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Limits of topological protection under local
periodic driving
Z. Fedorova (Cherpakova)1, C. Jörg 2, C. Dauer2, F. Letscher2,3, M. Fleischhauer2, S. Eggert2, S. Linden1 and
G. von Freymann2,4

Abstract
The bulk-edge correspondence guarantees that the interface between two topologically distinct insulators supports at
least one topological edge state that is robust against static perturbations. Here, we address the question of how
dynamic perturbations of the interface affect the robustness of edge states. We illuminate the limits of topological
protection for Floquet systems in the special case of a static bulk. We use two independent dynamic quantum
simulators based on coupled plasmonic and dielectric photonic waveguides to implement the topological Su-
Schriefer-Heeger model with convenient control of the full space- and time-dependence of the Hamiltonian. Local
time-periodic driving of the interface does not change the topological character of the system but nonetheless leads
to dramatic changes of the edge state, which becomes rapidly depopulated in a certain frequency window. A
theoretical Floquet analysis shows that the coupling of Floquet replicas to the bulk bands is responsible for this effect.
Additionally, we determine the depopulation rate of the edge state and compare it to numerical simulations.

Introduction
In recent years, topology has been developed into a

powerful concept to classify condensed matter systems
beyond the Landau paradigm of spontaneous symmetry
breaking. One of the important findings is that the
topological properties of the bulk Hamiltonian can have a
profound impact on the character of the modes at the
boundary of the system. According to this bulk-boundary
correspondence principle, the interface between two
insulators with different topologies supports at least one
conducting edge state that is protected by topology, i.e., it
supports a current along the interface without scattering
even in the presence of strong static deformations1,2. This
intriguing property has been observed in a number of
solid-state3,4, photonic5 and cold atom systems6.

A powerful tool for manipulating various quantum
systems is time-periodic driving. The underlying prin-
ciple is that driving of a system with frequency ω
enables the hybridisation of eigenstates of a static sys-
tem, which are separated in energy by a multiple of ħω.
As a result, new synthetically designed properties,
inaccessible in equilibrium, can emerge. For instance,
appropriately chosen driving regimes allow for coherent
control of single-particle tunnelling7, tuning transport
regimes from ballistic to localised8,9, and inducing
quantum phase transitions10. In addition to the driving
frequency and amplitude, the spatial extent of the
driving is also a valuable degree of freedom. As an
example, by periodically driving individual lattice sites,
one can control the transmission across the modulated
region11–14, pump charge15, and create new Floquet
bound states14.
Periodic driving can change the topological properties

of a system. In particular, a system, trivial in equilibrium,
can become a topological insulator under periodic driv-
ing16–18. In systems with time-periodic driving, the bulk-
edge correspondence needs to be generalised, and
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anomalous edge modes can exist19,20. Time-periodic dis-
order at the boundary can also induce a shift in the energy
of the topological edge state under certain conditions21.
While in the static case, the coupling of the edge state to

bulk states is energetically forbidden, dynamic perturba-
tions of the system might result in hybridisation of the
modes and drastically change their character. Hence, it is
important to understand under which conditions such a
hybridisation becomes relevant and when not. In this
paper, we combine two different dynamic quantum
simulators based on both plasmonic and dielectric cou-
pled waveguides (see Fig. 1) together with a full Floquet
theoretical analysis in order to study the characteristics of
topologically protected edge states under local time-
periodic driving. Applying perturbations locally to the
edge while keeping the bulk static allows us to study the
limits of topological protection for special Floquet sys-
tems. We analyse such perturbations in the Su-Schriefer-
Heeger (SSH) model, a simple yet topologically non-trivial
system. The unique combination of two independent
experimental quantum simulators allows for precise
control of the system’s parameters as well as an uncom-
plicated detection technique22–26.
In the static case, the SSH model describes a chain of

identical lattice sites with alternating strong and weak
bonds27 (denoted here as J1 and J2, respectively) that
can be implemented by alternating short d1 and long d2
distances between adjacent waveguides, respectively.
Depending on the choice of the unit cell, the SSH model
exhibits two topologically distinct dimersations28. At

each interface between two domains of different
topologies, a topologically protected edge state occurs.
Spatially, this state is exponentially localised at the
interface, while in the spectrum of the system, it has a
midgap position due to chiral symmetry. In our work,
an interface supporting a topological edge state is cre-
ated by repeating the weak bond twice. We apply local
time-periodic perturbations associated with a single
lattice site at the interface (site 0) by modulating the
hopping amplitudes J−1,0(t) and J0,1(t) to its nearest
neighbours and its local on-site potential V0(t). Since in
the waveguide model the propagation distance z plays
the role of time29, bending the 0th waveguide sinu-
soidally with amplitude A, we implement such pertur-
bations. Different frequency regimes are realised by
varying the period P, while A is always kept constant.
Two different modulations are considered: in-plane
(Fig. 1a) and out-of-plane direction (Fig. 1b). In con-
trast to previous studies30,31, we do not drive the bulk of
the SSH model to guarantee that the topological
invariants stay unchanged and the bulk gap stays open.
Topological invariants are global characteristics of bulk

Hamiltonians. Thus, topological invariants of time-
periodic systems must be obtained using the Floquet
Hamiltonian if the bulk is periodically driven. However, in
our case, the bulk is static. The topological invariant, i.e.,
in our case, the winding number of the bulk, must not
depend on the representation of our system; whether we
use the Floquet picture or not it stays the same as in the
static SSH model.
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Fig. 1 Sketches of the SSH chains with time-periodic perturbations of a single lattice site at the interface between two distinct
dimerisations (top) and the corresponding experimental realisations (bottom). a In-plane modulation of the boundary implemented in a
plasmonic waveguide array. b Out-of-plane modulation of the boundary implemented in a dielectric waveguide array. Here, J1 (J2) denotes the large
(small) hopping amplitude in the bulk, J0,1(t) (J−1,0(t)) is the periodically modulated hopping amplitude between the 0th and 1st lattice sites (0th and
−1st lattice sites), ω is the driving frequency, d1 (d2) is the short (long) centre-to-centre distance, A is the maximum deflection of the 0th waveguide
from the centre, and P is the period of driving. In the out-of-plane modulation, there is no difference if the waveguide bends up or down, and hence,
the on-site potential and couplings vary with twice the waveguide period. Therefore, we define the period of modulation P to be half the waveguide
period in b. Note that in the waveguide system, the propagation distance z corresponds to time t
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Results
Theory
Floquet analysis
We start with a theoretical analysis of our model based

on the Floquet theory32,33 (see ‘Materials and methods’).
Within this formalism, a band structure can be unam-
biguously described in terms of so-called quasienergies,
analogues of the eigen energies in a time-independent
problem. The corresponding Floquet states belong to the
extended Hilbert space, which is a direct product of the
usual Hilbert space and the space of periodic functions
with period P= 2π/ω. In the Floquet picture, our 1-
dimensional time-periodic system can be displayed as a
(1+ 1)-dimensional time-independent system33. Figure 2
shows the static (1+ 1)D lattice, which is analogous to the
SSH model with local harmonic perturbations of the
topological defect at site s= 0. It consists of an infinite
number of SSH chains labelled by the Floquet index n
with the overall potential shifted by –nω (throughout the
paper, we set �h ¼ 1). Periodic driving thus splits the band
structure of the undriven system into infinitely many
copies (Floquet replicas) spaced by ω30,33. Figure 2 illus-
trates that local perturbations couple the chains only
through the sites in the vicinity of the interface
(s=−1,0,1) with the hopping amplitude ΔJ=2 due to
variation in the couplings and ΔV=2 due to on-site
potential variations, both determined by the modulation
amplitude A. Hence, by applying a local perturbation to
the interface, we selectively populate the Floquet replicas
of the topological edge state while the bulk states stay
almost unaffected.
In the following, we present results of the Floquet

analysis for the model with the in-plane modulation of the
topological defect. In this case, the couplings to the left

J�1;0ðtÞ and right J0;1ðtÞ nearest neighbours of the 0th site
change with a phase shift of π. We choose J�1;0 tð Þ ¼
J2 þ ΔJ sin ωtð Þ; J0;1ðtÞ ¼ J2 � ΔJ sin ωtð Þ; and V0ðtÞ ¼ 0.
As an initial condition, we solely excite the central lattice
site s=0. The corresponding quasienergy spectrum is
presented in Fig. 3a. Colour coding indicates the spectral
weight of each Floquet state calculated using Eq. (15) in
‘Materials and methods’.
As a reference, we consider the static system (ΔJ= 0). In

Fig. 3b, we plot the corresponding temporal evolution of
the probability density jΨðs; tÞj2 (see Eq. (14), where
Ψðs; tÞ is the projection of Ψ tð Þj i on the lattice sites s for
the single-site input at the 0th lattice site. Here, the excited
bulk modes are spreading ballistically while the topolo-
gical edge state shows itself as a fraction of the probability
density localised at the interface. The momentum dis-
tribution of the probability density ~Ψ k;Eð Þ�� ��2 (see Fig. 3c)
features two cosine-shaped bands and a horizontal line in
the middle of the band gap, a manifestation of the topo-
logical edge state.
In the low-frequency regime ω<jJ1 � J2jð Þ, the first
n ¼ ± 1ð Þ replicas of the zero-energy mode lie inside the
band gap (see the green arrows in Fig. 3e). This is in full
agreement with the edge-state counting rules of Floquet
Hamiltonians20. We note that for all the modulation
amplitudes accessible in the experiments, the effect of
higher jnj>1ð Þ replicas is negligible (see the next subsec-
tion on the decay rates of a topological edge state).
Figure 3d shows that Ψ s; tð Þj j2 stays localised at the 0th

lattice site.
This picture completely changes in the intermediate

frequency regime jJ1 � J2j<ω<jJ1 þ J2jð Þ, when the first
replicas of the topological edge state enter the energy
interval of the static bulk states inducing the aforemen-
tioned hybridisation of bulk and edge states. As a result,
the probability density delocalises (Fig. 3f), and the
momentum distribution also shows the pronounced
coupling, i.e., the population of the zero-energy state
drops drastically despite the non-trivial topological
invariants (see the magenta arrow, Fig. 3g), while the bulk
bands gain more weight (the green arrows in Fig. 3g). No
such coupling has been observed when driving the whole
bulk of the system, as in30. There, the driving induces gaps
to open when two Floquet replicas overlap, such that edge
states are protected by the gaps from coupling to bulk
states. Here, however, due to the spatially local driving, no
such gaps are opened, and couplings can occur.
Finally, in the high frequency regime ω>jJ1 þ J2jð Þ, the

1st Floquet replicas of the zero-energy mode lie outside of
the band, and no hybridisation of bulk and edge states
takes place. Consequently, the probability density is again
localised, and the population of the topological edge state
is restored (Fig. 3h, i).
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We note that in our system, no anomalous edge states20

are created for any driving frequency since there is no
periodic driving of the bulk. The periodic intensity
modulation at the interface in Fig. 3d, h results from
beating of the topological edge state and its Floquet
replicas. The asymmetry of the probability density dis-
tribution |Ψ(s,t)|2 with respect to the interface in Fig. 3d, f, h
results from the π phase shift of the in-plane coupling
modulation.

Analogous calculations for the out-of-plane perturbation
(couplings are modulated in phase) show qualitatively the
same behaviour. This case fulfils parity, which leads to a
symmetric distribution of jΨðs; tÞj2 around the 0th site.
Adding a periodic local on-site potential variation for the 0th
site violates chiral symmetry by shifting the energy of the
edge mode by the amount of ΔV. However, this does not
have a strong influence on the overall picture if the corre-
sponding amplitude ΔV is smaller or on the order of ΔJ.
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Decay rate of a topological edge state
Having the full time evolution given by Eq. (14) at hand,

we can numerically calculate the decay rate of the topolo-
gical edge state. Before addressing our calculation, we note
that when lowering the frequency, the nth pair of replicas
induces coupling between the edge state and the bulk in the
frequency interval ωn 2 jJ1 � J2j=n; jJ1 þ J2j=n½ �, which
correspond to higher order transitions. However, the rates
Γn of the n > 1 order transitions are very low for realistic
timescales (see34). For instance, the maximum 2nd-order
transition rate is estimated to be two orders of magnitude
smaller than the 1st. This is already far beyond the experi-
mentally observable time scales, such that we can limit
ourselves to the analysis of the 1st order transition only. To
calculate the decay rate, we use the eigenstate of the
undriven model corresponding to zero energy as the initial
condition jΨðt ¼ 0Þi ¼ jE ¼ 0i. The overlap of the result-
ing time-dependent solution jΨðtÞi with jE ¼ 0i is then
fitted by the following exponential function

j E ¼ 0jΨðtÞh ij2 � ð1� cÞ expð�ΓtÞ þ c ð1Þ

Here, the parameter c is accountable for the value of this
overlap at large times compared to the driving period,
c ¼ j E ¼ 0jΨðt � PÞh ij2, while Γ denotes the evolution
rate. In Fig. 4a, the parameter c is plotted versus the driving
frequency ω. If ω lies in the range of the bulk bands, the
overlap (1) tends to zero with t→∞, signalling a complete
depopulation of the topological edge state. Outside of the
band, c measures the population of the topologically pro-
tected edge state of the perturbed system. In case of small ω,
the parameter c is strictly speaking not well-defined because
the overlap (1) is oscillating at large times due to the
uncertainty in the choice of the phase offset between the
initial and final states. In the limit of low driving frequencies,
the Floquet states are approximately given by the adiabatic
eigenstates of the Hamiltonian, and for each point in time,
the adiabatic eigenstates differ. This difference leads to the
aforementioned uncertainty of the phase. We avoid this
uncertainty by fixing the phase offset to equal integer mul-
tiples of 2π. In doing so, we obtain that c approaches 1 when
ω→ 0 (complete localisation of the light at the edge). At
high frequencies, in contrast, the parameter c becomes
phase-independent and is uniquely determined for every ω.
In the limit ω→∞, it again approaches 1.

The evolution rate Γ determines the characteristic time
scale at which the perturbed system decays from the given
initial condition jE ¼ 0i. In the intermediate frequency
regime, where c= 0, Γ plays the role of the decay rate of
the topological edge state (the blue line in Fig. 4b). Figure
4b shows that the decay rates are largest around ω= 1J1,
when the replicas are in the middle of the bulk band and
the group velocity of bulk modes is largest.

The population decay of the edge state can easily be
understood from the Floquet eigenvalue Eq. (13) and
Fermi’s golden rule arguments. When the first Floquet
replica of the edge state becomes resonant with the bulk,
the modulation perturbation (H±1, see Eq. (12)) leads to
hybridisation with the continuum of bulk modes.
We compare the numerically determined decay rate Γ

with the transition rate ΓFGR calculated by Fermi’s golden
rule35 (see the red line in Fig. 4b). Both rates qualitatively
follow the same trend. For driving frequencies close to
ω= 0.5J1 and ω= 1.5J1—i.e., when the first Floquet
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replicas approach the borders of the bandgap—they
coincide, while for frequencies around ω= 1J1, the rate
ΓFGR is slightly larger than Γ. To understand this deviation
better, we plot Γ and ΓFGR at constant frequency ω=
1.01J1 in dependence on the driving amplitude ΔJ (see
Fig. 4c). We find that in the perturbative regime of small
driving amplitude ΔJ, both approaches coincide. With
increasing ΔJ, the decay rate approaches the band gap
energy, and Γ deviates from ΓFGR.

Experiments
We provide experimental evidence of the predicted

effects using two photonic systems: arrays of dielectric-
loaded surface plasmon-polariton waveguides
(DLSPPWs) with in-plane modulation (Fig. 1a) and
dielectric waveguide arrays with out-of-plane modulation
(Fig. 1b). The technical aspects of these experiments are
outlined in “Materials and methods”.
We first consider in-plane modulation in DLSPPW

arrays. In these experiments, leakage radiation micro-
scopy gives direct access to the full real-space intensity
distributions as well as the momentum-resolved spectra
in Fourier space (see Fig. 5). For all the measurements,
surface plasmon polaritons (SPPs) were excited at a single
waveguide in the centre of the array (x= 0), which
represents the interface. The geometric parameters of our
samples are chosen such that J2=J1 ¼ 0:5.

The case of the static SSH model23 is shown in Fig. 5a, b.
In real space (Fig. 5a), the excitation of the topologically
protected mode results in localisation of SPPs at the
interface. The decaying intensity along the z-axis is due to
radiation losses and absorption. However, this does not
affect the topological properties of the system. The
momentum- resolved spectrum of the static SSH model
reveals the midgap position of this mode (see Fig. 5b). We
note that the asymmetry of the bulk bands arises from
non-vanishing next-nearest neighbour coupling.
As predicted by Floquet theory, SPP localisation at the

interface in real space is also observed for modulation at
low (Fig. 5c) and high (Fig. 5g) frequencies. In these cases
(low and high frequencies), the Fourier-space measure-
ments reveal that the 1st Floquet replicas do not overlap
with the bulk bands; they either reside inside the band gap
(Fig. 5d) or outside of the bands (Fig. 5h), respectively. In
contrast, in the intermediate frequency regime ((Fig. 5e,
f)), the energy of the 1st Floquet replicas coincides with
the static bulk states, and delocalisation of SPPs into the
bulk is observed (see the histogram in Fig. 5e). Hence, we
see clear experimental evidence of the depopulation of a
topological edge mode by local driving in agreement with
the results of the Floquet analysis discussed above.
Dielectric waveguide arrays are ideally suited for an out-

of-plane modulation of the interface. In this set of
experiments, we measure the intensity distribution at the
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output facet of the waveguide array. Figure 6a shows
measurements for several structures with different peri-
ods (frequencies of modulation ω) with otherwise iden-
tical parameters (J2/J1= 0.48) at a wavelength of λ=
710 nm. Light is localised around the defect at the central
site at x= 0 for the low and high frequency regimes
(topmost and bottom panels). In contrast, the light cou-
ples to the bulk modes for intermediate frequencies
(0.56 ≤ ω/J1 ≤ 1.12).
To exclude any influence of fabricational deviations of

distinct samples, the switching between different fre-
quency regimes can also be done in one sample by
changing the wavelength of the light (see Fig. 6b). This
changes the hoppings and therefore the ratio of ω/J1, the
width of the band gap and the maximum energy of the
bulk bands. Hence, the positions of the Floquet replicas
relative to the bulk bands can be controlled. For a wave-
length of 680 nm, the first Floquet replicas lie outside the
bulk bands, corresponding to the high frequency regime.
We see that the light is localised around the site at x= 0.
With increasing wavelength, the energy of the replicas
moves into the bulk band, and we again observe coupling
to the bulk modes and spreading of the light, starting at a
wavelength of 750 nm. This confirms that the observed
effects are not due to fabricational deviations between
different samples.

Discussion
In conclusion, we have shown that local driving of a

defect in a system with non-trivial (bulk) topology can
result in a depopulation of the edge state. The edge state
energies are still symmetric with respect to zero, which in
the fully static case, guarantees the energetic separation of
the edge from the bulk states. The topological character of
the bulk bands cannot be changed by any local

perturbation, but nonetheless, we observe a dramatic
change in the occupation and spectral characteristics of
the edge state in certain frequency ranges, which can only
be explained by hybridisation with bulk states. This was
demonstrated in calculations using Floquet theory and
proven by measurements in plasmonic and dielectric
waveguide arrays for in-plane and out-of-plane modula-
tions of the defect. We moreover went beyond the qua-
litative picture by calculating the decay rates of the edge
state. These calculations answer the question of how
much our driven system deviates from the static one and
how stable the edge state is. In the intermediate frequency
range, enough energy is imparted to the system to destroy
its topological protection, or, in more strict terms, the
concept of topological protection is not valid any longer.
In this paper, we set out to exactly demonstrate these
limits.
Model systems as analysed here serve to control the

localisation and the steering of light via an external
parameter. Our work gives insight into Floquet engi-
neering of photonic systems and into the limited extent of
topological protection in the periodically driven case.

Materials and methods
Floquet analysis
Introduction to Floquet theory
Our theoretical analysis is based on the Floquet the-

ory32,33,36,37 that provides a general framework for treat-
ing systems governed by time-periodic Hamiltonians
H(t+ P)=H(t) with a period P= 2π/ω. According to this
theory, a solution of the Schrödinger equation i ∂

∂t

��ψ tð Þ� ¼
HðtÞjψ tð Þi can be written as a superposition of Floquet-
states33

jψαðtÞ
� ¼ exp �iεαtð ÞjuαðtÞi ð2Þ
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Fig. 6 Measurements in 3D printed dielectric waveguides for out-of-plane defect modulation. Shown are the intensities in the waveguides
at the output facet. a Measurements for several structures with different periods (frequencies of modulation ω) with otherwise the same parameters
at fixed wavelength. For small frequencies, the light is localised around the defect (at x= 0). When the frequency is increased, light couples to the
bulk states (0.56 ≤ ω/J1 ≤ 1.12) and localises in the defect again for large frequencies. b In a structure with fixed period of the defect modulation, the
wavelength is tuned. Light is delocalised, i.e., couples strongly to the bulk, when the first Floquet mode hits the bulk band, starting at λ= 750 nm.
Note that J2/J1 changes with the wavelength: J2/J1= 0.47 (680 nm), 0.48 (710 nm), 0.52 (750 nm), 0.53 (780 nm) and 0.55 (810 nm)
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where εα is the quasienergy and uα tð Þj i is the associated
Floquet mode. The quasienergies are defined up to integer
multiplies of ω, and the Floquet modes are P-periodic
functions uα t þ Pð Þj i ¼ uα tð Þj i. The Floquet modes
uα tð Þj i thus belong to the extended Hilbert space, which is
a direct product of the usual Hilbert space and the space
of time-periodic functions with period P= 2π/ω.
After the substitution of the Floquet ansatz (2) into the

Schrödinger equation, we directly obtain an eigenvalue
equation for εα

HðtÞ � i
∂

∂t

� �
juαðtÞi ¼ εαjuαðtÞi ð3Þ

Using spectral decomposition of the Hamiltonian and
the Floquet modes

HðtÞ ¼ P1
n¼�1

e�inωtHn

juαðtÞi ¼
P1

n¼�1
e�inωtjunα

� ð4Þ

we arrive at the time-independent Floquet equation

H0 � nωð Þ unα
�� �þX

m≠0

Hm un�m
α

�� � ¼ εα unα
�� �

; 8n 2 Z

ð5Þ

Floquet analysis of the driven SSH model
We now apply the Floquet approach to our system of

interest. Let us first describe the corresponding Hamil-
tonian. We consider the systems sketched in Fig. 1, where
the hopping amplitudes between the 0th and ±1st lattice
sites J�1;0ðtÞ ¼ J2 þ ΔJ sin ωt þ ϕ1ð Þ; J0;1ðtÞ ¼ J2 þ
ΔJ sin ωt þ ϕ2ð Þ are time-dependent due to the modula-
tion of the 0th site, which also causes a small time-
dependent on-site potential at site 0: V0(t)=−ΔV+ΔV
cos(ωt). The phase factors are ϕ1 ¼ 0; ϕ2 ¼ π for the in-
plane modulation and ϕ1 ¼ ϕ2 ¼ π=2 for the out-of-plane
modulation. Due to specific properties of each experi-
mental realisation, we can set ΔV= 0 for the plasmonic
waveguide model (Fig. 1a), while for the dielectric wave-
guides (Fig. 1b), ΔV ≠ 0 holds (see “Experimental meth-
ods” for details).
Assuming 4M+ 1 lattice sites (M dimers to either side

of the defect and one unpaired site in the middle), the
corresponding Hamiltonian can be written as a sum of
time-independent and time-periodic parts

H tð Þ ¼ H0 þ HPðtÞ ð6Þ

where

H0 ¼
P0

s¼�Mþ1
J1 a

y
2s�2a2s�1 þ J2 a

y
2s�1a2s

� �

þ PM�1

s¼0
J2 a

y
2sa2sþ1 þ J1 a

y
2sþ1a2sþ2

� �
þ h:c:� ΔV ay0a0

ð7Þ

and

HP tð Þ ¼ ΔJ sin ωt þ ϕ1ð Þay0a�1 þ ΔJ sin ωt þ ϕ2ð Þay0a1
þ h:c:þ ΔV cosðωtÞay0a0

ð8Þ
We denote by ays the creation operator acting at the lattice
site s.

In the absence of the on-site potential offset (ΔV= 0),
the static Hamiltonian (Eq. (7)) as well as the time-
dependent part (Eq. (8)) obey chiral symmetry. Indeed, if
ΔV= 0, the unitary and Hermitian operator

Γ ¼
XM
s¼�M

ay2sj0ih0ja2s �
XM�1

s¼�M�1

ay2sþ1j0ih0ja2sþ1 ð9Þ

with j0i being the vacuum state, fulfils the relation
ΓH0Γ

†=−H0. For the time-periodic part, it holds

ΓHP t þ t0ð ÞΓ ¼ �HP �t þ t0ð Þ ð10Þ

where t0= P/4 for the in-plane modulation and t0= 0 for
the out-of-plane modulation, which implies chiral sym-
metry for Floquet systems (for a proof, see appendix A
in21). Being chirally symmetric, our system possesses a
zero-energy Floquet mode that exhibits a vanishing
amplitude on every second lattice site21,31. As was shown
in21, even a harmonic time-dependent on-site potential
variation—while breaking chiral symmetry—does not
affect the topological robustness of the system.

In our further calculations, we express H0 and HP(t) as
(4M+ 1) × (4M+ 1) matrices

H0 ¼

. .
.

J2
J2 0 J1

J1 0 J2 0

J2 �ΔV J2
0 J2 0 J1

J1 0 J2
J2

. .
.

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

and HPðtÞ ¼ H1e�iωt þ H�1eiωt;

ð11Þ
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where the Fourier components H ± 1 according to (4) are
represented by

H ± 1 ¼ � 1
2
�

. .
.

0

0 iΔJe�iϕ1 0

iΔJe�iϕ1 �ΔV iΔJe�iϕ2

0 iΔJe�iϕ2 0

0

. .
.

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
ð12Þ

The boxes highlight the central parts of the matrices,
which are associated with the defect (0th lattice site in Fig.
1). Due to the spatially local character of perturbations of
our model, all the elements outside of the box in the time-
dependent part HP(t) are zero.
The Floquet Eq. (5) can be represented as the following

eigenvalue problem with an infinite block-matrix operator

. .
.

H1 H0 þ ωI H�1

H1 H0 H�1

H1 H0 � ωI H�1

. .
.

0
BBBBBBBB@

1
CCCCCCCCA

..

.

u�1
α

u0α
uþ1
α

..

.

0
BBBBBBBB@

1
CCCCCCCCA
¼ εα

..

.

u�1
α

u0α
uþ1
α

..

.

0
BBBBBBBB@

1
CCCCCCCCA
ð13Þ

Here, the index of the operator elements runs over the
lattice sites. This equation reveals an illustrative inter-
pretation of the Floquet approach; it transforms our 1D
time-periodic problem into a (1+ 1)D time-independent
one with the Floquet replicas building up the synthetic
dimension11,13,30. Eqs. (7–13) for the SSH model with
local driving are summarised pictorially in Fig. 2 on the
(1+ 1)D lattice. This lattice consists of an infinite number
of SSH chains labelled by the Floquet index n with the
overall potential shifted by −nω. Each lattice site can be
now identified by two numbers [n,s], where s is the site
index within each chain and n labels the Floquet replicas
of the system30. Due to local perturbations, the chains are
coupled to each other only through the sites in the vicinity
of the topological defect (s=−1,0,1). The harmonic var-
iation of the hoppings J−1,0(t) and J0,1(t) thus induces the
bonds between the sites [n,0] and [n ± 1,±1], ∀n with the
hopping amplitude ΔJ/2. Likewise, a harmonic on-site
potential variation at the 0th lattice site with the ampli-
tude ΔV creates bonds between the central sites [n,0] and
[n ± 1,0] ∀n with the hopping term ΔV/2.

The quasienergy spectrum of the periodically driven
system consists of infinitely many copies of the spectra of
the undriven system spaced by ω30,33. In the Floquet
picture, the energy of such a Floquet replica of the edge
state (nω) can have the same value as that of a bulk state
εα ¼ nω. When edge and bulk states hybridise, the edge

state depopulates into the bulk due to the local time-
periodic coupling.
A sufficiently large truncated version of Eq. (13) yields

eigenvectors and eigenvalues that converge well. We
restrict ourselves to the quasienergies from the first Flo-
quet Brillouin zone ε ∈ [−ω/2,ω/2[. The corresponding
eigenvectors contain the Fourier components of the Flo-
quet modes junα

�
, where each of them is associated with

the energy εnα ¼ εα þ nω. The complete solution of the
Schrödinger equation is given by

jΨðtÞi ¼
X
α

Cα

X
n

exp �iεnαt
� 	junα� ð14Þ

where the constants Cα ¼ uαð0ÞjΨð0Þh i are determined by
the initial condition jΨð0Þi. The temporal Fourier trans-
form of the wave function (14) reads jψðEÞi ¼P
α;n
Cαjunα

�
δ E � εnα
� 	

and motivates defining the spectral

weight at energy E ¼ εnα by

wðεnαÞ ¼ jCαj2 unαjunα

 � ð15Þ

The sum over all weights is normalised to one. Note that
jΨðtÞi is a time-dependent vector whose components, cor-
responding to different lattice sites s, take the value of a wave
function Ψðs; tÞ. The 2D Fourier transform ~Ψðk; EÞ yields
the momentum representation of the wave function Ψðs; tÞ.

Experimental methods
Dielectric-loaded surface plasmon-polariton waveguides
The DLSPPW arrays were fabricated by negative-tone

grey-scale electron beam lithography24. Figure 7a depicts an
electron micrograph of a typical sample. The DLSPPWs
consist of poly(methyl methacrylate) (PMMA) ridges depos-
ited on top of a 60 nm thick gold film evaporated on a glass
substrate. Additionally, 5 nm of Cr was used as an adhesion
layer. The width and the height of each waveguide were
designed to be 250 nm and 110 nm, respectively, to guarantee
single-mode operation at the working light wavelength of λ
= 980 nm. To keep the heights of the waveguides constant,
the proximity effect in the lithographic process was com-
pensated by equalising the background dose. The waveguide
geometry was controlled after fabrication by atomic force
microscopy. In all the samples, the short distance was d1=
0.7 µm, and the long distance was d2= 1.1 µm. These
separations correspond to coupling constants J1= 0.16 µm−1

and J2= 0.08 µm−1, respectively. The propagation constant of
a single DLSPPW is β= 6.65 µm−1. These parameters were
chosen to ensure sufficient coupling between the adjacent
waveguides and to introduce perceptible dimerisation to see
topological effects. The position of the central waveguide was
modulated sinusoidally, resulting in

J0;1ðtÞ ¼ J1 � p1 exp �p2 � A sinðωtÞð Þ ð16Þ
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where p1= 0.49 and p2= 1.75 µm−1 are fitting parameters
and ω is the modulation frequency. For all the samples,
the maximum deflection of the central waveguide was
chosen to be A= 0.3 µm, being a good trade-off between
bending losses and the strength of dynamic effects. It
corresponds to the coupling variation of ΔJ ≈ 0.25J1 (for
linear approximation of the exponent in (16)). Varying the
period P from 8 µm up to 80 µm, we realised different
frequency regimes. Due to strong confinement of the
SPPs, we can neglect the variation of the effective
refractive index due to curvature of the waveguide, i.e., we
can set the on-site potential V0(t) ≈ 0.
SPPs were excited by focusing a TM-polarized laser beam

(the numerical aperture (NA) of the focusing objective is
0.4) onto the grating coupler (see the red dotted box in Fig.
7(a)), which was fabricated on top of the central waveguide.
The propagation of SPPs in the array was monitored by
real- and Fourier-space leakage radiation microscopy
(LRM)25,38. The leakage radiation as well as the transmitted
laser beam were both collected by a high NA oil immersion
objective (Nikon 1.4 NA, 60x Plan-Apo). The transmitted
laser was filtered out by placing a knife edge at the inter-
mediate back focal plane (BFP) of the oil immersion
objective. The remaining radiation was imaged onto an
sCMOS camera (AndorZyla). Real-space SPP intensity
distributions were recorded at the real image plane, while
the momentum-space intensity distribution was obtained
by imaging the BFP of the oil immersion objective.

Dielectric waveguides
Dielectric waveguide arrays were fabricated by direct 3D

laser writing. Side and top views of one dielectric wave-
guide sample are shown in Fig. 7b, c, respectively. The
sample fabrication included two steps26. First, the inverse
of the waveguide structure was 3D-printed by two-photon
lithography in a negative-tone photoresist (IP-Dip,
Nanoscribe). After development, the hollow structure was
then infiltrated with SU8-2 (MicroChem) to create the
waveguides. Baking the sample on a hotplate at 150 °C for
3 min, after ramping up the temperature at 10 K per
minute, the SU8 was solidified. The resulting refractive
indices of the outside material and the waveguide core
were n0= 1.54 and ncore= 1.59, respectively. The radius
of the waveguides r as well as the small distance d1 and
large distance d2 were measured by scanning electron
microscopy. For all the samples, we fixed these para-
meters to be r= (0.52 ± 0.03) µm, d1= (1.42 ± 0.02) µm
and d2= (1.69 ± 0.01) µm. For out-of-plane modulation of
the defect, the couplings from site 0 to its left and right
neighbours are equal, J−1,0= J0,1. J0,1 scales exponentially as

J0;1ðtÞ / exp �p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
2 þ

A2

2
1� cos ωtð Þð Þ

r !
ð17Þ

The parameter p depends on the refractive index contrast,
used wavelength, etc.; A is the maximum deflection of the
waveguide, and ω is the frequency of the modulation. In the

0.1 mm
10 μm

5 μm

a

b c

z

x

z

x

y

Fig. 7 Scanning electron micrographs. Plasmonic (a) and dielectric (b: side, c: top) waveguide samples. In a P= 10 µm, and the red dotted box
highlights the grating coupler. The sample shown in b, c corresponds to five arrays with different periods of defect modulation

Fedorova (Cherpakova) et al. Light: Science & Applications            (2019) 8:63 Page 10 of 12



experiments presented in Fig. 6a, J0,1 varied from 0.48J1 to
0.13J1, while for those in Fig. 6b, the variation depended on
the wavelength: from 0.47J1 to 0.01J1 (680 nm), from 0.48J1
to 0.01J1 (710 nm), from 0.52J1 to 0.02J1 (750 nm), from
0.53J1 to 0.02J1 (780 nm) and from 0.55J1 to 0.03J1 (810 nm).
In the dielectric waveguides, we also have to take into

account an additional local on-site potential at site 0 of

V0ðtÞ ¼ �ΔV þ ΔV cosðωtÞ ð18Þ

This is because one can rewrite a curved waveguide in
terms of a straight waveguide with changed refractive
index39. We estimated the amplitude ΔV to be propor-
tional to

ΔV ¼ 2r ncore A ðω=2Þ2π=λ ð19Þ

with the waveguide diameter 2r. This additional local on-
site potential at site 0 shifts the energy of the edge state by
the amount of ΔV. As there is no difference if the wave-
guide bends up or down, the on-site potential and cou-
plings vary with twice the waveguide period. Therefore,
we define the period of modulation P to be half the
waveguide period (see Fig. 1b bottom).

As shown in Fig. 7c, five arrays with defects with dif-
ferent periods P (2 P= (979 ± 14) µm, (783 ± 11) µm,
(588 ± 11) µm, (392 ± 6) µm, (200 ± 3) µm) were fabricated
in one sample. The amplitude of modulation was fixed to
be A=(1.36 ± 0.04) µm. A different sample was used for
the measurements shown in Fig. 6b. Here, A= (2.63 ±
0.08) µm, and 2 P= (302 ± 2) µm.
To conduct the measurements, the beam from a tune-

able white light laser (SuperK EVO, NKT photonics) was
sent through a VARIA (NKT photonics) filter box to
select a certain wavelength (bandwidth 10 nm). The beam
was then expanded and focused through an objective
(Zeiss, NA 0.4, ×20) into the defect waveguide at site 0 at
the input facet. We observed the intensity distribution in
the sample at the (opposite) output facet by imaging it
through an identical objective and a lens onto a CMOS-
camera (Thorlabs). This corresponds to a propagation of
833 µm in z or ~24 hops with J1.
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