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Band gaps of primary metallic carbon nanotubes
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Primary metallic or small-gap semiconducting nanotubes are tubes with band gaps that arise solely from
breaking the bond symmetry due to curvature. We derive an analytic expression for these gaps by considering
how a general symmetry breaking opens a gap in nanotubes with a well-defined chiral wrapping vector. This
approach provides a straightforward way to include all types of symmetry-breaking effects, resulting in a
simple unified gap equation as a function of chirality and deformations.
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Recently, individual single-wall nanotubéSWNT’s) ex- et al!® where both twist and stress on the nanotubes were
hibiting small band gaps of the order of 10 meV were ob-consideredbut not the intrinsic curvatuje
served for the first timé.SWNT’s can be classified accord- ~ From previous works$;*® the gaps can in principle be
ing to their electronic band gap into three groups;0a|cu|ated for almost any shape of nanotube either by using a
semiconductors, small-gap semiconductors, and real metaldumerical method or by determining the exact metric and
A semiconducting gap arises when the graphite Fermi point§urvature tensors. We now reconsider the effects of deforma-
are not allowed in the tube’s Brillouin zone, which is given tions on primary metallic nanotubes and formulate the prob-
by distinct quantization lines according to the tube’s circum-lem in terms of a general symmetry breaking in the tight
ferential boundary conditions. Such a gap is of the order of Pinding model. This gives a straightforward analysis of the
eV and was predicted to scale wittRlAvhereR s the tube’s ~ €ffect, which results in a surprisingly simple and useful for-
radius?>~* a prediction that was later verified experimentally mula for the gap. Our compact expression combines the ef-
by a scanning tunneling microscopy measurement of théects from intrinsic curvature, twist, and stress and is only a
density of states:’ The graphite Fermi points lie on a quan- function of the chiral wrapping vectom(m) of the tube.
tization line if mod(n—m)/3)=02%"wheren andmare  This gives a quick and easy way to determine the gap and
the two integers defining the tube’s chiral vector. Tubes thagllows for a good insight into the physical effects, as we will
satisfy this condition are called primary metallic. In a realdescribe below. Our results are a direct consequeneayf
nanotube, however, effects of curvature and deformatiosymmetry-breaking effect in the tight-binding model of the
break the nearest-neighbor bond symmetry, resulting in &raphite sheet in carbon nanotubes.
shift of the two distinct Fermi points of graphite that lie at ~ Our starting point is the observation that the energy sepa-
the corners of the hexagonal first Brillouin zone where thefation between the bonding and antibonding bands according
bonding and antibonding bands are degeneritgintg.  to the graphite tight-binding scheme istleeik'Ri, where
This shift may open a gap depending on the position of the}, are the nearest-neighbor bond vectors grislthe transfer
newK points relative to the circumferential quantization line. jntegral, which is the nearest-neighbor Hamiltonian matrix
These gaps are about the value of room temperature and thggement'” Since at zero temperature the bonding band is

coined small-gap semiconductors. : : : Lo
. occupied and the antibonding empty, the Fermi pdifidie
MI'I“'Ch Interest hgs ?eent ci)evotedh_t?] trr]'e sltugi){ of thes t the band crossings, which are, for the unperturbed graph-
small-gap semiconducting tubes, which has 1€d 1o a goo e, the six corners of the hexagonal first Brillouin zone. If

hasic understanding. From nu_merlcal calculatlﬂns,_has we now break the symmetry of graphite and allow different
aIre(_';\dy been known for a while that only a_rmchayr tut.)estransfer integralsy; depending on the direction of the bonds
retain zero gap and therefore are truly metallic, while chiral - , )
tubes open small gaps because of the intrinsic curvaturdli- We arrive at a more general equation for kneectors at
These gaps depend on the radius and the chiral angle afich the bands cross,

were found to be lower than room temperature for tubes with 3

radius exceedim 6 A . Other numerical studies also exam- z kR = 1)
ined the effect of structural deformation such as stfesSs =1 7 '

and twist®>!*on the electronic band gap of nanotubes, where R

it was found that the armchair tubes open a gap under twisthich defines the points of zero gapkispaceK - . For small
but are not affected by the uniaxial stress while an oppositéhangesy;=y+ 8y, we expect small shifts in the band
response ariselSS in zigzag tubes. Analytic progress was madeossing locatiorK =K+ AK. Since we are dealing with
by Kaneetal, Where the effects o_f d_eformauon; were primary metallic tubes, we know théf:leiK,:Ri:O, where
modeled as a perturbing vector potential in an effective-mas L _—
Hamiltonian. Those calculations were able to verify the nu-"F are the.unperAtuArbed Fermi points. Working " t.he nano-
merical findings for the gaps from the intrinsic curvature astube coordinateso(t) adopted from Ref. 13, wheis the
well as twists. After the completion of this work, we also circumferential direction and stands for the translational
became aware of a more recent analytic work by Yanglirection along the axis, the bond vectors are
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. a o1 . sine of the misalignment angl¢ between two neighboring
Ri=5 (n+m)c——3(n—m)t), m orbitals. (A calculation that takes into account the full
h ' rehybridization of all orbitals will be considered in a future
a 1 A study) Using cosp~1—3[(a._o)/R]?, we can immediately
R,==—| —mc+—(2n+ m)t), (2 express the deformation tensor for the intrinsic curvature in
2Ch J3 . ~ ~
the basis ot andt,
F33=% —nﬁ—%(n+2m)f), 7[acc|?
h v Dcurv: 8 R (7)
wherea~2.49 A is the length of the honeycomb unit vector 0 0

and c,= Vn?+nm+m? is the circumference in units of.
Both inequivalent Fermi points in graphite give the samewherea..=a/\3 is the carbon-carbon bond length aRd
result when estimating the gap so it is sufficient to considerac,/2m is the tube’s radius. From Eq&)—(7), we find

just one of them. For an unperturbed Fermi point, we write
2

w
. 2m A ) Eq=— (n—m)(2n2+ 5nm+2m?). ®)
Ke=g o L(m+2n)ke+my3k], &) 8c;
h
. . ~ This formula agrees remarkably well with previous numeri-
wherek. andk; correspond to thé vectors along the cir-  ca| studie$' if we choosey=2.5 eV and also agrees with the
cumferential and translational directions, respectively. results of Ref. 15. Equatio(8) gives the energy gap of all
In order to get the gap, we now need to know the distanc@rimary metallic nanotubes without any applied deforma-
between the new Fermi point to the nearest quantization lingons. One observes that the armchair nanotubesn are

at the quantized circumferentii} values. Since the quanti- the only real metallic tubes, while the primary metallic zig-

zation lines are parallel tky, this distance is given bk, zag tubes ifi=0), open the highest gaps.

the shift along the circumferential directidq. Expanding ~ Next we want to examine the effect of a general two-
Eq. (1) to linear order in the perturbation$y,=y;— v, we dimensional structural deformation such as twists and stress
find on the gap in the primary metallic tubes. Our deformation

can be written aR— (1 + SR, whereR is any vector on the

1 tube’s surfacel is the identity matrix, ané is the deforma-
Akczm[ Sy (Mm—n)+ 8y,(2n+m)—Sys(n+2m)].  tion matrix,
h

4 6 ¢
Cc
The gap is then obtained by exploiting the fact that close to S= 0 € 9
the Fermi point, the dispersion relation is linear and
isotropicl’ Heree, ande, are uniaxial stresses along the circumferential
and the translational directions agds the strain(nanotube
Eq=3ay|Ak. (5)  twist). The bond deviation matrix is then given @feem™

W d . he ch h for F§| b'S, whereb=3.5eV/A is the linear change in the
€ now want to determine the changes to the ransfey, e, integral with a change in the bond length- v;

integralsdy; due to the curvature and deformations. To first = = .
order this change is proportional to the change of the bon%rdbef!ﬁnRiI alr;d !Rl;a/\/§ f's the bonddlength. \évg np\r/]v Ese
length between two neighboring carbon atoms, but may als to obtain thedy; of Eq. (6), and as we did with the
be created by a misalignment of two neighboringrbitals. curvature, inserting in Ed4) and using the dispersion rela-
In general, we find that we can always express the change dpn. we find

the nearest-neighbor transfer integrals in terms of a bond

o - ab
deviation matrixD, Eg:F' \/§(n—m)(2n2+5nm+2m2)(ec—et)
Ch

5y;=R;-D-R;/R?. (6)
—9nm(n+m)é&|. (10

This deviation matrix is useful for describing the effects of
stress, twists, and curvature in a simple unified way as wd his equation is the response to a two-dimensional linear
will see below. All nanotubes have an intrinsic curvaturedeformation within the graphite sheet. We notice from Eq.
which causes hybridization of the otherwise orthogonal (10) that in theApresence of equal uniaxial stresses in both
and o orbitals. Since ther bands lie normally far from the directionsc andt, a gap is not opened, as expected since the
Fermi energy, we only consider the curvature effect onrsthe bonds would maintain their symmetry. The response of arm-
band, which crosses the Fermi point in primary metallicchair and zigzag tubes is complimentary as noticed previ-
tubes as long as the tube’s radiuRiz 2.4A ° ously in the numerical studié$,i.e., zigzag tubes have the

Following the calculations of Slater and Kosf@me can ~ maximum sensitivity for a uniaxial deformatiore or e;)
assume that the transfer integrals are proportional to the cdsut are insensitive to twists, while the opposite is true for
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armchairs, reaffirming that a twist deformation is the only 8
possible source for an energy gap in the armchair tube.

A uniaxial stress around the circumference corresponds
to a global change of radius. This effect can come about as a | .
time-dependent deformation due to lattice vibrations in the
breathing mode. Realistic static deformations, on the other
hand, correspond to the intrinsic curvature, a stress along the
tube €;, and a twisté. Therefore, the total gap from static
deformations is given by combining E¢8) and Eq.(10) 2r
with e.=0. The total band equation now reads

‘ ( y? aby/3
Eg=|| == —

5 3
8c,  4c;

o <
=
=N

Naueiay)

E, [meV]
'S
*

1|:/l12 I /6
et)(n—m)(2n2+5nm+2mz) o
FIG. 1. Energy gaps of primary metallic tubes of radius 12

+0.5 A with no twist£é=0 and a twist¢é=0.1% as a unction of

(11 chirality. The continuous lines correspond to the average rddRis

A) while the circles correspond to the actual tubes. A very small
twist can thus have a profound effect on the energy gaps.

%20 mn+mye
——nnmin-+m
4c?

which is the main result of our paper.

In some cases, it may be useful to express this formulain ] . ]
terms of the chiral angler and the radiuRR of the tube, Intrinsic curvature. For a given radius, the gapless state is
therefore moved towards tubes with higher chirality.

which gives :
In summary, we have presented a straightforward proce-
5 dure to calculate the energy gap induced by a general broken
B ﬂ_ab\/§ i 3 3 ~ bond symmetry. This leads to a simple analytic expression
9| 16R2 2 €] sihse 2 ¢cosd). for the band gaps from both the intrinsic curvature and ap-

(12) plied deformations, which provides a quick and reliable way

. . . . to estimate the physical effects. These gaps have important
In this form our results are then consistent with previouseonsequences since they are generally of the same order as
calculations-® where twists and the intrinsic curvatufeut room temperature for most primary metallic SWNT’s. Only
not stresp have been considered as a function of the chiralymchair tubes are generically gapless, but a very small twist
angle. After the completion of this work, a paper deriving thej,quces a gap of the order of other small-gap semiconducting
change in the band gap due to deformations was publiShed,\anotubes. Such a small twist, on the other hand, moves the
which is also consistent with the angular dependence of thSapIess state to tubes with higher chirality.
deformation part of Eq(12) (i.e., without the intrinsic cur-
vature.

We see that Eq(12) shows an interesting interplay be-  We would like to thank Vitali Shumeiko for inspirational

tween curvature and deformation effects as plotted in Fig. 1discussions. This research was supported in part by the
A very small twist can actually remove the gap due to theSwedish Natural Science Research Council.
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ever, this simply corresponds to a change of the coordinate sys-
tem in both real and reciprocal spaces with a conserved dot
productk- R. The distance to the quantization lines in E4.is
therefore not affected by different bond vectors, but only by the
change in the transfer integrals.
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