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We study the Néel temperature of quasi-one-dimensional S � 1�2 antiferromagnets containing non-
magnetic impurities. We first consider the temperature dependence of the staggered susceptibility of
finite chains with open boundary conditions, which shows an interesting difference for even and odd
length chains. We then use a mean field theory treatment to incorporate the three-dimensional interchain
couplings. The resulting Néel temperature shows a pronounced drop as a function of doping by up to a
factor of 5.
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The study of doped low-dimensional antiferromagnets
has been a very active field since the discovery of high-Tc

superconductivity. A particularly simple form of doping
results from replacing some magnetic Cu ions by non-
magnetic ions like Zn. In this case the system is well
described by the Heisenberg model with some spins re-
moved from a regular lattice. This problem has been quite
extensively studied both theoretically and experimentally
in the quasi-two-dimensional case. Recent Monte Carlo
simulations have shown convincingly that the zero tem-
perature two-dimensional system remains Néel ordered for
impurity concentrations, p up to the classical percolation
threshold (pc � 0.407, on the square lattice) [1,2]. An
analytic approach has been developed based on spin-wave
theory and the T -matrix approximation, valid at impu-
rity concentrations well below percolation, and extended
to include weak interplane couplings [3]. Recent experi-
ments on La2Cu12x�Zn, Mg�xO4 [4] are consistent with
the T � 0 critical concentration corresponding to classical
percolation, and agree in detail, at lower impurity concen-
trations, with the analytic theory.

Here we study the effect of doping on three-dimensional
ordering in spin-1�2 chain compounds where the exchange
interaction along the chains J is much stronger than the
interchain coupling J0. Before doping, the Hamiltonian is

H �
X
j, �y

√
J �Sj,�y ? �Sj11,�y 1

X
�d

J 0 �Sj,�y ? �Sj,�y1 �d

!
, (1)

where J is the site index along the chains and �d are the vec-
tors to neighboring chains. The chain lattice spacing has
been set to unity. Randomly removing some of the spins
breaks the chains up into finite segments with open bound-
ary conditions, which are still weakly coupled to neigh-
boring chains. This model describes Zn doped Sr2CuO3,
for example. For the pure system a standard method to
study the Néel temperature for weakly coupled chains is
to first determine the staggered susceptibility of the one-
dimensional chains, x1�T�. If we then treat the interchain
couplings in mean field theory [5], we obtain the condition
which determines the Néel temperature
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zJ 0x1�TN � � 1 , (2)

where z is the number of neighboring chains from the sum
over �d in Eq. (1). Since at low T , x1�T� diverges as 1�T ,
this predicts TN ~ J 0, so that Néel order is predicted to
occur for arbitrarily weak interchain coupling.

In this Letter we extend this approach to the doped sys-
tem by calculating the staggered susceptibility of chains
with arbitrary length L to find an average value of x1 as a
function of temperature T . This type of mean field
treatment of doped samples was used to study the Néel
temperature in the quasi-one-dimensional Ising and
classical Heisenberg models [6], as well as in quasi-two-
dimensional antiferromagnets [3]. This method can
be carried out much more accurately in the quasi-one-
dimensional case studied here because an analytic expres-
sion for the staggered susceptibility of finite chains can
be found, which by itself yields rather interesting results,
exhibiting very different behavior for chains with an
even and odd number of sites. Equation (2) corresponds
to approximating the interchain interactions as simply
providing a staggered field of fixed magnitude, acting on
a given chain. This approximation results from averaging
over both quantum fluctuations and impurity locations on
neighboring chains. We expect it to become more reliable
when the average chain length L̄ and z (i.e., the lattice
dimension) increases. Clearly this approximation must
break down at large impurity doping p � 1��L̄ 1 1�,
before the percolation threshold is reached (pc � 69.8%
for a three-dimensional simple cubic lattice). In lower
dimensions this approach becomes more questionable
since the percolation threshold is reached earlier and the
number of neighbors is lower, while in higher dimensions
this method may become exact as z ! ` and valid for all
doping levels since pc ! 1.

The staggered susceptibility per unit length of a finite
chain with L sites and open boundary conditions at finite
temperature T � 1�b is

x1�L, T� �
1
L

Z b

0
dt

LX
j,k�1

�21�j2k�Sz
j �t�Sz

k�0�� . (3)
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In order to find a reliable average we need to determine
x1 for a large range of temperatures T and lengths L for
which we use both bosonization techniques and numerical
Monte Carlo simulations. Note that here we measure the
staggered response to a staggered field, not to be confused
with the staggered response to a uniform field [7].

In order to calculate x1 as a function of temperature we
now go to the continuum limit and use the field theory
treatment which is correct in the asymptotic low T , large
L limit [8]. The spin operators are then described in terms
of a boson field, f,

Sz
j �

≠xf
p

2p
1 C�21�j cos

p
2p f , (4)

where C is a parameter which will be discussed in more
detail below. The boson field f is described by a free
massless relativistic Hamiltonian [8] up to a marginally
irrelevant interaction which gives rise to logarithmic cor-
rections as we will see later. We normalize the operator
cos

p
2p f so that its T � 0, L � `, equal time correla-

tion function decays with distance as 1�2jrj. In the sum of
Eq. (3) we can neglect all rapidly oscillating parts so that
only the second term in Eq. (4) will be kept in the alter-
nating spin-spin correlation function

G�x, y, t� � C2�cos
p

2p f�x, it� cos
p

2p f�y, 0�� ,
(5)

so that Eq. (3) becomes

x1 �
1
L

Z b

0
dt

Z L

0
dx

Z L

0
dy G�x,y, t� . (6)

To calculate the correlation function we use the mode ex-
pansion of the boson for a finite chain with open boundary
conditions [9]

f�x, t� �

r
p

8
1

p
2p Sz x

L
1 f.�x, t� , (7)

where
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f.�x, t� �
X̀
n�1

1
p

pn
sin

pnx
L

�e2ipnyt�Lan 1 H.c.�

(8)

contains the ordinary boson modes an and the “zero mode”
eigenvalue Sz corresponds to the z component of the total
spin of the chain, which takes integer values for an even
number of sites L and half-integer values for odd L. The
spin wave velocity is given by y � pJ�2.

Before considering the case of arbitrary T and L, it
is interesting to consider the limit T ! 0 with L held
fixed. In this limit, upon inserting a complete set of states,
x1 !

1
LT j�0jS

z
altj0�j2 will be dominated by the ground

state j0�, where Sz
alt �

PL
j�1�21�j11Sz

j . Using Eq. (7) we
can directly find the local staggered magnetization of the
lowest energy state in any sector with a given Sz

�Sz�x�� � C�21�x�cos
p

2p f�x��

� C�21�x sin�2pSzx�L�p
�2L�p� sin�px�L�

. (9)

For L even Sz � 0 in the ground state so this gives zero
LTx1 ! 0. However, for L odd Sz � 61�2 in the ground
states, giving

�6jSz�x�j6� � 6C�21�x

r
p

2L
sin

px

L
, (10)

which upon integrating over x gives Sz
alt ~

p
L and there-

fore x1 ~ 1�T . This divergence is in sharp contrast to the
even case. Interestingly, Eq. (10) indicates a maximum re-
sponse in the center of the chain which agrees with numer-
ical results [10,11] and is reminiscent of the square-root
increase of the staggered response to a uniform field with
the distance from the open ends [7]. It is interesting to
note that our finding Sz

alt ~
p

L for a spin chain corre-
sponds to an intermediate result between a Néel state with
Sz

alt � 6L�2 and a nearest neighbor dimer state with one
unpaired spin Sz

alt � 61�2.
We now consider the case of general L and T using the

field theory approach. The correlation function can then
be written as
G�x, y, t� �
C2

2
��ei2pSz �x2y��L� �ei

p
2p �f.�x,it�2f.�y,0�	� 2 �ei2pSz�x1y��L� �ei

p
2p �f.�x,it�1f.�y,0�	�� . (11)

Upon using the cumulant theorem for boson modes �eA� � e�A2��2 we can determine the correlation function at any finite
temperature and length by following the analogous calculations in Refs. [12] and [13]. Using the shorthand notation
u � p

x2y2iyt

2L , ū � p
x2y1iyt

2L , w � p
x1y1iyt

2L , and w̄ � p
x1y2iyt

2L we find

G�x, y, t � �
pC2

4L
≠xu1�0, e2g�p

u1�w 1 u, e2g�u1�w 2 ū, e2g�

3

"
B�u 1 ū, e22g�

s
u1�w, e2g�u1�w̄, e2g�
u1�u, e2g�u1�ū, e2g�

2 B�w 1 w̄, e22g�

s
u1�u, e2g �u1�ū, e2g�
u1�w,e2g �u1�w̄, e2g�

#
, (12)

where u1 is the elliptic theta function of the first kind [14]. The parameter g �
yp

2LT gives the spacing in the finite size
energy spectrum in relation to the temperature. The contribution B�x� from the zero modes is given by
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B�z, e22g� �
P

Sz e22g�Sz�212iSzzP
Sz e22g�Sz�2 �

u�z,e22g�

u�0, e22g�
, (13)

where u is the elliptic theta function of the second kind
for odd chains u � u2, while it is the elliptic theta func-
tion of the third kind for even chains u � u3. Remark-
ably, the correlation functions in the continuum limit in
Eq. (12) therefore retain information about the underlying
lattice and explicitly depend on the parity of L. This result
requires the explicit use of the zero modes in the mode
expansion [12,13]. The difference arises because of the
different set of eigenvalues of Sz : integer and half-integer
for even and odd number of sites, respectively.

At this point we may rescale all the variables of integra-
tion in Eq. (6) by L (or alternatively T ) to express x1 in
terms of a universal function of the dimensionless variable
LT�y.

x1 � C2f�LT�y��T . (14)

In the thermodynamic limit LT�y ! `, we can use the
asymptotic behavior of the u functions [14] as was done in
a related calculation in [12,13] for e2g ! 1. In this case
we can combine the two terms of G�x, y, t� in Eq. (12)
into one, giving the known finite temperature correlation
functions [7]. This results in the well-known 1�T behavior
[15]

x1
LT!`

!
C2

4T

G2�1�4�
G2�3�4�

� 2.188 44C2�T . (15)

As expected, there is no difference between even and odd
length chains in the limit of LT�y ! ` in Eq. (15).

In the opposite limit of zero temperature and finite length
LT�y ! 0, however, we find a qualitative difference for
even and odd chains. Again using asymptotic limits of u

functions as e2g ! 0, we now find

G�x, y, t� !
pC2

4L

s
sin�w 1 u� sin�w 2 ū�

sin�u� sin�ū� sin�w� sin�w̄�

3

Ω
1, L even,
cosh�pyt

L �, L odd. (16)

Since for odd L the correlation function G�x, y, t� ap-
proaches a constant as t ! `, we get a divergence of x1

in Eq. (6) with 1�T for low temperatures, while for even
L the integral is proportional to L resulting in

x1
LT!0
!

(
0.929 05C2L�J, L even,
8C2

pT E2� p

4 ,
p

2 � � 0.913 893C2�T , L odd,
(17)

where E is the elliptic integral of the second kind [14],
which can also be derived from Eq. (10). Note that the
scaling behavior with 1�T in the two limits LT�y ø 1 for
odd L in Eq. (17) and LT�y ¿ 1 in Eq. (15) is the same,
up to a factor of about 2. This is of crucial significance for
the behavior of the Néel temperature of the doped quasi-
one-dimensional system as we shall see.

So far we have ignored the marginally irrelevant interac-
tion mentioned earlier. Its effect on the staggered suscepti-
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bility at finite T but L ! ` is well-known. It corresponds
to replacing the constant C2 by a slowly varying function
of T

C2 � 2
q

ln�aJ�T���2p�3 , (18)

where a is a dimensionless constant [15,16]. From fitting
our susceptibility data, we find a 
 23, which gives C2 �
0.33 6 0.07 for 0.001 & T�J & 0.2. A finite length L to-
gether with open boundary conditions leads to more com-
plicated logarithmic corrections which may in general
involve a different exponent near the boundary [17].
Hence, the general expression of the logarithmic correction
at finite L is not known, but we expect that C2 � 0.33 6

0.07 remains approximately correct for the relevant length
scales studied here.

The full behavior of x1 as a function of the scaling
variable LT is shown in Fig. 1 compared to numerical
Monte Carlo data after dividing by the logarithmic factor
in Eq. (18). There are no adjustable parameters for this
fitting except for the constant inside the logarithm a � 23
and all numerical points from the Monte Carlo simulations
fall close to this universal line for larger values of LT
as well (not shown). The errors are less than the size of
the symbols in the figure so that the deviations are due to
higher order corrections. For the simulations we chose
different values of 20 & L & 120 and 0.025 & T�J &

0.2. For LT * 4J the even and odd cases are virtually
indistinguishable, but as LT ! 0 there is a clear difference
in the behavior.

We now want to determine the Néel temperature
by using the mean field treatment of interchain cou-
plings in Eq. (2) with an averaged susceptibility

0J 2J 4J 6J 8J
L T

0

1

2

f(
LT

/v
) 

=
 χ

1 T
/C

2

Odd L
Even L

FIG. 1. The scaled staggered susceptibility in Eq. (14)
f�LT�y� � x1T�C2 determined from Eqs. (6) and (12) for
even and odd length chains. The upper boundary of the graph
represents the asymptotic limit as LT ! ` in Eq. (15). The
points correspond to numerical Monte Carlo results for different
combinations of L and T divided by the logarithmic correction
in Eq. (18) with a � 23.
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FIG. 2. The Néel temperature TN �J 0 as a function of J 0 and
average chains length L̄ from bosonization results (lines) com-
pared to Monte Carlo simulations (symbols).

x1 � p2
P

L L�1 2 p�Lx1�L�, where p is the impu-
rity concentration corresponding to an average chain
length L̄ � 1�p 2 1. Because of the scaling form in
Eq. (14) it is straightforward to show that the mean field
condition in Eq. (2) can be written as

TN � C2zJ 0g�TNL̄�y� , (19)

where g�TNL̄�y� �
P

L p2L�1 2 p�Lf�TNL�y� �R
dy ye2yf�TN L̄y�y� is the average of the scaling func-

tion f in Fig. 1 and Eq. (14) and C2 is given in Eq. (18)
with T � TN . We see that the solutions for the Néel
temperature TN �J0 in Eq. (19) are functions of the scaling
variable L̄J 0 as shown in Fig. 2 for z � 4 compared to
the results from Monte Carlo simulations. The marginal
operator leads to weak logarithmic corrections to this
scaling behavior, which leaves the shape of the curve
largely unchanged for different J 0, and shifts it up by only
a few percent as J 0 is lowered. Therefore we can make
a nearly universal quantitative prediction for all doping
levels and coupling strengths.

The Néel temperature is strongly affected by doping
when the impurity concentration 1�L̄ $ J 0�J and may
drop by as much as a factor of 5, although it remains finite.
This is because the scaled average staggered susceptibility
g�TNL̄�y� of odd chains is finite as L̄ ! 0 so that Eq. (19)
can always be fulfilled for a positive TN . If, however, only
047202-4
even chains were allowed in the system, no nonzero solu-
tion would exist for L̄ & 0.6J�zJ 0. As mentioned above,
we expect this result to break down at larger impurity dop-
ing as the percolation threshold is approached and Néel
order disappears.
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