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Abstract
We analyze theoretically the emergence of different superfluid phases of spin-1 bosons in a
three-dimensional cubic optical lattice by generalizing the recently developed
Ginzburg–Landau theory for the Bose–Hubbard model to a spinor Bose gas. In particular at
zero temperature, our theory distinguishes within its validity range between various superfluid
phases for an anti-ferromagnetic interaction with an external magnetic field. In addition, we
determine that the superfluid–Mott insulator phase transition is of second order and that the
transitions between the respective superfluid phases with anti-ferromagnetic interaction can be
both of first and second order.

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years optical lattices have become a major
research topic within the realm of ultracold quantum
gases, as they offer the perspective to simulate condensed
matter physics under well-controlled conditions [1, 2].
Most prominently, the quantum phase transition between a
superfluid (SF) and a Mott insulating (MI) phase of a spinless
Bose gas loaded in a periodic optical potential has been
experimentally observed by increasing the lattice depth [3, 4].
All properties of this quantum phase transition are captured
by the underlying Bose–Hubbard Hamiltonian [5–7] for
which different analytical solution methods have been
worked out [8–14] and high-precision Monte Carlo studies
have been performed [15, 16]. Furthermore, extensions of
the Bose–Hubbard model have been investigated, which
cover, for instance, superlattices [17], Bose–Fermi mixtures
[18–21], quantum simulations like entanglement of atoms or
quantum teleportation [22] and disorder
[2, 23–25].

Preparing experimentally a spin-1 Bose–Einstein con-
densation (BEC) of 23Na or 87Rb atoms in an optical trap,
the atomic spin degrees of freedom are not frozen due to
the electric dipole force between atoms and the electric field
of a laser beam [26, 27]. This experimental realization of
an optically trapped BEC opened a new window to study
also various phenomena of spinor Bose gases loaded in an
optical lattice. For instance, they offer the possibility of
studying strongly correlated states; for example the coherent
collisional spin dynamics in an optical lattice was measured
in [28] and the 87Rb scattering lengths for F = 1 and 2
were determined in [29]. In particular, combining the spin
degree of freedom with various types of interactions and with
different lattice geometries offers the prospect to realize a
plethora of superfluid phases with magnetic properties. A
first tentative step in this direction was the loading of 87Rb
in a frustrated triangular lattice [30]. Despite these initial
promising investigations, spinor Bose gases in an optical
lattice seem experimentally to be so challenging that no
further detailed experiments have been performed.
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Theoretical progress in the study of spinor Bose gases
in an optical lattice was made by [31, 32]. In the case of
the anti-ferromagnetic interaction of 23Na, the location of
the SF–MI transition and several properties for SF and MI
phases for spin-1 bosons were determined without external
magnetic field at zero temperature. In particular, they found
that the superfluid transition occurs into a polar spin-0
state [32] and the SF phase represents a polar state with
zero spin expectation value. On the other hand, the effect
of a non-vanishing external magnetic field upon the SF–MI
transition was determined within a mean-field approximation
in [33, 34]. In addition, it was also shown in [33, 34] that
the superfluid transition occurs from the Mott insulating phase
into either a polar spin-1 or spin-(−1) state, but investigation
was not undertaken regarding which other phases might
emerge deep in the superfluid phase.

In this letter we study the effect of the magnetic field
on the emergence of superfluid phases of spin-1 bosons.
We show that new superfluid phases can emerge due to
the interplay of the anti-ferromagnetic interaction of spin-1
bosons and an external magnetic field in a three-dimensional
cubic optical lattice at zero temperature. To this end, we
extend the Ginzburg–Landau theory developed in [10, 11]
from the spin-0 to the spin-1 Bose–Hubbard model. In the
grand-canonical ensemble the underlying Hamiltonian can be
decomposed according to ĤBH = Ĥ(0)

+ Ĥ(1) [31, 32], where
the local part Ĥ(0)

=
∑

iĤ
(0)
i reads

Ĥ(0)
i =

U0

2
n̂i(n̂i − 1)+

U2

2
(Ŝ2

i − 2n̂i)− µn̂i − ηŜiz, (1)

whereas the bilocal part is given by

Ĥ(1)
= −J

∑
〈i,j〉

∑
α

â†
iα âjα. (2)

Here µ and η denote the chemical potential and the
external magnetic field, respectively. Furthermore, J repre-
sents the hopping matrix element between adjacent sites
i and j with 〈i, j〉 indicating the summation over all
nearest neighbor sites, and U0 (U2) stands for the on-site
spin-independent (dependent) interaction strength between
bosons. Additionally, âiα (â

†
iα) is the annihilation (creation)

operator at site i with hyperfine spin α ∈ {−1, 0, 1} which
determines the total atom number operator at site i via
n̂i =

∑
α â†

iα âiα and the spin operator at site i according to
Ŝi =

∑
α,β â†

iαFαβ âiβ with the spin-1 matrices Fαβ . Since

the operators Ŝ2
i , Ŝiz and n̂i commute with each other,

their eigenvalue problems are solved by the same eigen-
vectors: Ŝ2

i |Si,mi, ni〉 = Si(Si+ 1)|Si,mi, ni〉, Ŝiz|Si,mi, ni〉 =

mi|Si,mi, ni〉 and n̂i|Si,mi, ni〉 = ni|Si,mi, ni〉 where Si + ni
must be an even number [31, 32, 35, 36]. Thus, the eigenvalue
problem of the local Hamiltonian (1) is given by

Ĥ(0)
i |Si,mi, ni〉 = E(0)Si,mi,ni

|Si,mi, ni〉, (3)

where the energy eigenvalues are defined as

E(0)Si,mi,ni
=

U0

2
ni(ni − 1)+

U2

2

[
Si(Si + 1)− 2ni

]
− µni − ηmi. (4)

In order to artificially break the underlying U(1)
symmetry of the Hamiltonian ĤBH, we follow [10, 11] and
generalize the usual field-theoretic approach for describing
classical phase transitions [37, 38] to the realm of quantum
phase transitions. Thus, we couple the artificial source
currents jiα(τ ), j∗iα(τ ) to the operators â†

iα and âiα ,

ĤBH(τ ) = ĤBH +
∑

i

∑
α

[
j∗iα(τ )âiα(τ )+ c.c.

]
, (5)

yielding a Ginzburg–Landau theory with the spatio-temporal
order parameters being defined according to

9iα(τ ) = β
δF

δj∗iα(τ )
. (6)

Here the free energy F[j, j∗] = − 1
β

ln Z[j, j∗] with β =

1/kBT following from the partition function Z[j, j∗] =

Tr T̂e−
∫ β

0 dτ ĤBH(τ ) with the time-ordering operator T̂ and the
convention h̄ = 1. We consider equation (6) as a motivation to
perform a functional Legendre transformation and define the
effective action according to

0
[
9,9∗

]
= F

[
j, j∗

]
−

1
β

∑
i

∑
α

[
9iα(τ )j

∗
iα(τ )

+ 9∗iα(τ )jiα(τ )
]
, (7)

where 9iα (9∗iα) and j∗iα (jiα) are conjugate variables
satisfying the Legendre relations

jiα(τ ) = −β
δ0

δ9∗iα(τ )
, j∗iα(τ ) = −β

δ0

δ9iα(τ )
. (8)

In order to recover the relevant physical situation the artificial
currents j∗, j should vanish. Therefore, we obtain from (8)
equations of motion for determining the equilibrium value of
the order parameter,

δ0

δ9∗iα(τ )

∣∣∣∣
9=9eq

= 0,
δ0

δ9iα(τ )

∣∣∣∣
9=9eq

= 0. (9)

Furthermore, we read off from equation (7) that evaluating
the effective action at the equilibrium field 9eq recovers the
physical grand-canonical free energy,

0
[
9eq, 9

∗
eq

]
= F [0, 0] . (10)

In order to calculate both the free energy F and the
effective action 0, we proceed perturbatively as follows.
We decompose the generalized Bose–Hubbard Hamiltonian
according to ĤBH(τ ) = Ĥ(0)

+ Ĥ(1)(τ )[j, j∗], where the
perturbative Hamiltonian in the imaginary time Dirac
interaction picture reads

Ĥ(1)
I (τ )

[
j, j∗

]
= −J

∑
〈i,j〉

∑
α

â†
iα(τ )âiα(τ )

+

∑
i

∑
α

[
j∗iα(τ )âiα(τ )+ jiα(τ )â

†
iα(τ )

]
.

(11)
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With this, we determine the partition function via the Dyson
series

Z = Z(0)

[
1+

∞∑
n=1

(−1)n
1
n!

∫ β

0
dτ1

∫ β

0
dτ2 · · ·

∫ β

0
dτn

×

〈
T̂
[
Ĥ(1)

I (τ1)Ĥ
(1)
I (τ2) · · · Ĥ

(1)
I (τn)

]〉(0)]
(12)

with Z(0)
= Tr e−βĤ(0)

and the thermal average defined with
respect to the unperturbed system 〈•〉(0) = Tr[•e−βĤ(0)

]/Z(0).
The respective perturbative contributions for F contain
different orders of the hopping matrix element J and the
currents j and j∗. As we work out a Ginzburg–Landau theory,
we restrict ourselves to the fourth order in the currents.
Furthermore, we focus on the leading non-trivial order in
the hopping J which is of first order. Therefore, the free
energy functional can be expressed in terms of imaginary time
integrals over sums of products of thermal Green functions.
The thermal averages in equation (12) can be expressed in
terms of n-particle Green functions of the unperturbed system

G(0)n (i′1α
′

1, τ
′

1; . . . ; i
′
nα
′
n, τ
′
n|i1α1, τ1; . . . ; inαn, τn)

=

〈
T̂
[
â†

i′1α
′

1
(τ ′1)âi1α1(τ1) . . . â

†
i′nα′n
(τ ′n)âinαn(τn)

]〉(0)
.

(13)

In order to calculate the correlation functions in many-body
theory, we usually use the Wick theorem which allows
us to decompose the n-point correlation function (13) into
sums of products of one-point correlation functions [37–40].
However, this theorem is not valid for the considered system
here because the unperturbed Bose–Hubbard Hamiltonian (1)
contains terms which are of fourth order in the creation
and annihilation operators. Therefore, we use the cumulant
decomposition for the Green functions, which is based on the
locality of Ĥ(0) [41, 42]. With this, the unperturbed one- and
two-point Green functions are given by

G(0)1 (i1α1, τ1|i2α2, τ2) = δi1,i2 i1
C(0)1 (τ1, α1|τ2, α2), (14)

and

G(0)2 (i1α1, τ1; i2α2, τ2|i3α3, τ3; i4α4, τ4)

= δi1,i3δi2,i4δi3,i4 i1
C(0)1 (τ1, α1; τ2, α2|τ3, α3; τ4, α4)

+ δi1,i3δi2,i4 i1
C(0)1 (τ1, α1|τ3, α3)i1C(0)1 (τ2, α2|τ4, α4)

+ δi1,i4δi2,i3 i1
C(0)1 (τ1, α1|τ4, α4)i1C(0)1 (τ2, α2|τ3, α3).

(15)

In order to calculate the respective cumulants from combining
equations (13)–(15), we use for each lattice site the
property [32, 43, 44]

â†
α|S,m, n〉 = Mα,S,m,n|S+ 1,m+ α, n+ 1〉

+ Nα,S,m,n|S− 1,m+ α, n+ 1〉, (16)

âα|S,m, n〉 = Oα,S,m,n|S+ 1,m− α, n− 1〉

+ Pα,S,m,n|S− 1,m− α, n− 1〉, (17)

where Mα,S,m,n,Nα,S,m,n, Oα,S,m,n and Pα,S,m,n represent re-
cursively defined matrix elements of creation and annihilation
operators. Having calculated the free energy F in this way, we
perform then the Legendre transformation (7) to determine the
effective action. In the special case of a stationary equilibrium,
which is site-independent due to homogeneity, the order
parameter is given in terms of Matsubara frequencies ωm =

2πm/β: 9eq
iα (ωm) = 9α

√
β δm,0, 9

∗eq
iα (ωm) = 9∗α

√
β δm,0.

Thus, the on-site effective potential becomes

0
(
9α, 9

∗
α

)
= F0 +

∑
α

Bα|9α|
2

+

∑
α1,α2,α3,α4

Aα1α2α3α49
∗
α1
9∗α2

9α39α4 , (18)

with the Landau coefficients

Bα =
1

a(0)2 (α, 0)
− zJ, (19)

Aα1α2α3α4 = −
βa(0)4 (α1, 0;α2, 0|α3, 0;α4, 0)

4a(0)2 (α1, 0)a(0)2 (α2, 0)a(0)2 (α3, 0)a(0)2 (α4, 0)
,

(20)

where z = 2D denotes the coordination number in a
D-dimensional cubic lattice [45]. Furthermore, a(0)2 and a(0)4
follow from the cumulants but they are not displayed here due
to their complicated and lengthy expressions.

Extremizing the effective potential (18) according to (9)
we find at first the location of the quantum phase transition

zJc =
min
α

1

a(0)2 (α, 0)
, (21)

which turns out to coincide with the mean-field result
in [32–34], see figure 1. Moreover, inserting (18) into (9)
yields also the different superfluid phases for ferromagnetic
and anti-ferromagnetic interactions with and without mag-
netization at zero temperature. If there is more than one
solution, we must take the one which minimizes the effective
potential for some system parameter. At first, we observe
that the condensate in the superfluid phase above the first
Mott lobe shows, indeed, a sharp increase [11]. Thus, the
condensate density cannot be valid deep in the superfluid
phase. Therefore, it is necessary to determine the range of
validity of the Ginzburg–Landau theory. To this end, we use
the fact that we cannot have more particles in the condensate
than we have in total. This leads to the condition that the sum
over the condensate densities

∑
α|9α|

2 is equal to the average
number of particles per lattice site 〈n〉 = − ∂0

∂µ
|9=9eq , i.e.∑

α

|9α|
2
= 〈n〉, (22)

which is graphically shown in figure 1. However, we read off
from figure 1 that condition (22) breaks down at the end of the
lower Mott lobes. There we have to use an additional criterion
to obtain a finite range of validity. To this end we complement
condition (22) by the additional ad hoc restriction that above

3
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Figure 1. Superfluid phases calculated analytically and numerically for different values of spin-dependent interaction strength U2/U0 and
at external field η/U0 = 0.2: 91 6= 0, 90 = 9−1 = 0 (blue); 91 6= 0, 9−1 6= 0, 90 6= 0 (red); 9−1 6= 0, 90 = 91 = 0 (cyan); and
91 6= 0, 9−1 6= 0, 90 = 0 (green). The validity ranges (22) and (23) correspond to the black and dashed orange lines, respectively.
Moreover, Mott lobes are characterized by gray color. (a) U2/U0 = 0.02. (b) U2/U0 = 0.04. (c) U2/U0 = 0.05. (d) U2/U0 = 0.07.
(e) U2/U0 = 0.1. (f) U2/U0 = 0.15.

Mott lobe n the condensate density cannot be larger than n+1,
yielding the boundary∑

α

|9α|
2
= n+ 1, (23)

which is depicted in figure 1 as a dashed orange line.
Now we show at zero temperature that our Ginzburg–

Landau theory distinguishes between various superfluid
phases for a ferromagnetic and anti-ferromagnetic interaction

with and without external magnetic field within the validity
range of our theory. Without external magnetization the
superfluid phase is a polar (ferromagnetic) state for
anti-ferromagnetic (ferromagnetic) interactions, which is
characterized by 91 6= 0, 9−1 = 90 = 0 (90 6= 0, 9−1 =

91 = 0), in accordance with previous mean-field results
[31, 32]. In the presence of the magnetic field the phase
diagram does not change for the ferromagnetic interaction, as
the minimization of the energy implies the maximum of spin
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value as it is in the case without η, except the degeneracy with
respect to m is lifted, so the ground state becomes |n, n, n〉.
For an anti-ferromagnetic interaction, however, the situation is
more complicated with an external magnetic field due to two
competing effects. Whereas the anti-ferromagnetic interaction
energetically favors anti-parallel spins, the external magnetic
field has the tendency to align the spins. In the following we
show that this competition leads to the appearance of different
superfluid phases with different magnetic properties.

In figure 1, we study the predictions of the Ginzburg–
Landau theory on how the external magnetic field affects
the superfluid phases in the case of an anti-ferromagnetic
interaction, i.e. U2 > 0. In this context it is important
to determine the degeneracy when two states have the
same energy with equal particle number but different
total spin. Using the ground state energy (4) and the
degeneracy condition E(0)S,S,n = E(0)S+2,S+2,n, we obtain the

critical spin-dependent interaction strength Ucrit
2 = η/(S+

3
2 )

at the external magnetic field η [34, 43, 44]. With this, we
get the resulting phase diagrams below and above the critical
spin-dependent interaction strength.

When U2/U0 is 0.02, the superfluid phase becomes91 6=

0, 9−1 = 90 = 0 where the ground state |n, n, n〉 is the state
with maximum spin for all six lobes as shown in figure 1(a).
Above the first critical value U(1)

2even/U0 = 0.036 both the
spin S and the magnetic m quantum numbers change from
|6, 6, n〉 to |4, 4, n〉 for even lobes as shown in figure 1(b).
We remark that if the spin-dependent interaction increases, the
effect of the external magnetic field decreases, so the Mott
lobes increase. The phases 91 6= 0, 9−1 6= 0, 90 = 0 and
9−1 6= 0,91 =90 = 0 appear in the SF phase for the fifth and
sixth lobes. We note that the phase 9−1 6= 0, 91 6= 0, 90 = 0
appears twice in the sixth lobe. The right phase in the sixth
lobe results from the change of S and m for the seventh lobe
from |7, 7, 7〉 to |5, 5, 7〉, which happens at the critical value
U(1)

2odd/U0 = 0.0308.

Beyond the critical value U(2)
2odd/U0 = 0.044 the values of

S and m for the odd lobes change from |5, 5, n〉 to |3, 3, n〉 as
shown in figure 1(c). Similarly, the phases 91 6= 0, 9−1 6= 0,
90 = 0 and 9−1 6= 0, 91 = 90 = 0 appear in the SF phase
for the fourth and fifth lobe and the phase 91 6= 0, 9−1 6=

0, 90 = 0 increases in the sixth lobe. After the critical
value U(2)

2even/U0 = 0.057 14, the ground states for the even
lobes change from |4, 4, n〉 to |2, 2, n〉 as shown in figure 1(d).
By the same way the phases 91 6= 0, 9−1 6= 0, 90 = 0 and
9−1 6= 0, 91 = 90 = 0 are seen in the SF phase for the third
and fourth lobe.

When U2 increases beyond the critical value U(3)
2odd/U0 =

0.08, the ground states for the odd lobes change from |3, 3, n〉
to |1, 1, n〉 as shown in figure 1(e). The phases91 6= 0, 9−1 6=

0, 90 = 0 and 9−1 6= 0, 91 = 90 = 0 appear in the SF
phase for the even and odd lobes. After the critical value
U(3)

2even/U0 = 0.133, S and m change from |2, 2, n〉 to |0, 0, n〉
for the even lobes as shown in figure 1(f). Furthermore, the
effect of magnetic field becomes very weak because the value
of η is close to U2. Additionally, spin pairs are produced to
get the minimal energy and, thus, the ground state becomes

|0, 0, n〉 for an even n, and |1, 1, n〉 for an odd n. We found the
new phase 9−1 6= 0, 91 6= 0, 90 6= 0 above the even lobes.

Furthermore, inspecting the energies of the respective
phases in the vicinity of their boundaries allows us to
determine the order of the quantum phase transition. With
this we find that the quantum phase transition from the
Mott insulator to the superfluid phase is of second order
for spin-1 bosons in a cubic optical lattice under the effect
of the magnetic field at zero temperature. Thus, our finding
disagrees with Kimura et al [46] where a first-order SF–MI
phase transition was found at a part of the phase boundary by
using the Gutzwiller variational approach. Finally, we observe
that the transitions between the different superfluid phases can
be of both first and second order above the same Mott lobe.
For instance, the transition from 91 6= 0, 90 = 9−1 = 0 to
9−1 6= 0, 91 = 90 = 0 or vice versa is of first order, whereas
the transition from91 6= 0,90 = 9−1 = 0 to91 6= 0,9−1 6=

0, 90 = 0 or 91 6= 0, 9−1 6= 0, 90 6= 0 phases or vice versa
is of second order.

In conclusion, we have worked out a Ginzburg–Landau
theory for spin-1 bosons in a cubic optical lattice within its
range of validity and investigated analytically and numerically
at zero temperature the different superfluid phases for an
anti-ferromagnetic interaction in the presence of an external
magnetic field. Depending on the particle number, the
spin-dependent interaction and the value of the magnetic field,
we find superfluid phases with a macroscopic occupation of
the two spin states ±1 or even of all three spin states 0, ±1.
This is different from the mean-field approximation which
only predicted two superfluid phases with spins aligned or
opposite to the field direction [33, 34]. It would be interesting
to study how these results would change in a frustrated
triangular optical lattice [30] or in a superlattice [47] .
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