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Band gaps of primary metallic carbon nanotubes
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Primary metallic or small-gap semiconducting nanotubes are tubes with band gaps that arise solely from
breaking the bond symmetry due to curvature. We derive an analytic expression for these gaps by considering
how a general symmetry breaking opens a gap in nanotubes with a well-defined chiral wrapping vector. This
approach provides a straightforward way to include all types of symmetry-breaking effects, resulting in a
simple unified gap equation as a function of chirality and deformations.
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Recently, individual single-wall nanotubes~SWNT’s! ex-
hibiting small band gaps of the order of 10 meV were o
served for the first time.1 SWNT’s can be classified accord
ing to their electronic band gap into three group
semiconductors, small-gap semiconductors, and real me
A semiconducting gap arises when the graphite Fermi po
are not allowed in the tube’s Brillouin zone, which is give
by distinct quantization lines according to the tube’s circu
ferential boundary conditions. Such a gap is of the order o
eV and was predicted to scale with 1/R, whereR is the tube’s
radius,2–4 a prediction that was later verified experimenta
by a scanning tunneling microscopy measurement of
density of states.5–7 The graphite Fermi points lie on a qua
tization line if mod„(n2m)/3…50,2,8–10 wheren and m are
the two integers defining the tube’s chiral vector. Tubes t
satisfy this condition are called primary metallic. In a re
nanotube, however, effects of curvature and deforma
break the nearest-neighbor bond symmetry, resulting i
shift of the two distinct Fermi points of graphite that lie
the corners of the hexagonal first Brillouin zone where
bonding and antibonding bands are degenerate (K points!.
This shift may open a gap depending on the position of
newK points relative to the circumferential quantization lin
These gaps are about the value of room temperature and
coined small-gap semiconductors.

Much interest has been devoted to the study of th
small-gap semiconducting tubes, which has led to a g
basic understanding. From numerical calculations,11 it has
already been known for a while that only armchair tub
retain zero gap and therefore are truly metallic, while ch
tubes open small gaps because of the intrinsic curvat
These gaps depend on the radius and the chiral angle
were found to be lower than room temperature for tubes w
radius exceeding 6 Å . Other numerical studies also exam
ined the effect of structural deformation such as stress12,13

and twist13,14on the electronic band gap of nanotubes, wh
it was found that the armchair tubes open a gap under t
but are not affected by the uniaxial stress while an oppo
response arises in zigzag tubes. Analytic progress was m
by Kane et al.,15 where the effects of deformations we
modeled as a perturbing vector potential in an effective-m
Hamiltonian. Those calculations were able to verify the n
merical findings for the gaps from the intrinsic curvature
well as twists. After the completion of this work, we als
became aware of a more recent analytic work by Ya
0163-1829/2001/63~7!/073408~4!/$15.00 63 0734
-

:
ls.
ts

-
1

e

t
l
n
a

e

e
.
us

e
d

s
l
e.
nd
h

e
st
te
de

ss
-
s

g

et al.16 where both twist and stress on the nanotubes w
considered~but not the intrinsic curvature!.

From previous works,11–16 the gaps can in principle be
calculated for almost any shape of nanotube either by usin
numerical method or by determining the exact metric a
curvature tensors. We now reconsider the effects of defor
tions on primary metallic nanotubes and formulate the pr
lem in terms of a general symmetry breaking in the tig
binding model. This gives a straightforward analysis of t
effect, which results in a surprisingly simple and useful fo
mula for the gap. Our compact expression combines the
fects from intrinsic curvature, twist, and stress and is onl
function of the chiral wrapping vector (n,m) of the tube.
This gives a quick and easy way to determine the gap
allows for a good insight into the physical effects, as we w
describe below. Our results are a direct consequence ofany
symmetry-breaking effect in the tight-binding model of th
graphite sheet in carbon nanotubes.

Our starting point is the observation that the energy se
ration between the bonding and antibonding bands accor
to the graphite tight-binding scheme is 2g( i 51

3 eikW•RW i, where

RW i are the nearest-neighbor bond vectors andg is the transfer
integral, which is the nearest-neighbor Hamiltonian mat
element.17 Since at zero temperature the bonding band
occupied and the antibonding empty, the Fermi pointsKW F lie
at the band crossings, which are, for the unperturbed gra
ite, the six corners of the hexagonal first Brillouin zone.
we now break the symmetry of graphite and allow differe
transfer integralsg i depending on the direction of the bond
RW i , we arrive at a more general equation for thek vectors at
which the bands cross,18

(
i 51

3

g ie
ikW•RW i50, ~1!

which defines the points of zero gap ink spaceKW F8 . For small
changesg i5g1dg i we expect small shifts in the ban
crossing locationKW F85KW F1DkW . Since we are dealing with

primary metallic tubes, we know that( i 51
3 eiKW F•RW i50, where

KW F are the unperturbed Fermi points. Working in the nan
tube coordinates (ĉ, t̂ ) adopted from Ref. 13, whereĉ is the
circumferential direction andt̂ stands for the translationa
direction along the axis, the bond vectors are
©2001 The American Physical Society08-1
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RW 15
a

2ch
S ~n1m!ĉ2

1

A3
~n2m! t̂ D ,

RW 25
a

2ch
S 2mĉ1

1

A3
~2n1m! t̂ D , ~2!

RW 35
a

2ch
S 2nĉ2

1

A3
~n12m! t̂ D ,

wherea'2.49 Å is the length of the honeycomb unit vect
and ch5An21nm1m2 is the circumference in units ofa.
Both inequivalent Fermi points in graphite give the sa
result when estimating the gap so it is sufficient to consi
just one of them. For an unperturbed Fermi point, we wr

KW F5
2p

3ach
@~m12n!k̂c1mA3k̂t#, ~3!

where k̂c and k̂t correspond to thek vectors along the cir-
cumferential and translational directions, respectively.

In order to get the gap, we now need to know the dista
between the new Fermi point to the nearest quantization
at the quantized circumferentialkc values. Since the quanti
zation lines are parallel tok̂t , this distance is given byDkc ,
the shift along the circumferential directionk̂c . Expanding
Eq. ~1! to linear order in the perturbationsdg i[g i2g, we
find

Dkc5
1

achgA3
@dg1~m2n!1dg2~2n1m!2dg3~n12m!#.

~4!

The gap is then obtained by exploiting the fact that close
the Fermi point, the dispersion relation is linear a
isotropic,17

Eg5A3aguDkcu. ~5!

We now want to determine the changes to the tran
integralsdg i due to the curvature and deformations. To fi
order this change is proportional to the change of the b
length between two neighboring carbon atoms, but may a
be created by a misalignment of two neighboringp orbitals.
In general, we find that we can always express the chang
the nearest-neighbor transfer integrals in terms of a b
deviation matrixD,

dg i5RW i•D•RW i /Ri
2 . ~6!

This deviation matrix is useful for describing the effects
stress, twists, and curvature in a simple unified way as
will see below. All nanotubes have an intrinsic curvatu
which causes hybridization of the otherwise orthogonalp
ands orbitals. Since thes bands lie normally far from the
Fermi energy, we only consider the curvature effect on thp
band, which crosses the Fermi point in primary meta
tubes as long as the tube’s radius isR*2.4Å .19

Following the calculations of Slater and Koster,20 we can
assume that the transfer integrals are proportional to the
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sine of the misalignment anglef between two neighboring
p orbitals. ~A calculation that takes into account the fu
rehybridization of all orbitals will be considered in a futu
study.! Using cosf'121

8@(ac2c)/R#2, we can immediately
express the deformation tensor for the intrinsic curvature
the basis ofĉ and t̂ ,

Dcurv5F g

8 S ac-c

R D 2

0

0 0
G , ~7!

whereac-c5a/A3 is the carbon-carbon bond length andR
5ach/2p is the tube’s radius. From Eqs.~4!–~7!, we find

Eg5
gp2

8ch
5 ~n2m!~2n215nm12m2!. ~8!

This formula agrees remarkably well with previous nume
cal studies11 if we chooseg52.5 eV and also agrees with th
results of Ref. 15. Equation~8! gives the energy gap of al
primary metallic nanotubes without any applied deform
tions. One observes that the armchair nanotubesm5n are
the only real metallic tubes, while the primary metallic zi
zag tubes (m50), open the highest gaps.

Next we want to examine the effect of a general tw
dimensional structural deformation such as twists and st
on the gap in the primary metallic tubes. Our deformati
can be written asRW →(I1S)RW , whereRW is any vector on the
tube’s surface,I is the identity matrix, andS is the deforma-
tion matrix,

S[ F ec j

0 e t
G . ~9!

Hereec ande t are uniaxial stresses along the circumferen
and the translational directions andj is the strain~nanotube
twist!. The bond deviation matrix is then given byDdeform

5uRW u b S, where b.3.5 eV/Å is the linear change in th
transfer integral with a change in the bond lengthg i→g i

1b uDRW i u and uRW u5a/A3 is the bond length. We now us
Ddeform to obtain thedg i of Eq. ~6!, and as we did with the
curvature, inserting in Eq.~4! and using the dispersion rela
tion, we find

Eg5
ab

4ch
3

u A3 ~n2m!~2n215nm12m2!~ec2e t!

29nm~n1m!j u. ~10!

This equation is the response to a two-dimensional lin
deformation within the graphite sheet. We notice from E
~10! that in the presence of equal uniaxial stresses in b
directionsĉ and t̂ , a gap is not opened, as expected since
bonds would maintain their symmetry. The response of a
chair and zigzag tubes is complimentary as noticed pre
ously in the numerical studies,13 i.e., zigzag tubes have th
maximum sensitivity for a uniaxial deformation (ec or e t)
but are insensitive to twistsj, while the opposite is true for
8-2
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BRIEF REPORTS PHYSICAL REVIEW B 63 073408
armchairs, reaffirming that a twist deformation is the on
possible source for an energy gap in the armchair tube.

A uniaxial stressec around the circumference correspon
to a global change of radius. This effect can come about
time-dependent deformation due to lattice vibrations in
breathing mode. Realistic static deformations, on the o
hand, correspond to the intrinsic curvature, a stress along
tube e t , and a twistj. Therefore, the total gap from stat
deformations is given by combining Eq.~8! and Eq.~10!
with ec50. The total band equation now reads

Eg5US gp2

8ch
5

2
abA3

4ch
3

e tD ~n2m!~2n215nm12m2!

2
9ab

4ch
3

nm~n1m!j U , ~11!

which is the main result of our paper.
In some cases, it may be useful to express this formul

terms of the chiral anglea and the radiusR of the tube,
which gives

Eg5US ga2

16R2
2

abA3

2
e tD sin 3a2

abA3

2
j cos3a U .

~12!

In this form our results are then consistent with previo
calculations,15 where twists and the intrinsic curvature~but
not stress! have been considered as a function of the ch
angle. After the completion of this work, a paper deriving t
change in the band gap due to deformations was publishe16

which is also consistent with the angular dependence of
deformation part of Eq.~12! ~i.e., without the intrinsic cur-
vature!.

We see that Eq.~12! shows an interesting interplay be
tween curvature and deformation effects as plotted in Fig
A very small twist can actually remove the gap due to
. B
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intrinsic curvature. For a given radius, the gapless stat
therefore moved towards tubes with higher chirality.

In summary, we have presented a straightforward pro
dure to calculate the energy gap induced by a general bro
bond symmetry. This leads to a simple analytic express
for the band gaps from both the intrinsic curvature and
plied deformations, which provides a quick and reliable w
to estimate the physical effects. These gaps have impor
consequences since they are generally of the same ord
room temperature for most primary metallic SWNT’s. On
armchair tubes are generically gapless, but a very small t
induces a gap of the order of other small-gap semiconduc
nanotubes. Such a small twist, on the other hand, moves
gapless state to tubes with higher chirality.

We would like to thank Vitali Shumeiko for inspirationa
discussions. This research was supported in part by
Swedish Natural Science Research Council.

FIG. 1. Energy gaps of primary metallic tubes of radius
60.5 Å with no twist j50 and a twistj50.1% as a unction of
chirality. The continuous lines correspond to the average radius~12
Å! while the circles correspond to the actual tubes. A very sm
twist can thus have a profound effect on the energy gaps.
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