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We develop a Ginzburg-Landau theory for the Jaynes-Cummings-Hubbard model which effectively describes
both static and dynamic properties of photons evolving in a cubic lattice of cavities, each filled with a two-level
atom. To this end we calculate the effective action to first order in the hopping parameter. Within a Landau
description of a spatially and temporally constant order parameter we calculate the finite-temperature mean-field
quantum phase boundary between a Mott insulating and a superfluid phase of polaritons. Furthermore, within the
Ginzburg-Landau description of a spatiotemporal varying order parameter we determine the excitation spectra
in both phases and, in particular, the sound velocity of light in the superfluid phase.

DOI: 10.1103/PhysRevA.85.043831 PACS number(s): 42.50.Pq, 03.75.Kk, 03.75.Gg

I. INTRODUCTION

In many fields of physics, especially in the fields of
information processing, materials science, superfluidity, and
the relatively new field of quantum information theory, a
profound understanding of strongly correlated quantum many-
body systems is of striking importance in order to further
improve existing applications and invent new ones [1,2]. This
is due to the fact that these research fields mainly use solid-state
systems in which strongly correlated systems appear quite
naturally. However, it is experimentally challenging to access
the microscopic properties of such systems due to the short
time and length scales involved. Therefore, motivated by
Feynman’s conjecture of the quantum simulator [3], artificial
structures have been considered to create effective many-
body systems, which can be investigated under much more
controllable and tunable experimental conditions.

A. Optical lattices

The first attempts to build up artificial many-body structures
used Josephson junction arrays [4,5], which proved to be
capable of simulating the dynamic properties of Bose-Hubbard
systems including the generic quantum phase transition of
this model [6]. Additionally, over the last two decades, the
advances in preparing and controlling ultracold atoms led to
new experimental realizations, which raised a huge amount of
interest and research in this field. For example, one investigated
the interference of Bose-Einstein–condensate (BEC) clouds
[7,8], studied rotating BECs [9–12], observed spinor conden-
sates [13] where BEC occurs in different hyperfine states,
analyzed Bose-Fermi mixtures [14,15] where a pure BEC is
contaminated with fermions, described BECs in disordered
potentials [16–18], dipolar BECs [19,20], and, more recently,
tried to probe the properties of BECs in zero gravity [21].

Of particular interest for the simulation of strongly corre-
lated quantum many-body systems has been the realization
of BECs trapped in optical lattices [22,23]. Since their
experimental realization, optical-lattice systems have initiated
intensive studies and led to a multitude of new applications
such as entanglement of atoms [24,25], quantum teleporta-
tion [26], Bell-state experiments [27], disorder [28–31], and

ultracold molecules [32,33], to name but a few. Unfortunately,
the experimental approaches discussed so far face some crucial
limitations. On the one hand, it is necessary to cool down the
considered system to some nano Kelvin above absolute zero
and, on the other hand, it is experimentally challenging to
control and access single sites individually, However, recently
developed experimental techniques also allow for single-site
addressability [34–37]. Nevertheless, these experiments still
need ultracold temperatures, a restriction which could be
circumvented by using cavity lattices.

B. Cavity QED lattices

Encouraged by the latest progress in the fabrication and
manipulation of microcavities [38–40], Philippe Grangier and
others [41–46] proposed a new experimental setup using cavity
quantum electrodynamics (QED) schemes. The underlying
idea behind this new approach is to build up a lattice from
microcavities and place some real or artificial atoms in
each cavity; for example, Josephson junctions or quantum
dots. Subsequently, light is coupled into the system in such
a way that it interacts with the atoms. As a result, the
coupling between the light field and the atoms leads to
the formation of quasiparticles, so-called polaritons. These
quasiparticles behave like real bosonic particles on the lattice.
In fact, Bose-Einstein condensation of polaritons was recently
experimentally achieved in semiconductor cavities filled with
quantum wells [47–49] and even superfluidity could be
observed [50,51]. This new idea for a quantum simulator based
on cavity QED does not share the above-mentioned limitations
of the optical lattice approach. Due to relatively huge distances
between the cavities, local control and accessibility emerges
quite naturally for these systems. Hence, it is possible to
analyze these systems without destroying them, in contrast
to the time-of-flight imaging technique used for ultracold
quantum gases. Since the atoms are trapped inside the
cavities right from the start and their thermal motion does
not quantitatively disturb the polariton dynamics [52], BEC
experiments with cavity QED setups can thus be performed
even at room temperatures [53]. However, in order to facilitate
stable experiments with this setup, one needs a strong coupling
between light and matter in order to reduce the losses
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induced by the spontaneous emission. Fortunately, over the
past few years, this so-called strong-coupling regime [54–56]
has become experimentally accessible for a large number of
different setups [53,57–63].

However, a drawback of the strong coupling is the short
polariton lifetime which prevents to reach thermal equilibrium.
Thus, in a real experiment the polaritons decay faster then they
can equilibrate via phonon emission and polariton-polariton
scattering and therefore the system needs to be continuously
pumped by an external laser. Recently, Nissen et al. theo-
retically investigated the coherently driven and dissipative
Jaynes-Cummings-Hubbard model [64]. They could show
that the important photon-blockade effect prevails in this
system for weak hopping. This effect guarantees a strong
polariton-polariton interaction which allows the system to
reach a quasithermal equilibrium [47,48]. In principal one can
modify the method presented in this paper to include external
baths in order to account for this nonequilibrium situation.
Subsequently tracing out the bath degrees of freedom yields
an effective theory for the reduced system. Nevertheless, we
will in this paper focus on the quasi-equilibrium situation with
a steady state polariton density in order to demonstrate the
theoretical feasibility.

C. Outline of the paper

This paper is structured as follows: In Sec. II we will intro-
duce the underlying Hamiltonian for the Jaynes-Cummings-
Hubbard model (JCHM) and briefly analyze its dynamical
properties in some special limits. In Sec. III we will derive an
effective Ginzburg-Landau action for the model. To this end
we will use the approach of Refs. [65,66], which has already
been successfully applied to analyze collective excitations
of Bose gases in optical lattices [67,68], and transfer it to
a cavity QED system. In contrast to other methods, this
procedure yields a consistent thermodynamic theory for finite
temperatures in the whole quantum phase diagram. Therefore
our Ginzburg-Landau approach is of relevance in order to
develop a thermometer for the JCHM. For instance, to establish
a thermometer for the usual Bose-Hubbard model turned
out to be a difficult task [69,70]. The respective results
for both static and dynamic properties as well as their
temperature dependence obtained from the effective action
will be presented in Sec. IV. In particular we focus on the
excitation spectra and on the sound velocity of light and discuss
their dependence on the experimentally accessible detuning
parameter.

II. THE MODEL

For our lattice model we consider a Hamiltonian of the form

Ĥ = Ĥ0 + Ĥh. (1)

Using the convention h̄ = 1 throughout this paper, the local
part of this Hamiltonian is given by

Ĥ0 =
∑

i

[(ω − μ)n̂i + �σ̂+
i σ̂−

i + g(âi σ̂
+
i + â

†
i σ̂

−
i )] (2)

and consists of a sum over local Jaynes-Cummings Hamilto-
nians in the rotating wave approximation (RWA) [71]. Here

ω denotes the frequency of the local monochromatic photon
fields associated with the annihilation and creation operators âi

and â
†
i . The parameter � = ω − ε corresponds to the detuning

between the local mode frequency ω and the energy splitting
ε of each two-level system. The operators σ̂+

i and σ̂−
i are

the ladder operators of the two-level systems and g is the
real coupling strength between each two-level system and
the bosonic mode. The operator n̂i = â

†
i âi + σ̂+

i σ̂−
i represents

the onsite polariton number operator and N̂ = ∑
i n̂i is the

total polariton number operator. As it commutes with Ĥ0, the
number of these polaritons, which are coupled excitations of
the two-level system and the local light fields, is a conserved
quantity in this model. Finally, working in the grand-canonical
ensemble yields an additional term in the Hamiltonian which is
proportional to the polariton number operator and the chemical
potential μ.

The Jaynes-Cummings model is well known in the literature
and the underlying Hamiltonian can be exactly diagonalized
within the RWA [72], leading to the energy eigenvalues

En± = −μeff n + 1
2 [� ± Rn(�)] , n > 1, (3)

E0 = 0, n = 0. (4)

Here, we introduced the generalized Rabi frequency
Rn(�) =

√
�2 + 4g2n and the effective chemical potential

μeff = μ − ω. The eigenvalues En± correspond to the energy
eigenstates

|n,+〉 = sin θn |n,g〉 + cos θn |n − 1,e〉 , (5a)

|n,−〉 = cos θn |n,g〉 − sin θn |n − 1,e〉 , (5b)

with the mixing angle θn = 1
2 arctan(2g

√
n/�). The vacuum

state is given by |0〉 = |0,g〉. We note that the energy spectrum
for a fixed polariton number n > 0 naturally splits into an
upper and a lower branch, where the lower branch is always
lower in energy than the upper branch.

The possibility for photons to tunnel between next-
neighboring cavities is modeled by a Hubbard-like hopping
Hamiltonian of the form

Ĥh = −
∑
〈i,j〉

κi,j â
†
i âj , (6)

where the sum runs over all next neighbor lattice sites. As
the tunnel matrix elements κi,j exponentially decay with
increasing distance between the lattice sites i and j , it is
justified to assume that κi,j = κ if i and j are next neighbors
and κi,j = 0 otherwise.

As a first analysis of the ground state of the model described
by Eq. (1) we consider the physically relevant extremes of
both the atomic and the hopping limit. In the atomic limit
κ � g, Eq. (1) simplifies to Ĥ ≈ Ĥ0 which decomposes into
purely local contributions with eigenvalues (3). Obviously,
in this regime the photons cannot move in the lattice and,
thus, all excitations are pinned to their respective lattice sites.
Therefore, the ground-state wave function of the whole lattice
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is simply a direct product of the local onsite ground-state wave
functions. For this reason the ground state of the whole system
is reached when each onsite Jaynes-Cummings system is in
the lowest-energy state E0 or one of the lower-branch states
En−. However, decreasing the difference ω − μ one eventually
reaches a point when E0 = E1− and, hence, adding a polariton
excitation becomes energetically favorable. The successive
repetition of this argument leads to a complete set of such
degeneracy points En− = E(n+1)−, which are characterized by
the explicit relations:

μeff

g
= 1

2g
[Rn(�) − Rn+1(�)] , n > 1, (7a)

μeff

g
= 1

2g
[� − R1(�)] , n = 0. (7b)

From the above discussion follows that, in the atomic limit, the
local polariton number is fixed at each lattice site for a given
set of parameters. When the total polariton number equals an
integer multiple of the number of cavities, this regime is called
the Mott insulating phase which has been predicted [6] and
experimentally observed in the Bose-Hubbard model [73].

As a second interesting limit we investigate the ground
state in the regime when κ � g, (i.e., where the photon
hopping dominates the system dynamics). We additionally
assume that all two-level systems are in their respective ground
state as the system minimizes the energy. Hence, we can
drop all atomic contributions, which leads to the hopping-limit
Hamiltonian

Ĥ ≈ −μeffN̂ −
∑
〈i,j〉

κi,j â
†
i âj . (8)

This Hamiltonian can be diagonalized in Fourier space leading
to

Ĥ =
∑

k

ε(k)â†
kâk, (9)

with the energy dispersion ε(k) = −μeff − 2κ
∑d

i=1 cos(kia),
where a is the lattice constant of a simple d-dimensional cubic
lattice. Thus, the Hamiltonian of the hopping limit (9) is local
in Fourier space. This situation corresponds to the superfluid
phase of the system. Signatures of this phase have already
been observed in the interference patterns of time-of-flight
experiments with Bose-Hubbard systems [74].

III. EFFECTIVE ACTION

In this section we derive an effective action for the JCH
model from the free energy. Explicitly calculating the lowest
hopping-order contributions of the effective action amounts
effectively to a resummation of infinitely many hopping
contributions. Therefore, this effective action allows us to
determine the quantum phase transition as well as calculate
the excitation spectra, energy gap, effective mass, and sound
velocity for finite temperatures in the Mott phase and in the
superfluid phase.

A. Free energy

Following the approach used for example in Refs. [65,66]
we additionally introduce source currents j (τ ) and j ∗(τ ) in
the system Hamiltonian (1), leading to the new Hamiltonian

Ĥ ′(τ )[j,j ∗] = Ĥ +
∑

i

[j ∗
i (τ )âi + ji(τ )â†

i ], (10)

which is now a functional of the currents. These artificial
currents, which explicitly depend on the imaginary-time
variable τ , will be used to artificially break the U (1) symmetry
that is responsible for the quantum phase transition in the
model [75]. Since all physical results are obtained in the limit
of vanishing currents, we can treat all terms in the Hamiltonian
(10), which are proportional to the source currents, as small
quantities. Furthermore, for small hopping amplitudes κij all
off-diagonal contributions in Eq. (10) become small. Hence,
we decompose the new system Hamiltonian into the form

Ĥ ′(τ )[j,j ∗] = Ĥ0 + Ĥ1(τ )[j,j ∗], (11)

where the local part Ĥ0 from Eq. (2) is exactly solvable and
the remaining part

Ĥ1(τ )[j,j ∗] = Ĥh +
∑

i

[j ∗
i (τ )âi + ji(τ )â†

i ] (12)

with the hopping Hamiltonian Ĥh from Eq. (6) can be treated
as a perturbation.

We aim at establishing a thermodynamic perturbation
theory in the present section. Therefore, it is convenient to
switch from the Schrödinger picture to the imaginary-time
Dirac interaction picture. This leads to a reformulation of the
partition function as a perturbation series, involving just the
perturbative part (12) of the full Hamiltonian of the system.
Introducing the abbreviation 〈·〉0 = 1

Z0
Tr{· e−βĤ0} with the

inverse temperature β = 1/(kBT ) for the thermal average with
respect to the unperturbed system, the partition function takes
on the following form:

Z = Z0〈ÛD(β,0)〉0. (13)

Here, the partition function of the unperturbed system is given
by

Z0 = Tr{e−βĤ0} (14)

and the imaginary-time evolution operator in the Dirac picture
is defined as

ÛD(β,0) = T̂ exp

{
−
∫ β

0
dτĤ1(τ )[j,j ∗]

}
. (15)

Note that all operators, which depend on imaginary-time
variables, have to be taken in the imaginary-time Dirac
interaction picture [i.e., ÔD(τ ) = eĤ0τ Ôe−Ĥ0τ ].

Using the above definition (12) together with Eqs. (13)
and (15) we see that the partition function also becomes a
functional of j (τ ) and j ∗(τ ). Splitting the grand-canonical
partition functional into the respective perturbative contribu-
tions

Z
[
j,j ∗] = Z0

{
1 +

∞∑
n=1

Zn[j,j ∗]

}
, (16)
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the free energy defined by F = −β−1 lnZ can be written as

F[j,j ∗] = F0 − 1

β
ln

{
1 +

∞∑
n=1

Zn[j,j ∗]

}
. (17)

Here we introduced the free energy of the unperturbed system
as the usual expression F0 = −β−1 lnZ0. In the next step
we expand the free-energy functional in a power series of
the perturbation parameters j,j ∗,κij . In this paper we will
focus just on the lowest-order contributions from the hopping
and thus neglect all terms of higher-than-first order in κij .
Furthermore, according to the Landau theory [76], one needs
to consider all terms at least up to fourth order in the order
parameter to describe the thermodynamic properties of a
second-order phase transition. Since we will see later on
that the source currents j and j ∗ are of the order of the
Ginzburg-Landau order parameter for the considered system,
we thus have to calculate the power series up to fourth order in
j and j ∗. Hence, we expand the logarithm in expression (17)
and keep all terms up to fourth order in j and j ∗ and first order
in κ .

This procedure leads to an expansion of the free energy
functional in terms of imaginary time integrals over sums
of products of thermal Green functions with respect to the
unperturbed system of increasing order. The nth order thermal
Green function with respect to the unperturbed system is
defined as

G(0)
n (τ ′

1,i
′
1; . . . ; τ ′

n,i
′
n|τ1,i1; . . . ; τn,in)

= 〈
T̂
[
â
†
i ′1

(τ ′
1)âi1 (τ1) · · · â†

i ′n
(τ ′

n)âin(τn)
]〉

0. (18)

In principle, one could now make use of the definition (18)
and calculate the expansion coefficients of the free energy
straightforwardly. However, with increasing order of the
thermal Green function the calculation becomes more and
more complex due to the increasing number of space- and
time-index permutations. Therefore, we use another approach
to calculate the thermal Green functions, which automatically
takes care of the emerging problems.

B. Cumulant expansion

Usually one would apply in field theory the Wick theorem to
decompose n-point correlation functions into sums of products
of two-point correlation functions [77]. Unfortunately, this is
not possible for the considered system, since the Wick theorem
just holds for systems, where the unperturbed Hamiltonian is
linear in occupation number operator. Instead, in our case

one has to use the so-called cumulant expansion, which
was originally developed for the Hubbard model, as is
reviewed by Metzner [78]. It states that the logarithm of the
partition function is given by the sum of all connected Green
functions. The power of this approach lies in the fact that
these connected Green functions can subsequently be derived
from a single generating functional by performing functional
derivatives with respect to the currents. Due to the fact that
the unperturbed Hamiltonian (2) decomposes into a sum over
local contributions, the generating functional decomposes into
products of purely local cumulants:

C
(0)
0 [j,j ∗]

=
∏

i

ln

〈
T̂ exp

{
−
∫ β

0
dτ [ji(τ )â†

i (τ ) + j ∗
i (τ )âi(τ )]

}〉
0

.

(19)

The local cumulants then follow from

C(0)
n (i ′1,τ

′
1; . . . ; i ′n,τ

′
n|i1,τ1; . . . ; in,τn)

= δ2nC
(0)
0 [j,j ∗]

δji ′1 (τ ′
1) · · · δji ′n(τ ′

n)δj ∗
i1

(τ1) · · · δj ∗
in

(τn)

∣∣∣∣∣
j=j∗=0

. (20)

Due to the local structure of (19) all cumulants (20) van-
ish unless the site indices are all equal, which yields the
relation

C(0)
n (i ′1,τ

′
1; . . . ; i ′n,τ

′
n|i1,τ1; . . . ; i1,τn)

= C(0)
n (i1; τ ′

1, . . . ,τ
′
n|τ1, . . . ,τn)

∏
α,β

δi ′α,iβ . (21)

Hence, we just have to calculate the local cumulants
C(0)

n (i1; τ ′
1, . . . ,τ

′
n|τ1, . . . ,τn). Performing the calculations

according to formula (20) and rearranging the resulting terms
yields the cumulant decomposition for each thermal Green
function (18). The lowest-order Green functions read

G
(0)
1 (i,τ1|j,τ2)=C

(0)
1 (i; τ1|τ2)δij ,

G
(0)
2 (i,τ1; j,τ2|k,τ3; l,τ4)=C

(0)
2 (i; τ1,τ2|τ3,τ4)δij δjkδkl

+C
(0)
1 (i; τ1|τ3)C(0)

1 (j ; τ2|τ4)δikδjl

+C
(0)
1 (i; τ1|τ4)C(0)

1 (j ; τ2|τ3)δilδjk.

(22)

With this cumulant decomposition we find the following
expansion of the free energy functional:

F[j,j ∗] = F0 − 1

β

∑
i,j

∫ β

0
dτ1

∫ β

0
dτ2

{[
a

(0)
2 (i; τ1|τ2) δij + a

(1)
2 (i; τ1|τ2; j )

]
ji(τ1)j ∗

j (τ2)

+ 1

4

∫ β

0
dτ3

∫ β

0
dτ4

[
a

(0)
4 (i; τ1,τ3|τ2,τ4) δij + 2a

(1)
4 (i; τ1,τ3|τ2,τ4; j )

]
jj (τ1)ji(τ3)j ∗

i (τ2)j ∗
j (τ4)

+ 1

2

∫ β

0
dτ3

∫ β

0
dτ4ã

(1)
4 (i; τ1,τ3|τ2,τ4; j ) jj (τ1)ji(τ3)j ∗

i (τ2)j ∗
j (τ4)

}
, (23)
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where the introduced expansion coefficients are defined as

a
(0)
2 (i; τ1|τ2) = C

(0)
1 (i; τ1|τ2) ,

a
(1)
2 (i; τ1|τ2; j ) = κij

∫ β

0
dτC

(0)
1 (i; τ1|τ ) C

(0)
1 (j ; τ |τ2) ,

a
(0)
4 (i; τ1,τ3|τ2,τ4) = C

(0)
2 (i; τ1,τ3|τ2,τ4) , (24)

a
(1)
4 (i; τ1,τ2|τ3,τ4; j ) = κij

∫ β

0
dτC

(0)
2 (i; τ,τ2|τ3,τ4) C

(0)
1 (j ; τ1|τ ) ,

ã
(1)
4 (i; τ1,τ3|τ2,τ4; j ) = κij

∫ β

0
dτC

(0)
2 (i; τ1,τ2|τ3,τ ) C

(0)
1 (j ; τ |τ4) .

Due to the locality of Ĥ0 in Eq. (2) the cumulants C(0)
n do not depend on the site indices i,j . For this reason, we will drop the site

index in the following calculations for convenience. Finally, we notice that the form of the above coefficients a
(1)
2 , a

(1)
4 and ã

(1)
4

can be further simplified by going into frequency space. Therefore, we perform the Matsubara transformation

f (ωm) = 1√
β

∫ β

0
dτf (τ )eiωmτ , (25)

f (τ ) = 1√
β

∞∑
m=−∞

f (ωm)e−iωmτ , (26)

with the Matsubara frequencies

ωm = 2πm

β
, m ∈ Z. (27)

At first, we calculate the coefficient a
(0)
2 (ωm1|ωm2) in Matsubara space. Due to frequency conservation the following relation has

to hold:

a
(0)
2 (ωm1|ωm2) = a

(0)
2 (ωm1) δωm1,ωm2 . (28)

This coefficient can be derived from the expression (24) with the help of relations (18) and (22) by performing a Matsubara
transformation (25). Using the polariton mapping introduced in Ref. [79] to calculate the thermal expectation values, we obtain
the following result:

a
(0)
2 (ωm1) = 1

Z0

∑
α,α′=±

{
(t1α′−)2

E1α′ − iωm
−

∞∑
n=1

e−βEnα

[ (
t(n+1)α′α

)2

Enα − E(n+1)α′ + iωm
− (tnαα′ )2

E(n−1)α′ − Enα + iωm

]}
. (29)

The coefficients tnαβ in the above expression stem from the fact that there exist two kinds of polariton species, where the lower
branch is labeled by α,β = −1 and the upper branch by α,β = +1. These coefficients are defined as

tn±− = √
na±

n b+
n−1 + √

n − 1b±
n b−

n−1, (30a)

tn±+ = √
na±

n a+
n−1 + √

n − 1b±
n a−

n−1, (30b)

with mixing-angle-dependent amplitudes given by

aα
n =

{
sin θn, α = +
cos θn, α = −,

bα
n =

{
cos θn, α = +
− sin θn, α = −.

(31)

With the help of this result we can also determine the higher hopping corrections. By using frequency conservation again we find
the relation

a
(1)
2 (ωm1|ωm2) = a

(0)
2 (ωm1) a

(0)
2 (ωm2) δωm1,ωm2 (32)

and

a
(0)
4 (ωm1,ωm3|ωm2,ωm4) = 1

β2
δωm1+ωm3,ωm2+ωm4

{
−a

(0)
2 (ωm1) a

(0)
2 (ωm3)

[
δωm1,ωm2δωm3,ωm4 + δωm1,ωm4δωm3,ωm2

] +
∫ β

0
dτ1 · · · dτ4

×〈T̂ [â†(τ1)â†(τ3)â(τ2)â(τ4)]〉0 exp [i (−ωm1τ1 + ωm2τ2 − ωm3τ3 + ωm4τ4)]

}
. (33)

The calculation of the latter expression is complicated and rather lengthy. Therefore, we put a detailed calculation of this quantity
in the Appendix. Nevertheless, from general considerations like frequency conservation and integral properties in Matsubara
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space, we can deduce right away that the first-order hopping correction is of the form

a
(1)
4 (ωm1,ωm3|ωm2,ωm4) = a

(0)
2 (ωm2) a

(0)
4 (ωm1,ωm3|ωm4) δωm1+ωm3,ωm2+ωm4 . (34)

C. Ginzburg-Landau theory

Within this section we finally derive the Ginzburg-Landau action for the Jaynes-Cummings-Hubbard model, which is the proper
thermodynamic potential to describe the quantum phase transition of this system. Since the symmetry-breaking currents j and j ∗
are not physical quantities, one has to transform them into physical fields in terms of the order parameter. This is accomplished
by means of a Legendre transformation of the free-energy functional to an effective action, as has already been explored in detail
in the context of the thermal phase transitions [80,81]. In order to do this in a concise way, we first rewrite the grand-canonical
free energy (23) in the following form in Matsubara space:

F
[
j,j ∗] = F0 − 1

β

∑
i,j

∑
ωm1,ωm2

{
Mij (ωm1,ωm2) ji (ωm1) j ∗

j (ωm2) +
∑
k,l

∑
ωm3,ωm4

Nijkl (ωm1,ωm2,ωm3,ωm4)

× ji(ωm1)jj (ωm3)j ∗
k (ωm2)j ∗

l (ωm4)

}
+ · · · , (35)

where we have introduced the abbreviations

Mij (ωm1,ωm2) = [
a

(0)
2 (ωm1) δi,j + κij a

(0)
2 (ωm1) a

(0)
2 (ωm2)

]
δωm1,ωm2 , (36)

and

Nijkl (ωm1,ωm2,ωm3,ωm4) = 1
4a

(0)
4 (ωm1,ωm3|ωm4)

[
δi,j δk,lδi,k + κika

(0)
2 (ωm2) δi,j δi,l + κij a

(0)
2 (ωm3) δi,kδk,l

]
δωm1+ωm3,ωm2+ωm4 .

(37)

Now we define the Legendre transformation by self-consistently introducing the order-parameter field i(ωm) according to

i (ωm) = 〈âi(ωm)〉0 = β
δF

δj ∗
i (ωm)

. (38)

Note that this Ginzburg-Landau order-parameter field differs from the Landau order parameter by being space and time dependent.
Inserting expression (35) into equation (38) yields the following relation for the Ginzburg-Landau order-parameter field:

i (ωm) = −
∑

p

∑
ωm1

{
Mpi (ωm1,ωm) jp (ωm1) − 2

∑
k,l

∑
ωm2,ωm3

Nlpki (ωm1,ωm2,ωm3,ωm) jl(ωm1)jp(ωm3)j ∗
k (ωm2)

}
+ · · · . (39)

Furthermore, relation (38) motivates us to introduce the effective action

�[i (ωm) ,∗
i (ωm)] = F[j,j ∗] − 1

β

∑
i,ωm

[i (ωm) j ∗
i (ωm) + ∗

i (ωm) ji(ωm)], (40)

where  and j are conjugate variables satisfying the Legendre relations

ji(ωm) = −β
δ�

δ∗
i (ωm)

, j ∗
i (ωm) = −β

δ�

δi (ωm)
. (41)

Using the fact that physical situations correspond to vanishing currents j = j ∗ = 0 yields the following equations of motion:

δ�

δ∗
i (ωm)

= δ�

δi (ωm)
= 0. (42)

Thus, the effective action is stationary with respect to the order-parameter field. Now, in order to determine the explicit form
of the effective action, we need to express all symmetry-breaking currents j by the Ginzburg-Landau order-parameter field .
Therefore, we recursively invert relation (39) up to first order in the hopping strength κ , which yields

ji (ωm) = −
∑

p

∑
ωm1

M−1
ip (ωm,ωm1)

⎡
⎣p (ωm1) − 2

∑
q,k,l

∑
ωm2,ωm3

Nlqkp (ωm1,ωm2,ωm3,ωm) Jl(ωm1)Jq(ωm3)J ∗
k (ωm2)

⎤
⎦ + · · · ,

(43)

where we define the abbreviations

Ji (ωm) = −
∑

p

∑
ωm1

M−1
ip (ωm1,ωm) p (ωm1) , (44)
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and

M−1
ij (ωm1,ωm2) = δωm1,ωm2

a
(0)
2 (j,ωm1)

[
δi,j − a

(0)
2 (j,ωm2) κij

]
. (45)

Inserting the above relations into the Legendre transformation (40) gives the explicit expression for the effective action up to the
desired order in the hopping strength:

�[i (ωm) ,∗
i (ωm)] = F0 + 1

β

∑
i

∑
ωm1

⎧⎨
⎩ |i (ωm1)|2

a
(0)
2 (ωm1)

−
∑

j

κijj (ωm1) ∗
i (ωm1) −

∑
ωm2,ωm3,ωm4

i (ωm1) ∗
i (ωm2)

× a
(0)
4 (ωm1,ωm3|ωm2,ωm4) i (ωm3) ∗

i (ωm4)

4a
(0)
2 (ωm1) a

(0)
2 (ωm2) a

(0)
2 (ωm3) a

(0)
2 (ωm4)

}
+ · · · . (46)

Equation (46) is the thermodynamic potential for the Jaynes-Cummings-Hubbard model up to the desired accuracy in both
the order parameter and the hopping parameter. However, as should be clear from the approximations performed so far, this
expression can, in principle, be extended to include higher-order corrections. In the next section this result is used to analyze
several properties of the considered system.

IV. RESULTS

Having derived the effective action in the previous chapter, we now use this result to extract both thermodynamic and dynamic
properties of the Jaynes-Cummings-Hubbard model. The starting point for this analysis is the equation of motion (42). Inserting
(46) yields

0 =
⎡
⎣ 1

a
(0)
2 (ωm)

−
∑

j

κij

⎤
⎦i (ωm) −

∑
ωm1,ωm2,ωm3

a
(0)
4 (ωm1,ωm3|ωm2,ωm) i (ωm1) i (ωm3) ∗

i (ωm2)

2a
(0)
2 (ωm1) a

(0)
2 (ωm2) a

(0)
2 (ωm3) a

(0)
2 (ωm)

. (47)

Using a particular ansatz for the order-parameter field allows us to examine both static and dynamic order-parameter fields
i(ωm).

A. Static results

First, we consider an equilibrium situation, where the order-
parameter field is constant in both space and time:

i (ωm) =
√

β
eq
i δωm,0. (48)

Inserting this ansatz in the stationarity condition (47) yields
the following relation for the equilibrium order parameter:

|eq|2 = 2

β

[
a

(0)
2 (0)

]3

a
(0)
4 (0,0|0,0)

[
1 − a

(0)
2 (0)κz

]
, (49)

where z = 2d represents the coordination number of the d-
dimensional cubic lattice. Since the order-parameter field is
zero in the Mott insulator phase and takes on finite values in the
superfluid regime, we can extract the quantum phase boundary
from the condition that the equilibrium order parameter (49)
has to vanish. Thus the quantum phase boundary is defined via
the relation

κz = 1

a
(0)
2 (0)

. (50)

Together with the result (29) this equation yields a phase
diagram, which is pictured in Fig. 1 for vanishing detuning
� = 0. Here we plot the effective hopping strength versus
the effective chemical potential leading to a lobe structure
where each lobe is associated with a specific mean onsite
polariton number. The regions within these lobes correspond
to the Mott insulator phase, whereas the exterior region

corresponds to the superfluid regime. First we note that the
phase boundary for zero temperature is consistent with the
results from Refs. [79,82]. Moreover, our Ginzburg-Landau

2.0 1.5 1.0 0.5 0.0

1

0

1

2

3

4

g

Lo
g 1
0
zΚ
g

0

n 0 n 1

T 0 K

T 0.005 kB g

T 0.1 kB g

T 0.2 kB g

FIG. 1. (Color online) Quantum phase boundary for zero and
finite temperatures at resonance � = 0. Interior of the lobes for
T = 0 K corresponds to the Mott insulator phase whereas the exterior
corresponds to the superfluid phase. For finite temperatures the Mott
insulator vanishes and becomes a mixture of normal and Mott phase.
Note that the drop of the phase boundary at μeff ≈ −0.1g is a
numerical remnant resulting from a summation cutoff in Eq. (29).
A full summation would lead to an infinite sequence of Mott lobes
approaching μeff = 0.
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theory also yields the phase boundary for finite temperatures.
From Fig. 1 we can see that increasing the temperature
leads to a smeared-out phase boundary. Thermal fluctuations
mostly affect the region between two neighboring Mott lobes,
whereas the middle of each Mott lobe almost does not
change. This effect is stronger for lobes with higher polariton
number as these system configurations are rather unstable.
Since a genuine Mott insulator is defined by a vanishing
compressibility κT = − 1

Ns

∂2�
∂μ2 |=eq we find that the Mott

insulator phase is only present for zero temperature. For
finite temperature it becomes a mixture of normal and Mott
insulating phase instead [83].

Note that, in order to validate our results obtained
so far, we follow Ref. [65] and explicitly compare our
expressions for a

(0)
2 and a

(0)
4 with a corresponding mean-

field calculation. We get back the mean-field free energy
FMF = F0 − ∑

i(a
MF
2 |i |2 + 1

4βaMF
4 |i |4) by formally iden-

tifying ji(τ ) = −κzi , aMF
2 = a

(0)
2 (0)(κz)2 − κz, and aMF

4 =
a

(0)
4 (0,0|0,0)(κz)4. With this we reproduce the mean–field

results of Refs. [79,82] including the dependence of the
quantum phase boundary on the detuning parameter �. If the
system is tuned out of resonance (i.e., � �= 0), all Mott lobes
with higher mean particle number than one shrink in size and
are shifted to smaller values of the effective chemical potential
μeff irrespective of the sign of the detuning. The Mott-lobe with
mean particle number 1 grows in size for negative detuning
and shrinks for positive detuning, whereas the Mott-lobe with
mean particle number 0 covers the rest of the phase diagram
and, thus, is the only Mott insulator region that does not form a
closed lobe. This special behavior of the first two Mott regions
stems from the composite nature of the polaritons and has no
analog in the Bose-Hubbard model.

B. Dynamic results

Within this section we analyze the dynamic behavior of
the JCH model. We especially focus on signatures within
excitation spectra such as energy gaps, effective masses, and
the sound velocity of polaritons. These system properties
are experimentally accessible via emission and transmission
spectroscopy [84]. In order to derive these properties we
investigate the dynamic behavior of the effective action around
the equilibrium fields. Thus, introducing the vector � =
(,∗) we insert the ansatz � = �eq + δ� in the equation of
motion (47) and its conjugate complex. This yields a system
of two coupled equations corresponding to the equations of
motion for the elongations δ around the order field. In order
to find a nontrivial solution of the equation of motion, we
obtain the relation

0
!=
[

δ2�

δi (ωm) δj (−ωm)

δ2�

δ∗
i (−ωm) δ∗

j (ωm)

− δ2�

δi (ωm) δ∗
j (ωm)

δ2�

δ∗
i (−ωm) δj (−ωm)

]
�=�eq

.

(51)

Inserting Eq. (46) we see that, due to the effective hopping
amplitude κij , the second partial derivatives of the action

still depend on the site distance i − j . This suggests further
applying a spatial Fourier transform in order to simplify
the calculations. Additionally, switching from Matsubara
frequencies to continuous frequencies within a Wick rotation,
yields the following explicit expression for Eq. (51)

0
!= A(−ω,k)A∗(ω,k) − B∗(−ω,k)B(ω,k), (52)

with the abbreviations

A(ω,k) = 1

a
(0)
2 (k,ω)

− J (k) − a
(0)
4 (k; ω,0|0,ω)|eq|2[

a
(0)
2 (k,ω)

]2[
a

(0)
2 (k,0)

]2 ,

(53)

and

B(ω,k) = − a
(0)
4 (k; 0,0|−ω,ω)|eq|2

2
[
a

(0)
2 (k,0)

]2
a

(0)
2 (k,ω)a(0)

2 (k,−ω)
. (54)

Assuming a simple three-dimensional cubic lattice with lattice
constant a yields J (k) = 2κ

∑3
i=1 cos(kia). Taking a closer

look at Eq. (52) we see that it implicitly defines the dispersion
relation ω(k). However, due to the complex expression found
for a

(0)
4 , a full evaluation of the above equations can only be

done numerically. Just in the Mott insulator regime, where
the four-point correlation a

(0)
4 drops out due to eq = 0, it is

possible to derive analytic expressions for the dispersions. In

this special case we have to solve 1
!= a

(0)
2 (k,ω)J (k), leading

to the dispersion relations

ω±(k) = 1
2

[
E(n+1)− − E(n−1)− + J (k)

(
t2
n−− − t2

(n+1)−−
)

± ({
E(n−1)− − E(n+1)− − J (k)

[
t2
n−− ± t2

(n+1)−−
]}2

− 4
{
J (k)E(n+1)−t2

n−− − E2
n−

+E(n−1)−
(
En− − E(n+1)− + J (k)t2

(n+1)−−
)

+En−
[
E(n+1)− − J (k)

(
t2
n−− + t2

(n+1)−−
)]} 1

2
)]

.

(55)
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FIG. 2. (Color online) The pair-excitation energy gap (left) and
the effective mass (right) as a function of temperature for the first lobe
n = 1 at μeff = μcrit = 0.78g with zero detuning � = 0 and κ =
κcrit = 0.16g (solid), κ = 0.1g (dashed), and κ = 10−4g (dotted).
The right picture represents the effective mass of both the hole (lower
branch in light shade) and particle (upper branch in dark shade)
excitations.
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FIG. 3. (Color online) Various dynamic results for a mean particle density n = 2 at zero temperature and vanishing detuning � = 0. Left
column at μeff = −0.4g, middle column for tip of the lobe at μeff = −0.37g, and right column at μeff = −0.34g. (a) Particle (dotted) and
hole (dashed) dispersion relations in the Mott phase (gray), on the phase boundary (black) and in the superfluid phase (solid) in the direction
k = k(1,1,1). (b) Energy gap for particle (dotted) and hole (dashed) excitations in the Mott phase and for the massive mode in the superfluid
phase (solid). (c) Effective mass for particle (dotted) and hole (dashed) excitations in the Mott phase and for the massive mode in the superfluid
phase (solid). (d) Sound velocity for the massive mode in the superfluid phase.
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In order to clarify the physical meaning of Eq. (55) we set
J (k = 0), which yields the simple relations

ωh−− = En− − E(n−1)−, (56)

ωp−− = E(n+1)− − En−. (57)

From these relations it is clear that ωh−− (ωp−−) is the
energy needed to remove (add) a lower-branch polariton from
a lattice site, which is occupied by n lower-branch polaritons.
Therefore, we refer to these energies as the lower-branch-hole
(h) and lower-branch-particle excitation (p), respectively. The
same analysis can be applied to the full expression (52)
leading to additional dispersion relation for upper-branch
excitations ωh++ and ωp++ as well as mixed excitations ωh+−,
ωh−+, ωp+−, and ωp−+. However, these additional excitation
channels are hardly of any interest for our considerations
because they occur at much higher energies compared to
the lower-branch polariton excitations. The lowest dispersion
relation involving upper polariton states is ωh+−, which lies
at an energy around 2g for n = 2. Therefore, we will just
focus in all further calculations on the lower-branch excitations
as they completely determine the low-temperature physics of
the system. In order to extract more detailed quantities of
interest, we subsequently expand the dispersion relations as
follows:

ωp,h(k) ≈ Egap + k2

2Mp,h
+ O(k4). (58)

From this expansion we are able to derive, within the Mott
insulator phase, the energy gap Egap and the effective mass
of the particle and hole excitations Mp and Mh, respectively.
As an example we evaluated their temperature dependence
for the first Mott lobe n = 1 with μcrit and zero detuning in
Fig. 2. We find that both the pair-excitation energy gap as well
as the effective mass of particle and hole excitations increase
with higher temperatures. This effect becomes stronger as one
approaches the critical hopping strength at the tip of the lobe.

Moreover, we expect to find in the superfluid regime, apart
from the gapped mode, also a linear excitation mode which
is associated with the broken symmetry in the superfluid
regime according to the Nambu-Goldstone theorem [85]. The
dispersion relation for this mode reads

ωp,h(k) ≈ c|k| + O(k2). (59)

The results obtained from a numerical evaluation of the above
formulas is presented in Fig. 3 for a mean particle density
n = 2 at zero temperature and vanishing detuning � = 0.
The pictures are arranged in a table in such a way that
each line represents a specific physical quantity, for instance
the second line Fig. 3(b) shows plots for the energy gap.
Furthermore, the plots in each column correspond to a fixed
effective chemical potential. The left column shows plots for an
effective chemical potential below the critical one, the middle
column represents the critical effective chemical potential,
and the right column corresponds to an effective chemical
potential above the critical one. In the first line in Fig. 3(a) we
show the particle and hole excitation spectra in k = k(1,1,1)
direction. In the Mott phase and at the phase boundary we
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0.6

0.8

1.0
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c 0

FIG. 4. (Color online) Sound velocity c normalized by the sound
velocity at zero detuning c0 as a function of the detuning parameter
� for n = 2 with κ = 0.001κcrit (solid) and κ = 0.15κcrit (dashed).

always observe two excitation modes corresponding to the
particle (dotted) and hole (dashed) excitations, respectively.
These modes are always gapped in the Mott-insulator phase.
By approaching the phase boundary at least one gap vanishes
and thus, for μeff > μcrit, the particle mode becomes gapless
at the phase border, whereas for μeff < μcrit the hole mode
becomes gapless at the phase border. When approaching the
phase boundary exactly at the lobe tip both particle and hole
modes become gapless. Going further into the superfluid
regime we find a gapped excitation mode as well as the
anticipated gapless linear mode. In Fig. 3(c) we plot the
corresponding effective masses. In the Mott phase we observe
the masses of both the particle (dotted) and hole (dashed)
excitations, whereas in the superfluid phase also only one
massive mode survives. Additionally, we depict the sound
velocity of the polariton excitations in the superfluid phase
in Figs. 3(d) and 4. Figure 3(d) shows the dependence of
the sound velocity on the hopping strength. We find that it
approaches a finite value at the tip of the Mott lobe, but
vanishes at all other points of the Mott lobe. This behavior
shows that the JCH model has a dynamical critical exponent
of z = 1 which has been recently confirmed in a large-scale
quantum Monte Carlo simulation by Hohenadler et al. [86].
Entering the superfluid phase the sound velocity increases
steadily. However, as pictured in Fig. 4, if the system is
tuned out of resonance (i.e., � �= 0), the sound velocity drops
significantly. Finally, we note that our results in Figs. 3
and 4 are in good qualitative agreement with the results from
Ref. [87]. However, due to the restriction to the lowest hopping
order in the effective action, our results lose validity deep
in the superfluid phase. For this reason we do not obtain a
shift of the maximum of the sound velocity in Fig. 4, as
is observed in Ref. [87]. In order to obtain better results
in the superfluid regime higher hopping corrections must be
considered. Corresponding perturbative approaches for higher
order corrections for the JCH model have been numerically
calculated in Ref. [88].

V. CONCLUSION

In summary, we successfully applied the cumulant expan-
sion approach from Ref. [65] to derive a Ginzburg-Landau
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theory for the Jaynes-Cummings-Hubbard model up to fourth
order in the symmetry-breaking currents and up to first order
in the hopping strength. From the resulting effective action
we extracted the phase diagram of the inherent quantum phase
transition of the JCH model for finite temperature. In the
case of vanishing temperature our result is in accordance
with the results found from mean-field calculations [79,82].
Subsequently, we derived the excitation spectra, energy gaps,
and effective masses of the lower-branch polariton excitations
in the Mott insulator phase as well as in the superfluid
phase. We investigated the temperature dependence of both
the pair-excitation energy gap and the effective mass of the
particle and hole excitations in the Mott phase. Furthermore,
we analyzed how the sound velocity in the superfluid phase
depends at zero temperature on the hopping parameter and
the detuning parameter. Finally, we point out that the the
Ginzburg-Landau approach of this paper can be generalized to
describe the real-time dynamics of the JCHM. This has already
been shown for the real-time dynamics of the Bose-Hubbard
model in Refs. [67,68].
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APPENDIX: FOURTH-ORDER COEFFICIENT

Here we evaluate the fourth-order coefficient (33), which
involves the expectation values of time-ordered products of
four operators. First we notice that, for the time-ordered
product of two annihilation and two creation operators, there
are six distinct permutations leading to different expectation
values. Each of these orderings itself has four time variable
permutations corresponding to τ1 ↔ τ2 and τ3 ↔ τ4. Thus,
overall one finds 24 terms for the expectation value. Luckily,
the integrals over different time-variable permutations yield
the same result and, thus, they just lead to a fixed prefactor 4.
For this reason, one just needs to determine the six different
thermal averages for one specific time ordering. Furthermore,
these expectation values are local quantities and, therefore, we
drop the site indices in the following calculations. Thus, one
has to determine the following expressions:

〈â†(τ1)â†(τ3)â(τ2)â(τ4)〉0, 〈â†(τ1)â(τ2)â†(τ3)â(τ4)〉0,

〈â(τ4)â†(τ1)â†(τ3)â(τ2)〉0, 〈â(τ4)â(τ2)â†(τ1)â†(τ3)〉0, (A1)

〈â(τ4)â†(τ1)â(τ2)â†(τ3)〉0, 〈â†(τ1)â(τ4)â(τ2)â†(τ3)〉0.

With the help of the polariton mapping introduced in Ref. [79],
one can calculate these averages straightforwardly. Hence, we
find for example the following expression for the expectation
value

〈â†(τ1)â(τ2)â†(τ3)â(τ4)〉0 = 1

Z0

∞∑
n=1

∑
α,ν,

ρ,π = ±

e−βEnα e(Enα−E(n−1)π )τ1e(E(n−1)π −Enρ )τ2 tnαπ tnρπe(Enρ−E(n−1)ν )τ3e(E(n−1)ν−Enα)τ4 tnρν tnαν.

(A2)

Subsequently, performing a Matsubara transformation according to (25) yields a formal integral of the form

I = γ

∫ β

0
dteat

∫ t

0
dt1e

bt1

∫ t1

0
dt2e

ct2

∫ t2

0
dt3e

dt3 , (A3)

with the solution

I = γ

[
e(a+b+c+d)β − 1

(a + b + c + d)(b + c + d)(c + d)d
− e(a+b+c)β − 1

(a + b + c)(b + c)cd
+ −1 + e(a+b)β

b(a + b)c(c + d)
− −1 + eaβ

ab(b + c)(b + c + d)

]
. (A4)

The variables a, b, c, d correspond to differences of energy eigenvalues. Due to energy conservation these variables have to fulfill
the condition a + b + c + d = 0 and thus the above solution (A4) has a pole in the first term. Therefore, we have to take the limit

lim
a+b+c+d→0

e(a+b+c+d)β − 1

(a + b + c + d)(b + c + d)(c + d)d
= β

(b + c + d)(c + d)d
. (A5)

Since this pole arises for all expectation values (A1) we always have to consider this particular limit. Taking this result into
account, the explicit expression for the expectation value (A2) in Matsubara space is given by

Iâ†ââ†â = 1

Z0β2

∞∑
n=1

∑
α,ν,

ρ,π = ±

e−βEn,α

⎧⎪⎨
⎪⎩−

−1+exp[β(−ωm1−E−1+n,λ+En,α)]
(ωm1+E−1+n,λ−En,α)(−ωm1−E−1+n,λ+En,α)(ωm2+E−1+n,λ−En,ρ)

ωm2 − ωm3 + E−1+n,λ − E−1+n,ν

+
−1+exp[β(−ωm4−E−1+n,ν+En,α)]

(ωm4+E−1+n,ν−En,α)(−ωm4−E−1+n,ν+En,α)(−ωm3−E−1+n,ν+En,ρ)
ωm2 − ωm3 + E−1+n,λ − E−1+n,ν

+
β

(ωm1+E−1+n,λ−En,α)(ωm4+E−1+n,ν−En,α)
−ωm3 + ωm4 − En,α + En,ρ

+
−1+exp[β(−ωm1+ωm2+En,α−En,ρ)]

(ωm2+E−1+n,λ−En,ρ)(−ωm1+ωm2+En,α−En,ρ)(−ωm3−E−1+n,ν+En,ρ)
−ωm3 + ωm4 − En,α + En,ρ

⎫⎪⎬
⎪⎭ tn,α,λtn,α,ν tn,ρ,λtn,ρ,ν . (A6)
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However, this expression still possesses some poles for special choices of Matsubara frequencies. Fortunately, all these
poles can be eliminated by investigating the corresponding limits analogous to equation (A5). Further care has to be taken
considering the occurrence of the ground-state energy due to its uniqueness. Similar expressions can be calculated for the other
expectation values (A1).
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