the
instantaneous eigenmodes of the Hamiltonian (1). The Hamiltonian matrix in (1) has the form

Hn,n′(t) = En(0)δn,n′ + g(t)Fn,n′ , (2)

with the effective time-dependent thermo-optic interaction strength g(t) increasing linearly in time [14]. At
the beginning of the experiment, i.e. at t = 0, no interaction is present, yielding the initial value g(0) = 0. The
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corresponding eigenvalue problem leads to the eigenenergies En(0) and the eigenfunctions ψn(x).
Furthermore, the non-diagonal matrix

Fn,n′ =
∑

l

Nl(0)

ˆ

d2x ψ∗
n(x)|ψl(x)|2ψn′(x) (3)

contains the information about the thermo-optic interaction. It uses the mode occupation in the form of a
Bose–Einstein distribution at the beginning of the experiment, which stems from the temporal retardation of
the thermo-optic interaction:

Nl(0) =
{

eβ[El(0)−µ(0)] − 1
}−1

. (4)

Here β = 1/(kBT) denotes the inverse temperature and µ(0) represents the initial chemical potential, which
is fixed by the conserved total particle number N =

∑
l⟨a

†
l (t)al(t)⟩.

2.2. Harmonic potential
This paper specialises to a harmonic trapping potential of the form

V(x) =
mΩ2

x

2

(
x2 +λ4y2

)
, (5)

with the effective photon mass m and the trapping frequency Ωx in x-direction. The trap-aspect ratio
λ=

√
Ωy/Ωx determines the trapping frequency Ωy in y-direction. Therefore, the eigenenergies take

the form

En(0) = ℏΩx

[
nx +λ2ny +(1+λ2)/2

]
. (6)

Furthermore, the Gauß–Hermite functions

ψn(x) =

√
1

2nx+ny nx!ny!π lxly
Hnx

(
x

lx

)
Hny

(
y

ly

)
e−x2/(2l2x)−y2/(2l2y) (7)

determine the eigenfunctions of the second-quantised Hamiltonian (1) and the corresponding Hamiltonian
matrix (2), where li =

√
ℏ/(mΩi), i = x,y, denote the oscillator lengths in both directions and Hn are the

Hermite polynomials.
This paper numerically determines the new eigenmodes of the Hamiltonian matrix (2) with the

potential (5) by applying ED. As this method necessitates using a finite number of Gauß–Hermite
eigenmodes (7), the sixty lowest energy subspaces are included. This ensures in the Bose–Einstein condensed
regime, that the relative occupation of higher excited states is negligible. With this finite number of modes,
the interaction matrix (3) is constructed for a given total particle number N and thermodynamic
temperature T. Hence, the presented method not only verifies previously published calculations relying on
different methods, but also reveals possible deviations from the latter. To be specific, this section focuses on
the isotropic case, i.e. λ= 1.

2.3. Spectrum
This paragraph presents the results for the adiabatic time-dependent energy eigenvalues En(t) of the
Hamilton matrix (2) for the potential (5). Figure 3(a) compares the eigenenergies obtained by the ED
method with the results of first-order perturbation theory from the preceding paper [14]. It plots the
eigenenergies as a function of the dimensionless interaction strength g̃(t) = mg(t)/ℏ2, the magnitude of
which is determined by the duration of the external pump beam. The results of both approaches agree well
and, thus, the same observation holds for the corresponding energy differences shown in figure 3(b).
However, for larger interaction strengths, a slight deviation of up to 10−3 between the ED results and the
first-order perturbation theory [14] becomes visible in figure 3(c). Hence, the perturbation theory derived in
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Figure 3. (a) First few eigenenergies of the second-quantised Hamiltonian matrix (2). The dots stand for the results of the ED,
whereas the lines represent the first-order perturbative results from [14]. (b) Corresponding energy differences
∆En,n′ = En − En′ . (c) Relative deviation of energy differences once calculated by the perturbation theory and once by the ED
method. In all plots, the indices 2± = [(20)± (02)]/

√
2 denote the mode hybridisation due to the interaction.

[14] yields a good approximation in this regime of parameters. Therefore, the corresponding formulas,
which analytically express the photon–photon interaction strength via the energy differences, are precise
enough for being applied to spectroscopic measurements.

2.4. Condensate width
The new eigenstates also show a broadening of the photon gas. The unitary matrix Un,m(t), which rotates
into the instantaneous eigenbasis of the Hamiltonian matrix (2), defines creation and annihilation operators
ân(t), â†n(t) at a given time t:

ân(t) =
∑

l

Un,l(t)âl(0), â†n(t) =
∑

l

U†
n,l(t)â

†
l (0). (8)

With these at hand, the total photon density,

n(x, t) =
∑

l

Nl(t)nl(x, t), (9)

is expressed in terms of the instantaneous eigenstate occupations,

Nl(t) =
{

eβ[El(t)−µ(t)] − 1
}−1

, (10)

and the corresponding eigenstate density,

nl(x, t) =
∑

n,m

U†
l,n(t)ψ

∗
n(x)ψm(x)Um,l(t) . (11)

Therefore, the total width σx of the photon gas is defined by the FWHM

σx(t) =
√

2⟨x2⟩(t) . (12)
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Figure 4. Comparison of the resulting condensate width σx from the ED of the Hamiltonian matrix (2) (dots) with the variational
approach from appendix A (solid line). The inset shows the relative deviation between both results.

Here, the second moment of the density distribution

⟨
x2
⟩
(t) =

´

d2x x2n(x, t)
´

d2x n(x, t)
(13)

with the adiabatic time-dependent photon density (9), takes the form

⟨
x2
⟩
(t) =

∑

l

Nl(t)

N

⟨
x2
⟩

l
(t) , (14)

with the adiabatic time-dependent matrix elements

⟨
x2
⟩

l
(t) =

ˆ

d2x x2nl(x, t) . (15)

Older calculations and measurements [11, 13] consider the deep condensate limit N0(t)≈ N. In this case,
(12) reduces to the width of the ground state, i.e. σx(t)≈

√
2⟨x2⟩0 (t). Appendix A reproduces the

corresponding variational calculation of the photon-condensate width, which was first given in [13]. Figure 4
compares the results for the condensate width, calculated via ED and via the variational approach from
appendix A. As the results agree well, the ED method developed here is found to be able to reliably reproduce
the former theoretical and experimental results.

However, a closer look at the inset in figure 4 for larger effective interaction strengths reveals that the
results tend to deviate for larger effective photon–photon interaction strengths. Since the width calculated
from the ED is larger than the corresponding width from the variational approach, this deviation stems from
an increased coupling to the thermal cloud. Thus, the larger the photon–photon interaction strength is, the
ground-state-only description is less accurate.

2.5. Thermal cloud
Previous investigations of the effective photon–photon interaction only consider the zero-temperature limit.
This section, however, deals with the effects of finite temperature, which the Hamiltonian matrix (2)
naturally includes. At the beginning of the experiment, the thermo-optic interaction is not present, and the
phBEC behaves as an ideal Bose gas in 2D [20]. As the photon–photon interaction strength increases along
the duration of an experiment, this section aims at describing the influence of the thermal cloud upon the
phBEC properties.

First, the focus lies on the temperature dependence of the energy eigenvalues, which figure 5(a) shows. In
the thermal regime, the energies undergo a small shift due to the interaction, whereas in the condensed
regime, i.e. for T < Tc, a more significant shift builds up. This is due to the small ground-state occupation in
the thermal phase. Since the coupling to the ground state is always the largest, significant energy shifts only
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Figure 5. (a) Temperature dependence of the first few energy eigenvalues of the Hamiltonian matrix (2). (b) Corresponding
energy differences. The dots denote the results from the ED and the black lines are the corresponding (a) energy eigenvalues and
(b) energy differences without the interaction, i.e. at the beginning of the experiment. Both plots are for total particle number
N = 104 and interaction strength g̃ = 10−4.

Figure 6. Photon occupation Nl(t) of the different states relative to the total photon number N = 104 in the Bose–Einstein
condensed regime characterised by the condensate fraction N0/N ≈ 0.9. The dots (crosses) indicate the photon occupation
without (with) interaction at the beginning (end) of the experiment. The inset shows the details for the lowest-lying states. The
maximal interaction strength is g̃(tend) = 10−4.

occur in the condensed regime, as figure 5(a) clearly indicates. Experiments can validate this finding by
measuring the differences between the energy levels, which are plotted in figure 5(b).

The time-dependent shifts of the energy eigenstates El(t) also affect the Bose–Einstein distribution (10)
of the photons. Figure 6 compares the photon number distribution (10) at the beginning (dots) and at the
end of the experiment (crosses). The horizontal shift of the occupation numbers at the end of the experiment
indicates interaction-induced shifts of the eigenenergies. The occupation numbers themselves, however,
undergo only minor modifications due to the smallness of the interaction.

Finally, the ED also allows calculating the width (12) of the total photon gas, which figure 7 depicts. In
the zero-temperature limit, the width of the photon gas approaches the ground-state width. At the beginning
of the experiment, where no interaction is present, this width corresponds to the oscillator length, whereas
during an experimental run the ground-state width increases and so the width of the total gas increases with
the photon–photon interaction. In the thermal regime, however, the interaction does not lead to a noticeable
change of the photon-gas width. This finding coincides with the observations above, showing only very small
shifts in the energy levels in the thermal regime. The saturation of the width, which occurs for large
temperatures, is a remnant from the finite number of considered eigenmodes.
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Figure 7. Total width of the photon gas at the beginning of the experiment (blue) and at the end of the experiment (orange), as
well as the width of the ground state with interaction (green). The black line indicates the oscillator length, which is also the width
of the ground state without interaction. The drawn lines are guides to the eye. The calculation uses the total particle number
N = 104 and the maximal interaction strength g̃(tend) = 10−4.

3. Dimensional crossover

With the development of new experimental techniques for micro-structuring the cavity mirrors [17–19], also
large trap anisotropies for phBECs can be manufactured. Therefore, these techniques allow realising a
dimensional crossover from 2D to 1D. In this case, the ED method turns out to be essential, since [16]
predicts a considerable enhancement of the effective photon–photon interaction strength.

The beginning of the section maps the 2D gas in a strong anisotropic trap onto a 1D gas, which
determines the effective 1D interaction strength. The latter turns out to depend on the trap-aspect ratio λ.
With this at hand, the effective 1D energy spectrum is calculated on the one hand numerically and on the
other hand approximated analytically. The latter grants access to an approximation formula determining the
effective photon–photon interaction strength from the differences of the eigenenergies in the quasi-1D limit.
Finally, the calculation of the condensate width in the quasi-1D limit shows the significance of the ED
method, as the width turns out to deviate from the variational approach presented in [13], which is
recovered in appendix A. Note that in this chapter the final photon–photon interaction strength g̃(tend) is
assumed to be an order of magnitude smaller than in the previous section, such that g̃(tend) = 10−5. This
adjustment takes into account the assumed shorter condensate lifetime due to the increased photon intensity,
resulting from the strong anisotropy. Nevertheless, this section shows the strong increase of the effective
photon–photon interaction strength due to the dimensional crossover.

3.1. Effective 1D interaction strength
Stein and Pelster [20] demonstrates that for trap-aspect ratios larger than a critical value λ1D the squeezed
direction freezes out in its ground state and that the systems behaves effectively quasi one-dimensional. In
addition, the density in the frozen out direction alters the bare 2D interaction strength g̃ [16]. The resulting
effective quasi one-dimensional interaction strength g̃1D(λ) turns out to be a function of the trap-aspect
ratio λ.

The current paper uses the same reasoning for a single pump pulse, which [16] applies to the steady state
after several pump pulses. According to definition (5) an increasing trap-aspect ratio squeezes the y-direction
and, so, in the quasi-1D case the photons only populate the ground mode in this direction. This suggests the
factorisation

ψn(x) = χnx(x)φ0(y;λ) (16)

for the Gauß–Hermite eigenmodes of the potential (5). Therefore, the interaction matrix (3) reduces to

Fnx,n′
x
= w(λ)

∑

lx

N(lx,0)

ˆ

dx χ∗
nx
(x)|χlx(x)|2χn′

x
(x) , (17)
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Figure 8. (a) First few eigenenergies of the Hamiltonian matrix (2) relative to the ground state energy E0 = ℏΩx(1+λ2)/2 at
dimensional crossover. (b) Corresponding energy differences. Here, the dashed line shows the linearisation for the lowest energy
difference ∆E1,0. In both pictures, the dots represent the results from the ED and the lines are the analytical
approximations (B.2). The calculation uses the total particle number N = 104, a condensate fraction of N0/N ≈ 0.9 and the
maximal interaction strength g̃(tend) = 10−5.

where the weight

w(λ) =

ˆ

dy |φ0(y;λ)|4 (18)

incorporates the influence of the squeezed direction and, thus, depends on the trap-aspect ratio λ. In the real
1D case, however, the structure of the Hamiltonian matrix (2) remains the same; only the multi-indices turn
into single indices. Hence, the identification

g̃1D(t;λ) = g̃(t)w(λ) (19)

of an effective 1D interaction strength allows a mapping of the matrix (3) onto the real 1D case. The explicit
calculation of the weight (18) for the harmonic potential (5) leads to

g̃1D(t;λ) =
g̃(t)λ√

2π
. (20)

The effective 1D interaction (20) agrees with the corresponding result for the contact Kerr interaction
obtained in [16], but not with the similar one for the thermo-optic interaction, although the current work
considers only the latter. The reason is the used short-time approximation in (1). Due to this, the matrix
elements (3) effectively resemble the corresponding ones for a contact interaction. Stein and Pelster [16]
investigates the steady state after several pump pulses, such that the temperature diffusion has a significant
impact on the behaviour. In the current work, however, this does not happen due to the short-time
approximation.

3.2. Energy spectrum
As the effective 1D interaction (20) increases along the dimensional crossover, the deviations observed in the
previous sections become significantly large and both the perturbative and the variational calculation are no
longer valid in the case λ≫ 1. Figure 8 illustrates this finding. In figure 8(a) the new eigenenergies are
plotted with respect to the non-interacting ground-state energy E0 = ℏΩx(1+λ2)/2 at the dimensional
crossover for a fixed interaction strength g̃(t), revealing an increasing effective 1D interaction strength
g̃1D(t;λ). Due to the enhanced effective interaction strength, increasing the trap anisotropy shifts the
eigenenergies to larger values. Here too, the ground-state energy undergoes the largest change, which is
clearly non-linear. Figure 8(b) shows that the energy differences likewise increase with the trap-aspect ratio
pointing towards the predicted increased photon–photon interaction at the dimensional crossover, see [16].
Thus, the ED method also allows determining the effective photon–photon interaction strength along the
dimensional crossover in the same way by spectroscopic measurements as outlined above. For instance, one
approach relies on interfering different cavity modes and observing the resulting beating signal.

Appendix B derives an analytic approximation for the eigenvalues, which are numerically calculated by
the ED in the deep condensate limit. This approach considers the first four eigenmodes and diagonalises the
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Figure 9. Dimensional crossover. Both plots are for a total particle number N = 104 and a maximal interaction strength
g̃(tend) = 10−5. (a) Comparison of condensate width (12) at the end of the experiment for different trap-aspect ratios at fixed
interaction strength. Here, the condensate fraction amounts to N0/N ≈ 0.9. Dots: results from ED; lines: variational approach.
(b) Total width of the photon gas at the beginning of the experiment (blue) and at the end of the experiment (orange), as well as
the width of the ground state with interaction (green) for trap-aspect ratio λ= 10. The black line indicates the oscillator length,
which is also the width of the ground state without interaction. The drawn lines are a guide to the eye.

corresponding 1D Hamiltonian matrix. This reveals the non-linear character of the eigenvalues, shown in
figure 8(a) to stem from avoided crossings with the next-higher eigenmodes with the same symmetry. Due to
the same reason, this method only approximates the ground and first excited state well, whereas the ED and
the analytical approximation for the higher excited states agree less for larger anisotropies. This can be
avoided by taking into account even higher excited states, which is necessary for going to larger trap
anisotropies respectively larger interaction strength, but makes the analytical diagonalisation more difficult.
However, if the effective photon–photon interaction strength is small enough for a linearisation, the
analytical approximation for the ground and first-excited state represents a result for determining it
according to

g̃1D(λ)≈
2
√

2π

N0

(
1− ∆E1,0(t)

ℏΩx

)
. (21)

3.3. Width
Figure 9(a) compares the widths from the ED with the results from the variational approach for a fixed
interaction strength. Whereas in the squeezed y-direction the results from both methods agree quite well at
the whole crossover, the results coincide only for small trap-aspect ratios in the un-squeezed x-direction. At
larger trap-aspect ratios, the results deviate up to several percent, which is caused by the coupling to the
thermal cloud. Since the effective photon–photon interaction increases along the dimensional crossover, in
the sense of equation (20), the thermal cloud becomes more and more important in this scenario.
Consequently, the ED method plays a crucial role for measuring the effective photon–photon interaction at
the dimensional crossover.

Also, for larger trap anisotropies the total width of the photon gas can be calculated from (12), which
figure 9(b) pictures. Here, the blue line depicts again the total width of the photon gas at the beginning of the
experiment for a certain thermodynamic temperature T. As the experiment runs, the effective
photon–photon interaction increases and, thus, also the photon gas width grows during the experiment.
Alas, only in the condensed regime this growth is significant and due to the trap anisotropy enhanced in
comparison to the situation in the isotropic trap, see figure 7. In the thermal regime, however, still no impact
of the effective photon–photon interaction is observable.

4. Summary

The findings presented in this work are crucial for precisely quantifying the effective photon–photon
interaction strength in current and future phBEC experiments. The present paper analyses in detail the
theory of [14] by using ED for a harmonically trapped photon gas. The aim consists in determining the
impact of the thermo-optic interaction upon the cavity modes. The accurate prediction of the shifts of the
eigenenergies allows for a precise interferometric measurement of the emerging photon–photon interaction.
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The method reproduces formerly derived results and extends these systematically by taking the thermal
cloud into account. The influence of thermal cloud turns out to be crucial for understanding the dimensional
crossover and prevents a possible overestimation of the effective photon–photon interaction strength. Where
possible, analytic estimates provide aid for determining the effective photon–photon interaction strength
from measurements.
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Appendix A. Variational approach

This appendix follows [13] and calculates a variational solution for the Hamiltonian (1) at T = 0 with the
potential (5). In this case, a suitable ansatz for the eigenfunction is given by

ψ(x, t) =

√
λN

π l2αx(t)αy(t)
exp

{
− 1

2l2

[
x2

αx(t)2
+

y2

αy(t)2

]}
, (A.1)

where l =
√
ℏ/(mΩx) denotes the oscillator length and αx(t),αy(t) stand for the dimensionless variational

parameters with the adiabatic time dependency. Consequently, the initial density is given by
n(x,0) = |ψ(x,0)|2, with αx(0) = 1 = αy(0). The standard procedure yields the variational equations

α4
x = 1+

2g̃(t)λN

π

α4
x√

(1+α2
x)

3
(

1+α2
y

) (A.2)

and

α4
y = 1+

2g̃(t)N

πλ

α4
y√

(1+α2
x)
(

1+α2
y

)3
. (A.3)

Appendix B. Analytical approximation in the 1D case

The aim of this appendix is to work out an analytical approximation for the quasi-1D case of a harmonic
potential. Since the trap-aspect ratio determines the interaction strength g̃1D(λ), the latter can reach
comparatively large values. Therefore, the first four eigenstates are taken into account and the resulting 1D
Hamiltonian matrix is diagonalized. Moreover, the deep condensate limit N0 ≈ N is assumed. With the
harmonic-oscillator eigenfunctions, the Hamiltonian matrix reads

H1D = ℏΩx




N0 g̃1D(λ)√
2π

0 −N0 g̃1D(λ)
4
√
π

0

0 1+ N0 g̃1D(λ)

2
√

2π
0 −N0 g̃1D(λ)

√
3

8
√
π

−N0 g̃1D(λ)
4
√
π

0 2+ 3N0 g̃1D(λ)

8
√

2π
0

0 −N0 g̃1D(λ)
√

3
8
√
π

0 3+ 5N0 g̃1D(λ)

16
√

2π



, (B.1)

where the shift due to the unperturbed ground-state energy has been dropped. The Hamiltonian matrix
possesses the eigenvalues

E0 = ℏΩx

(
1+

11N0g̃1D(λ)

16
√

2π
−
√

1− 5N0g̃1D(λ)

8
√

2π
+

57(N0g̃1D(λ))2

512π

)
, (B.2a)
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E1 = ℏΩx

(
2+

13N0g̃1D(λ)

32
√

2π
−
√

1− 3N0g̃1D(λ)

16
√

2π
+

105(N0g̃1D(λ))2

2048π

)
, (B.2b)

E2 = ℏΩx

(
1+

11N0g̃1D(λ)

16
√

2π
+

√
1− 5N0g̃1D(λ)

8
√

2π
+

57(N0g̃1D(λ))2

512π

)
, (B.2c)

E3 = ℏΩx

(
2+

13N0g̃1D(λ)

32
√

2π
+

√
1− 3N0g̃1D(λ)

16
√

2π
+

105(N0g̃1D(λ))2

2048π

)
. (B.2d)
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