Eggert, Affleck, and Horton Reply: In the preceding Comment [1] it is pointed out correctly that the field theory treatment that was used in our recent Letter [2] to obtain some of the results for the Heisenberg antiferromagnetic chain is indeed valid only in the limit of long length L, low temperature T, and small magnetization S^{z}. In particular, this treatment becomes only asymptotically correct in a region where the dispersion is linear and the spin-wave velocity v can be approximated by a constant [3], which according to our numerics is the case if both $T \lesssim 0.2 J$ and $L \gtrsim 10$ sites. There is no restriction on the product $L T / v$ as long as v is approximately constant.

However, we must emphasize that we were indeed able to calculate the staggered susceptibility χ_{1} for arbitrary L and T as mentioned in the introduction by combining the field theory results with numerical calculations [4]. The numerical calculations are especially reliable for values of L and T where the field theory predictions become invalid and vice versa. We can therefore describe the entire crossover of χ_{1} to the limit of large T and/or small L, which shows an interesting behavior by itself that was unfortunately not explicitly presented in the Letter [2]. If we, for example, consider the staggered susceptibility χ_{1} without impurities as a function of T, we see that it crosses over from the bosonization formula to a high temperature expansion as shown in Fig. 1.

$$
\chi_{1}(T) \rightarrow \begin{cases}\frac{b \sqrt{\ln (a / T)}}{T} & T \ll J \tag{1}\\ \frac{1+J / 2 T}{4 T} & T \gg J\end{cases}
$$

where $a \sim 23 J$ and $b=\frac{\Gamma^{2}(1 / 4)}{4 \sqrt{2 \pi^{3}} \Gamma^{2}(3 / 4)} \approx 0.277904$. In the case of shorter chain lengths L, we again find a significant drop from the thermodynamic limit as well as a split at $T \leqq 4 J / L$ for even and odd chains as depicted for $L=10$ and $L=11$ in Fig. 1. The crossover from finite size behavior to the thermodynamic limit is therefore very similar to Fig. 1 in our Letter [2], which shows the behavior predicted by bosonization in the limit $L \rightarrow \infty$, $T \rightarrow 0$ as a function of $L T$, compared to numerical results for large L. Even for smaller L, we find again that $\chi_{1}(T, L) \propto L$ for even chains as $T \rightarrow 0$ and $\chi_{1}(T, L) \rightarrow$ c / T for odd chains, where the intercept c can be approximated by a length independent constant even down to $L=1$ as shown in the inset in Fig. 1.

Now that we have displayed χ_{1} for arbitrary T, we may be tempted to again apply the chain mean field equation

$$
\begin{equation*}
z J^{\prime} \chi_{1}\left(T_{N}\right)=1 \tag{2}
\end{equation*}
$$

even in the case where J^{\prime} is of the order of J. Although we might not expect any one-dimensional physics to survive in that limit, we find, for example, that this would result in $T_{N} \approx 1.386 J$ for a simple cubic lattice with $J=J^{\prime}$, which is indeed higher than the accepted values [5], but still an improvement over the ordinary mean field result

FIG. 1. The staggered susceptibility $\chi_{1}(T)$ in the thermodynamic limit determined by combining bosonization results at lower temperature and numerical simulations at higher temperature. The numerical results for $L=10$ and $L=11$ are also shown. Inset: the intercept $c=\lim _{T \rightarrow 0} T \chi_{1}(T, L)$ as a function of L.
of $T_{N}=1.5 J$. If J^{\prime} is of order J, only extreme doping levels will significantly affect the ordering temperature, since finite size effects are small at higher temperatures $T \gtrsim 4 J / L$. In conclusion, we have calculated the staggered susceptibility for arbitrary L and T and outlined in more detail the behavior in the limit of large T and small L.

Sebastian Eggert, ${ }^{1}$ Ian Affleck, ${ }^{2, *}$ and
Matthew D. P. Horton ${ }^{3}$
${ }^{1}$ Institute of Theoretical Physics
Chalmers University of Technology and Göteborg University
S-412 96 Göteborg, Sweden
${ }^{2}$ Physics Department
Boston University
Boston, Massachusetts 02215
${ }^{3} 99$ John Street
New York, New York 10038
Received 2 October 2002; published 25 February 2003
DOI: 10.1103/PhysRevLett.90.089702
PACS numbers: 75.10.Jm, $75.20 . \mathrm{Hr}$
*On leave from Canadian Institute for Advanced Research and Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada, V6T $1 Z 1$.
[1] A. A. Zvyagin, preceding Comment, Phys. Rev. Lett. 90, 089701 (2003).
[2] S. Eggert, I. Affleck, and M. D. P. Horton, Phys. Rev. Lett. 89, 047202 (2002).
[3] S. Eggert and I. Affleck, Phys. Rev. B 46, 10866 (1992).
[4] On the top of p. 2 in our Letter [2], it is also stated that we need to combine both methods to obtain the results.
[5] K. K. Pan, Phys. Rev. B 59, 1168 (1999).

