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We consider the problem of particle tunneling through a periodically driven ferromagnetic quantum
barrier connected to two leads. The barrier is modeled by an impurity site representing a ferromagnetic
layer or a quantum dot in a tight-binding Hamiltonian with a local magnetic field and an ac-driven potential,
which is solved using the Floquet formalism. The repulsive interactions in the quantum barrier are also
taken into account. Our results show that the time-periodic potential causes sharp resonances of perfect
transmission and reflection, which can be tuned by the frequency, the driving strength, and the magnetic
field. We demonstrate that a device based on this configuration could act as a highly tunable spin valve for
spintronic applications.
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Using and controlling spin degrees of freedom in
electronic circuits hold much promise for future devices
[1]. Such spintronic applications require spin-dependent
transport and spin polarized currents, but ordinary ferro-
magnet-semiconductor interfaces are known to be ineffi-
cient for this purpose [2]. Spin filters have been proposed
using quantum dots [3], spin orbit coupling [4], hybrid
structures [5], or even DNA [6]. Lateral periodic structures
can theoretically achieve 100% spin-filter efficiency based
on Bragg reflection at a given energy interval [7], but they
are difficult to realize and are not easily tunable. In this
Letter we now show that a time-periodic modulation of an
ordinary local gate voltage not only leads to a perfect spin-
filter mechanism but also enables highly tunable and even
switchable devices.
Specifically, we study the transmission of electrons

through a ferromagnetic quantum barrier with an oscillating
driven gate potential and connected to two leads, as
illustrated in Fig. 1. We consider current excitations of
opposite spin in a generic band structure modeled by a
tight-binding chain with nearest neighbor hopping ampli-
tude J. A periodically driven gate with angular frequency ω
and amplitude μ is imposed upon the quantum barrier at the
central site together with a local magnetic field B. The
possibility of a local electron-electron interaction of
strength U and a local potential energy ϵd on the barrier
is also included. The resulting Hamiltonian reads (ℏ ¼ 1)

H ¼ −J
X
i;σ

ðc†i;σciþ1;σ þ c†iþ1;σci;σÞ

þ
X
σ

½ϵd − μ cosðωtÞ − σb�c†0;σc0;σ þ Un0;↑n0;↓ ð1Þ

in standard notation where b ¼ ðμB=2ÞB. Local driving
has recently become of interest in the literature [8–13].
Remarkably, single particle transmission through a

periodically driven impurity without a magnetic field can
give rise to sharp resonances, where the transmission
vanishes completely—even for infinitesimally small driv-
ing amplitudes [12,13]. We now show that the addition of a
magnetic field and the local potential energy not only make
the transmission spin dependent but also cause an entirely
new effect of perfect transmission for special parameters.
The combination of such ballistic transmission and total
reflection for different spin-dependent parameters therefore
opens the possibility of constructing a perfect spin filter,
which may be very attractive for spintronic applications.
To calculate the transmission probability for each

spin channel, we will find steady-state solutions to the
Schrödinger equation

½HðtÞ − i∂t�jΨðtÞi ¼ 0 ð2Þ
using the Floquet formalism [14] for a time-periodic
Hamiltonian of the form HðtÞ ¼ H0 þ 2H1 cosðωtÞ, as
in Eq. (1). The steady-state solution is a so-called
Floquet state jΨðtÞi ¼ e−iϵtjΦðtÞi, which can be deter-
mined by the eigenvalue equation

½HðtÞ − i∂t�jΦðtÞi ¼ ϵjΦðtÞi; ð3Þ
where jΦðtÞi ¼ jΦðtþ 2π=ωÞi is time periodic and ϵ is the
quasienergy. Using the spectral decomposition

FIG. 1. Schematic setup of a ferromagnetic quantum barrier
subjected to a periodic drive and connected to two leads.
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jΦðtÞi ¼
X∞
n¼−∞

e−inωtjΦni; ð4Þ

the eigenvalue equation becomes

H0jΦni þH1ðjΦnþ1i þ jΦn−1iÞ ¼ ðϵþ nωÞjΦni: ð5Þ
The repulsive Coulomb interactionU on the barrier induces
many-body correlations, which are technically difficult to
deal with even in thermal equilibrium. As we show in
the Supplemental Material [15], it is possible to develop a
mean-field approach for Floquet systems by using a time-
dependent density on the barrier hn0;σi such that n0;↑n0;↓ ≈
hn0;↑in0;↓ þ hn0;↓in0;↑ − hn0;↑ihn0;↓i. In this way it is
possible to use a general single particle state with spin
σ, which is defined by the coefficients for all modes of the
spectral decomposition,

jΦσ
ni ¼

X
j

ϕσ
j;nc

†
j;σj0i; ð6Þ

where j0i is the vacuum state. Inserting Eq. (6) into the
eigenvalue equation (5) results in recursion relations for the
amplitudes ϕj;n. For the bulk (j ≠ 0) we have

−Jðϕσ
j−1;n þ ϕσ

jþ1;nÞ ¼ ϵ̄n;σϕ
σ
j;n; ð7Þ

where

ϵ̄n;σ ¼ ϵþ Uβn;σ þ nω: ð8Þ
Here, we have defined a mean-field parameter βn;σ ¼P

mνm;σνn−m;σ̄ and νm;σ ¼
P

nϕ
σ�
0;nϕ

σ
0;nþm, using the nota-

tion σ̄ ¼ −σ. In contrast to ordinary mean-field calcula-
tions, it is essential that the density on the driven quantum
barrier is time dependent [15]. This has the interesting
consequence that all Floquet modes become coupled at the
quantum barrier for j ¼ 0:

− Jðϕσ
−1;n þ ϕσ

1;nÞ −
μ

2
ðϕσ

0;nþ1 þ ϕσ
0;n−1Þ þ U

X
m

νm;σ̄ϕ
σ
0;n−m

¼ ðϵ̄n − ϵd þ σbÞϕσ
0;n: ð9Þ

The time-periodic potential in the quantum barrier is not
energy conserving and can cause scattering into other
Floquet modes n. For an incoming wave with wave number
k0 for the mode n ¼ 0with quasienergy ϵ̄ ¼ −2J cos k0, the
solution of Eq. (7) has the form

jΦσ
ni ¼

X
j<0

½δn;0Aeik0jc†j;σ þ e−iknjrn;σc
†
j;σ�j0i

þ
X
j>0

eiknjtn;σc
†
j;σj0i þ En;σc

†
0;σj0i; ð10Þ

where the wave numbers are given by −2J cos kn ¼
ϵ̄þ nω. If jϵ̄þ nωj < 2J, kn is real and the corresponding
plane wave solutions are delocalized over the entire chain

(unbound channels), which is always the case for the
incoming wave n ¼ 0. For modes with ϵ̄þ nω < −2J,
kn ¼ iκn is imaginary and the solutions decay exponen-
tially around the impurity (bound channels). For
ϵ̄þ nω > 2J the solutions decay and oscillate with a
complex wave number kn ¼ iκn þ π. Using Eq. (7) it
can be seen that

En;σ ¼ tn;σ ¼ rn;σ þ δn;0A; ð11Þ
capturing the inversion symmetry of the lattice with respect
to j ¼ 0. Inserting the amplitudes ϕσ

j;n that arise after
Eq. (11) back into Eq. (9), we obtain a recursive relation for
the coefficients En;σ:

Enþ1;σ þ En−1;σ ¼ −
4iJ
μ

sin knðEn;σ − Aδn;0Þ þ
2

μ
Uγn

−
2

μ
σðb − σϵdÞEn;σ; ð12Þ

which is the central equation that needs to be solved by
requiring the convergence Ejnj→∞ → 0. Here, the influence
of the interaction is captured by the term γn;σ ¼P

mνm;σϕ
σ̄
0;n−m, which obviously depends on the total

density of particles with opposite spin and can be iteratively
determined self-consistently. In the following, we assume
an unpolarized incoming current composed of equal
amplitudes for opposite spin.
For the transmission coefficient, it is useful to observe

that the current of the incoming wave (normalized to
jAj2 sin k0) has to equal the sum of all outgoing waves,X

n

ðjrn;σj2 þ jtn;σj2Þ sinðknÞ ¼ A2 sinðk0Þ: ð13Þ

Therefore, the total transmission can be expressed in terms
of the solution for En;σ,

Tσ ¼
1

A2

X
n

Tn;σ ¼
1

A2

X
n

jEn;σj2
sinðknÞ
sinðk0Þ

¼ ReE0;σ

A

¼ Re

�
uk

uk −
iμ
2
ðE1;σ

E0;σ
þ E−1;σ

E0;σ
Þ − iσ ~bσ

�
; ð14Þ

where we have used Eq. (12) for n ¼ 0 in the last line, with
uk ¼ 2J sin k0 as the incoming particle velocity and

~bσ ¼ b − σðϵd þUγ0;σ=E0;σÞ: ð15Þ
Let us first consider the effect of a magnetic field b

without interactions U ¼ 0 and for vanishing on-site
energy ϵd ¼ 0, as shown in Fig. 2 as a function of the
incoming energy −2J < ϵ < 2J. Since the results are the
same for ϵ → −ϵ and ~bσ → − ~bσ , only the energy range of
the upper half of the band is shown. Maybe the most
striking features are the points of complete reflection T ¼ 0
at certain energies ϵ. For b ¼ 0 these reflection points were
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linked to the phenomena of Fano resonances and are known
to occur even for arbitrary small driving amplitudes μ → 0
at incoming energies ϵ → ω − 2J [12,13]. For σb < 0 there
are no such resonances, but for σb > 0 the points of perfect
reflection now shift to lower energies and we observe a new
feature of perfect transmission at nearby incoming energies,
which opens the possibility of constructing a perfect spin
filter, as outlined below. To estimate the locations of the
zero transmission resonances, it is instructive to consider
the recurrence relation in Eq. (12) for n ≠ 0, which can be
written as Enþ1;σ þ En−1;σ ¼ αnEn;σ , where

αn ¼
2

μ

h
−sgnðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵþ nωÞ2 − 4J2

q
− σ ~bσ

i
: ð16Þ

For small driving amplitudes μ → 0, the αn values grow
beyond bounds, but a resonance condition E0;σ=E−1;σ → 0

in Eq. (14) is still possible for α−1 → 0, so that the points of
zero transmission are given by

ϵ⟶
μ→0

ω −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þ ~b2σ

q
ð17Þ

for σb > 0. As mentioned above there are corresponding
resonances for ϵ → −ϵ and reversed spin (or field).
However, if the frequency is too small or the field is too
large, so that the expression in Eq. (17) becomes negative,
the resonances are pushed outside the band and there will
be no points of zero transmission for any energy. On the
other hand, for any given incoming energy ϵ in the band, it
is possible to find a sufficiently high frequency so that
Eq. (17) can be fulfilled.
The points of perfect transmission T ¼ 1 in Fig. 2 are

also linked to the Fano resonance, which has been studied
for static side coupled systems [16]. In our case the
effective magnetic field σ ~bσ in Eq. (15) leads to a finite
Fano asymmetry parameter and therefore a nearby point of

perfect transmission. Basically, the reduced Zeeman energy
enhances the local occupation at the impurity site and
increases transmission through the barrier. This effect can
also be achieved by a local potential energy ϵd as an
additional tuning parameter. Specifically, it is straightfor-
ward to choose a negative value of ϵd and a small positive
value of b, so that the effective on-site energy σ ~bσ is
attractive for both spin channels but resulting in a spin-
dependent shift in Eq. (17). In Fig. 3 the parameters b ¼
0.16J and ϵd ¼ −0.66J were chosen so that the trans-
mission maximum for spin-up occurs at the same energy as
the resonance of perfect reflection for spin-down. This
demonstrates that it is possible to create a perfect spin filter
by a combination of a static magnetic field and a local time-
periodic potential.
In the high frequency regime ω ≫ J; ~bσ, the coefficients

αn in Eq. (16) can be expanded to first order in ω−1. The
resulting (approximate) recurrence relation has an exact
solution in terms of Bessel functions of the first kind J ðxÞ
[13,17]. Thus, in this regime we can obtain an analytical
approximation for the transmission

Tσ ≈
u2k

u2k þ ½μ
2
χðμ=ωÞ þ σ ~bσ�2

; ð18Þ

where χðμ=ωÞ¼½J 1−ϵ=ω−σ ~bσ=ω
ðμ=ωÞ�=½J −ϵ=ω−σ ~bσ=ω

ðμ=ωÞ�−
½J 1þϵ=ωþσ ~bσ=ω

ðμ=ωÞ�=½J ϵ=ωþσ ~bσ=ω
ðμ=ωÞ�. A comparison

between this approximation and the exact result is shown
in Fig. 4, which already coincide almost perfectly for
ω ¼ 10J. Moreover, a first-order expansion of χðμ=ωÞ in
ϵþ σ ~bσ leads to an analytic estimate for the location of the
point of perfect transmissionTσ¼1 atJ 0ðμ=ωÞ2¼σ ~bσ=ϵþ1.
We see that tuning of the resonance locations is, therefore,
equally possible by changing μ or ω.
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FIG. 2. Transmission (solid line, spin-up; dashed line, spin-
down) for a perturbation with ω ¼ 3J, μ ¼ J and various
magnetic field strengths b as a function of ϵ. The interaction
is turned off (U ¼ 0) and ϵd ¼ 0.
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FIG. 3. Transmission behavior of both spin channels for a
perturbation with ℏω ¼ 3J, μ ¼ J, a magnetic field strength
b ¼ 0.16J, and a constant potential ϵd ¼ −0.66J showing the
possibility for a perfect spin filter.
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Last but not least, the effect of interactions where U ≠ 0
must be considered. As can be seen in Eq. (15), the main
effect comes from the renormalization of the effective
magnetic field ~bσ through a spin-dependent contribution to
the local potential energy ϵd þ Uγ0;σ=E0;σ in the mean-field
approximation. Therefore, a similar effect as seen in Fig. 3
is observed in this case, where two independent Fano
resonances appear for each spin channel. The position of
the resonances is approximately given by Eq. (17), with a
small shift in comparison with the noninteracting case,
which is self-consistently calculated within the mean-
field approximation through the parameter Uγ0;σ=E0;σ.
We notice that, at high frequency ω and small amplitudes
μ, the occupation of the Floquet coefficients n ≠ 0 becomes
negligible, and hence in this limit one has Uγ0;σ=E0;σ ∼
Uhn0;σi, such that the effective site energy is approximately
ϵd þUhn0;σi, which is precisely the Hartree-Fock expres-
sion for a static impurity subject to a local interaction
[18,19]. This is consistent with the interpretation following
Eq. (18) that, in the very high frequency regime, the
oscillations can be averaged and effectively described by
static fields and local potentials [12,17]. In particular, using
an effective field on the barrier beff ¼ ~bσ þ σðμ=2Þχðμ=ωÞ
gives the same high frequency transmission coefficient
T ¼ b2eff=ðu2k þ b2effÞ; i.e., the local potential must simply
be shifted by ðμ=2Þχ.
It should be pointed out that the interacting model

without driving has also been of interest for studying the
Kondo effect [20] using semiconductor quantum dots or
single-molecule transistors [21–24]. Recently, the non-
equilibrium steady-state conductance as a function of a
constant bias voltage has been of considerable interest
[25–33]. The oscillating potential now offers the different
type of steady state discussed above. At the same time the
Kondo effect comes into play if the states in the barrier are

degenerate at low temperatures and finite U, which is not
captured by the mean-field approach. Future research may
therefore show an interesting interplay between the Kondo
effect and Floquet states in this system.
The experimental implementation of such a perfect spin

filter is not limited to a quasi-one-dimensional setup with
the central quantum dot shown in Fig. 1 since the effect can
also be derived in the same way for any system where the
transport channels go through a ferromagnetic layer with
a tunable time-periodic potential. A solid-state device
requires relatively high frequencies on the order of the
incoming energy, which is normally the Fermi energy
relative to the band edge. Therefore, systems with low
filling, small hopping, or large effective mass are most
promising in this respect. Ferromagnetic dots on the
nanoscale have been produced by laser irradiation [34]
and by the proximity effect [35]. Using corresponding
experimental values for the density of n2D ¼ 2 × 1011=cm2

[34], we arrive at a Fermi energy of ϵF ¼ πℏ2n2D=me ∼
0.5 meV for 2D electrons. The corresponding driving
frequency of more than 100 GHz to find the resonance
is certainly a challenge, but measurements [36] and tunable
oscillators [37] in this range have been reported. Driving of
magnetic layers with terahertz radiation has also been
suggested [38] to modify systems with even larger band-
widths. In experimental systems temperatures will also play
an important role since the energy spread of the incoming
current will be broadened by the finite-temperature Fermi-
Dirac distribution. In order for the spin filter to work, it is
therefore essential that the temperature must be less than
the width of the resonance, which is more than an order of
magnitude smaller than the driving frequency in our
simulations. Using the experimental numbers from above,
we arrive at a width of about 0.05 meV or T ≲ 0.5 K.
Much progress has also been made in quantum simu-

lators using ultracold gases, where periodically driven
tight-binding systems can be realized with optical lattices
and cold atom systems [39]. These types of systems have
provided an exciting scenario, not only as experimental
simulations of solid-state models but also to test configu-
rations with potential new features [39–47].
In conclusion, we have analyzed the effect of a local

time-periodic potential on the transport through a ferro-
magnetic quantum barrier including local potentials, fields,
and interactions. In contrast to static gating and filtering
mechanisms, the periodic drive allows points of perfect
transmission and complete reflection, which is useful for
the generation of tunable spin currents. To achieve com-
plete reflection for spin-down and perfect transmission for
spin-up as shown in Fig. 3, two parameters must be
tuned, such as the local static potential and the driving
frequency.
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