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Cavity-induced quantum droplets
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Quantum droplets are formed in quantum many-body systems when the competition of quantum corrections
with the mean-field interaction yields a stable self-bound quantum liquid. We predict the emergence of a quantum
droplet when a Bose-Einstein condensate is placed in a transverse-pumped optical cavity. The strong coupling
between the atoms and a cavity mode induces long-range interactions in the atoms, and a roton mode for negative
cavity detuning emerges. Using Bogoliubov theory, we show that the roton mode competes with the repulsive
atomic s-wave scattering. Due to the favorable scaling of the quantum fluctuations with respect to the volume, a

self-bound stable quantum liquid emerges.
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I. INTRODUCTION

Superfluid helium-4 is known for intricate macroscopic
quantum states, the most famous of which are probably the
superfluid states [1] besides the roton mode in its disper-
sion relation [2]. It also realizes a state of zero pressure at
a specific density as a free droplet state [3]. Since liquid
helium is highly correlated, the long-range correlations and
the underlying quantum many-body interactions are not easy
to reveal. Progress has been made by constructing effective
energy functionals [4—7] and benchmarking them against ex-
perimental data rather than from first principles. The fact
that a quantum liquid of particle number N and volume V is
self-confined in free space can ultimately be reduced to three
conditions that its effective energy Eo(N, V') has to fulfill [3].
First, condition (C1) states that a local extremum defined by
(0Ey/9V )y = 0 determines the equilibrium system volume
Vo. This becomes the zero-pressure condition in the ther-
modynamic limit. For stability, the local extremum must be
a minimum, so condition (C2) reads (3%E,/ 8V2)N|VZV(J >0
and implies a positive bulk compressibility in the thermody-
namic limit. Finally, the droplet should not self-evaporate,
so condition (C3) amounts to (0Ey/dN)y|y=y, < 0, imply-
ing a negative effective chemical potential. There has to
be a competition of both attractive and repulsive contribu-
tions, depending differently on the system size V, to satisfy
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conditions (C1)—(C3). An effective toy model energy is given
by Eo(N, V) = a(N)V~! + B(N)V =7, where the first term
can be the attractive mean-field energy, while the second is
the repulsive quantum fluctuation correction. It turns out that
three choices of the parameters «, 8, and y can satisfy the
droplet conditions (C1) and (C2). They are (D1) @ <0, 8 >
0,y>0,D2)a>0,8<0,0>y > —1,and (D3) @ > 0,
B >0, y < —1. Whether the third condition (C3) is also
satisfied turns out to depend on the specific N-dependence
of & and B. An additional volume-independent term E*(N)
in the effective energy Ey can help satisfy (C3) and arises
naturally from the infinite-range interaction considered in this
article.

Recently, quantum droplets have been identified as a
unique quantum state of matter. In contrast to helium droplets,
they are formed in weakly interacting dilute atom gases. Their
discovery in Bose-Bose mixtures was initiated by the seminal
prediction of Petrov [8] that the competition between in-
traspecies and interspecies contact interactions can cause the
mean-field energy functional to become unstable. Simultane-
ously, the zero-point motion of the Bogoliubov excitations of
the mixture, as captured by the Lee-Huang-Yang (LHY) cor-
rections [9], stabilizes the system. For a given particle density
n = N/V, the competition between the unstable mean-field
energy o n” and the stabilizing LHY term oc n°/? establishes
an equilibrium for which the system pressure vanishes for fi-
nite n in the thermodynamic limit. Such a droplet realization is
of the type (D1). These self-bound quantum droplets of finite
size are described by an extended Gross-Pitaevskii equation,
where the LHY corrections are included via a local density
approximation [8]. Experimental realizations were not only
reported in Bose-Bose mixtures [10—12] but likewise in dilute
Bose gases with dipolar interaction [13—15]. The extended
Gross-Pitaevskii equation including the dipolar LHY correc-
tion [16-18] also serves as the theoretical framework for
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their description [19,20]. Importantly, dipolar Bose-Einstein
condensates (BECs) host the roton mode, which was predicted
in 2003 [21,22] and later verified experimentally [23,24].
Besides three-dimensional quantum droplets, two- and one-
dimensional ones are also studied [25-27]. One-dimensional
mixture droplets represent an effective model corresponding
to (D2) [25].

When a three-dimensional BEC is placed in an optical
cavity, the Dicke model of cavity QED is realized [28-30].
A transverse pump beam off-resonantly drives internal atomic
transitions. The quantum states of the cavity and the atoms
are strongly coupled by the scattering of pump photons into
the cavity and the repeated scattering of cavity photons by
the atoms [31]. The cavity thus mediates a long-range effec-
tive atom-atom interaction. For sufficiently strong coupling,
self-organization and the Dicke quantum phase transition are
triggered [28-30,32], together with a softening of a rotonlike
mode of the atom gas [33]. Cavity-induced droplet phases
have been studied for an ultracold gas held in an external
optical lattice, realizing the extended Bose-Hubbard model.
Droplets emerge by sign-changing potentials competing with
entropy effects [34] or by an interplay of on-site and cavity-
induced long-range interactions [35].

In this article, we show that the quantum fluctuations of the
roton mode give rise to the formation of quantum droplets. We
show that it is crucial to consider the finite range of the cavity-
mediated interaction, which is usually assumed to be infinite.
The mechanism differs in several aspects from that observed
in either a mixture or a dipolar Bose gas. There, the contact
atom-atom interactions are tuned via Feshbach resonances
so that the system becomes unstable at the mean-field level
and the atomic quantum fluctuations stabilize the macroscopic
state, corresponding to either (D1) or (D2). In contrast, cavity
quantum droplets formed in a mean-field stable cavity BEC
rather are of type (D3). They are formed for experimentally
realistic densities due to the impact of quantum fluctuations
of the cavity mode. The concept developed in this work for
the case of the cavity-induced long-range interaction can be
applied to a broader class of systems with finite interaction
range [36].

II. CAVITY BEC MODEL

The experimental setup is shown in the inset of Fig. 1.
A BEC of density n is placed in the center of a cavity.
Each atom of mass M is considered as a two-level system
|g) <> |e) with frequency separation ws. A pump beam of
frequency wp along the y axis drives the transition with a
large detuning Ap = wp — wa. The beam has the spatially
dependent Rabi frequency h(r) = hg cos(ky), where k is the
wave number of the pump photons. Due to Rayleigh scatter-
ing into the cavity, which is enhanced by the Purcell effect,
the atoms are coupled to a quantized cavity mode of fre-
quency wc along the x direction. The cavity is red detuned
by Ac = wp — wc < 0 and damped at the rate k. The max-
imal Rabi frequency G, determines the effective coupling
strength Uy = G3/Ax between an atom in the ground state
lg) and the cavity. We consider the TEMyy mode G(r) =
Go cos(kx) exp[—(y*> + z%)/£?] with the Gaussian envelope of
waist & transverse to the cavity axis. This results in a spatially
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FIG. 1. Effective ground-state energy per atom Ey/N with re-
pulsive contact interaction mean-field (E,s) and cavity-mediated
quantum fluctuation contributions (E,.) plotted against the inverse
cloud size 1/L for a fixed atom number N = 10%. Cartoons depict
the contact and the cavity-mediated interaction. The vertical dashed
line marks energy minimum corresponding to the equilibrium droplet
size Ly. The red dashed line indicates E{> for an infinite-range
cavity L/€ — 0. Other parameters are Z = 0.95Z, & = 50 um,
a, = 100 ag, and M = 87 u. Inset: Three-dimensional BEC (in blue)
placed at the cavity center aligned along the x axis with a Gaussian
mode profile of waist £. The broad pump laser propagates along the
y direction.

dependent atom-cavity interaction [37]. Physically, the pump
mode function h(r) also has a transverse Gaussian profile,
which is neglected, but does not alter qualitatively the results.
Experimentally, this simplification corresponds to a broad
pump beam profile requiring external confinement along the
cavity axis. The s-wave scattering length a, of the atoms in
the ground state determines their contact interaction strength
g = 4ma,/M with /i = 1. We assume the hierarchy of magni-
tudes |Aa| > |Ac| > k?/(2M) > gn, |Uy|, consistent with
contemporary experimental setups. This allows to eliminate
both the excited atomic state |e) and the dissipative fast cavity
mode [31,37]. After resolving the ambiguities in the operator
ordering [38], an effective atom-only Hamiltonian in terms of
the atomic ground-state field operator 1/ (r) follows as

A

A= | dri' V8 iem o
eff—/v ry )| =5 TRV @OV E) @)

1 ne n n n
+3 / d’r / Syt e Ve, PV ).
\%4 1%

(1)
The cavity-induced atom-atom interaction is given by
Ve(r, ') = T cos (kx) cos (ky) e~ O +/E
x cos (kx') cos (ky') e O TVE - (2)

where cavity and pump parameters lead to the effective inter-
action strength 7 = ZQgh%AC/[Ai(A% +«2)] < 0.
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A. Homogeneous mean-field approach

We assume that the atoms occupy a volume V that is a
cube of size L < &. It is straightforward to generalize the
calculation to other shapes. Below the superradiant Dicke
phase transition, the cavity remains empty and the condensate
is homogeneous at the mean-field level [39], so that we can
replace tﬁ(r) — (1/7(r)) = /n. The interaction potential of
Eq. (2) leads to integrals of the type

L/2
f du et/ ~3k0fgerf< g) 3)

L2

in the evaluation of both the mean-field and the quantum
fluctuations below, where the approximation is derived in
Appendix A. Note that the above result involves a finite inter-
action range £ and a finite system extent L. Thus, the finite-size
property of the system is a direct consequence of the finite
interaction range & > L, while the number of atoms N must
be physically finite. The condensate mean-field energy reads

g 2
=V=n~. 4
" “
The homogeneous mean-field condensate and its stability are
unaffected by the cavity below the Dicke transition.

B. Quantum fluctuations

Next, we develop a Bogoliubov theory of the fluctua-
tions ¢(r) = ¥ (r) — »/n around the homogeneous mean field
using the plane-wave expansion and Eq. (3) for the cavity-
induced interaction. We defer the technical discussion to
Appendix B. Importantly, within the approximation leading to
Eq. (3), the cavity couples only to the four Bogoliubov modes
Kc={(£k +k 0)7} determined by the wave number k
of the light field. The remaining atomic modes not coupled
to the cavity have the standard Bogoliubov dispersion w, =
VP*/(2M)[p?/(2M) + 2gn] in accordance with the Gold-
stone theorem. Their zero-point fluctuations in the continuum
limit yield the LHY energy correction of the Bose gas [9]. For
a dilute weakly interacting Bose gas with ag’n <« 1, the LHY
correction is negligible compared to the mean-field energy,
Eq. (4).

The four modes of K¢ form a set of mutually inter-
acting quantum harmonic oscillators with eigenfrequencies
{wk, Wk, wi, 2} as described by Eqgs. (B5) and (B6), where

k2
Q= \/w,% + 16A—4Vc(k, k)n 4)

denotes the frequency of the single resulting roton mode. It
involves the Fourier transform of the cavity-mediated interac-
tion potential, which according to Eq. (3) reads

Sl ()] 2 e ©

kK ekKc

Ve(p. p)

The roton softness is determined by the effective cavity-
induced interaction strength Z. It can be tuned by changing
the pump strength /g or the cavity detuning Ac, but can also
be fine-tuned by adopting any other cavity feature. The roton
mode is responsible for the leading-order energy contribution

derived as Eq. (B7):
1
Eac = E(Q - (l)k) . (7)

It corresponds to the difference between the respective en-
ergies with and without coupling to the cavity and vanishes
in the limit Z — 0. Combining Eq. (4) with Eq. (7) yields
the effective beyond-mean-field energy Ey = Ens + E,c of the
condensate ground state. The chemical potential then follows
as wo = gn + (aEac/aN)V-

III. EFFECTIVE ENERGY

The formation of quantum droplets can be understood by
analyzing Ey. For fixed N, conditions (C1) and (C2) impose
that the system exhibits an energy minimum with respect
to the volume V [40]. For repulsive contact interaction, the
BEC mean-field energy in Eq. (4) is positive and convex with
respect to V. Conversely, due to A¢c < 0 implying Z < 0, the
contribution of the cavity quantum fluctuations in Eq. (7) turns
out to be negative, which is typical for a roton mode. Thus,
the combined effective energy Ej can have a minimum as
depicted in Fig. 1. To maintain the homogeneous phase, we
need to stay below the Dicke phase transition. Since the latter
occurs when the roton mode becomes soft, from the condi-
tion Q = 0 we obtain the critical value Z,, = —2[(k*/M) +
2gn]/IN(J/merf[L/2£1€ /L)*].

The emergence of E,. from a single roton mode has an
important physical implication. The thermodynamic limit is
N, L, & — oo, while N/V = const and L/& = const. Further-
more, the coupling of a single atom to the cavity vanishes, i.e.,
Go — 0, so that ZV is constant. Then, the roton’s energy con-
tribution becomes intensive, i.e., induces a finite-size effect.
Consequently, in the limit of large N, the largest possible value
of E,, at Q2 = 0, will eventually be dwarfed by any extensive
energy term. Hence, self-bound droplets are only possible for
systems of finite size.

To gain further understanding, we expand Vc(p, p’) in
Eq. (6) around L/& = 0 to the second order, which is accu-
rate for a realistic experiment with global interaction range
L/& < 1. The cavity quantum fluctuation correction is then
expanded as E, ~ E? + DL?/2. The first term E° is
the energy correction in the infinite interaction range limit
L/& — 0, indicated by the dashed horizontal line in Fig. 1.
It does not depend on L and is equivalent to taking the
zeroth-order expansion in u/¢ of the Gaussian in Eq. (3),
i.e., a constant transverse profile of the mode function G(r).
By this, we recover the known results for the infinite-range
cavity-induced interaction [39]. The second term, resulting
from the specific shape of the envelope, contains the factor
D = —IN/[12§2\/1 + (4gn + IN)M/(2k*)]. We ignore the
contact interaction gn < k*/M in E,., which is valid if 7 is
not too close to Z.;. The energy correction then has the form
of a harmonic-like self-trapping potential o< L. The effective
energy becomes

gN? INV?*3

2V 2482 /14 INM/(2K?)

and gives rise to the equilibrium droplet volume
V) = —18gNE%/1 + ZNM/2k?/T. This corresponds to the

Eo(N,V) =

B +
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FIG. 2. System pressure P, dependence on the atom number N
and the system size L for Z = 0.95Z. The magenta curve is the
zero-pressure droplet line. Inset: Droplet density (blue) and chemical
potential (red) realized along this line. The absolute value of Z,, ~
N~! decreases from left to right. Remaining parameters as in Fig. 1.

minimal droplet model of type (D3) by identifying
a=gN?*/2>0,8=D/2>0,and y = —5/3.

A. Thermodynamic considerations

As stated in (C1) and (C2), energy minimization with
respect to the system size translates into a zero-pressure con-
dition 0 = —(0Ey/0V )y = Py with positive bulk compress-
ibility 0 < K(Py = 0) = =V (0Py/9V )n|v=v,, corresponding
to a thermodynamically stable state [3]. The mean-field
contact interaction yields a positive pressure Py = gn®/2,
while the roton mode corresponds to a negative pressure
P,. = —D/(3L). As the cavity-induced interaction becomes
stronger with increasing Z, the negative pressure P,. becomes
comparable to the positive mean-field pressure Pyy. Their in-
terplay results in a stable droplet with zero total pressure and
positive bulk compressibility, as displayed in Fig. 1. The com-
pressibility also obeys K(Py = 0)/n < gn. The corresponding
sound velocity is modified by the roton mode contribution
and turns out to be reduced with respect to the Bose gas
counterpart.

The system pressure is depicted in Fig. 2 for varying par-
ticle number N and system size L. The magenta line marks
Py = 0, where the droplet size Ly = Vol/ % is determined by
N and other system parameters. We find a negative pressure
above this line and a positive pressure below it, indicating the
positive bulk compressibility of the droplet corresponding to
each number of atoms N. As shown in Fig. 2, the droplet size
depends nonlinearly on the number of atoms, in accordance
with the finite-size nature of the droplet. The pressure gra-
dient, related to the droplet compressibility, decreases as N
increases. The inset shows the equilibrium density np = N/V;
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FIG. 3. Droplet density on a logarithmic scale as a function of the
atom number and the system size. Dashed and full lines correspond
to zero-pressure contours as described in the text. Parameters are the
same as in Figs. 1 and 2.

realized along the zero-pressure line. As the number of par-
ticles increases, the droplet density decreases monotonically.
The decrease is mainly due to the fact that the cavity interac-
tion Z = 0.95Z,, is kept fixed with Z,; o« N~!. In principle,
denser droplets can be realized by getting closer to the Dicke
phase transition [36]. This is due to the divergence of the
cavity pressure P, when the roton mode vanishes as Z — Z,.
We note that this happens alongside the diverging condensate
depletion into the roton mode. In line with contemporary ex-
periments, we have chosen to stay 5% below the critical point.
With this, we extract the leading-order relation V ~ N3/
from our analytical expression for V;.

B. Chemical potential

Finally, we check whether the chemical potential remains
negative [3] such that the droplet does not evaporate sponta-
neously. The total chemical potential pg = gn + (0Ey/ON)y
is composed of the positive mean-field and the negative roton
contribution. At zero pressure, the cavity-induced term pre-
vails over gn, resulting in a negative overall po(Py = 0) < 0,
thus avoiding self-evaporation [36]. As displayed in Fig. 2
(inset), the absolute value of the total chemical potential di-
minishes for growing N in the same way as the density. Yet, it
always remains negative.

C. Droplet density

Figure 3 displays the droplet density as a function of the
atom number and the system size. The magenta lines corre-
spond to the zero-pressure contours of long-range interaction
strength values, Z, ranging from 0.1 Z, to 0.95 Z,, from the
top left to the lower right corner as a geometric sequence.
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The magenta border line is the same as the magenta line in
Fig. 2. Recall that Z., ~ N~! depends on the number of atoms.
The solid cyan lines correspond to zero-pressure contours
with constant values of |Z| ~ 9—515 Hz, which are chosen
to match the dashed curves for N = 100.

Quantitative examination of the results presented in Fig. 3
reveals that compared to typical BEC atom numbers and other
droplet realizations [10-14], the droplet densities presented
here are orders of magnitude more dilute. This has its root
in the BEC mean-field contact interaction that the cavity
fluctuations have to overcome. In other droplet realizations,
the mean field is almost completely suppressed from the out-
set. In addition, the homogeneous nature of the droplets is
constrained by the Dicke phase transition. Droplets of any
desired density can be obtained by approaching the Dicke
critical point, as shown in Fig. 3. However, due to techni-
cal limitations in experimental control, it is more realistic
to optimize other system parameters, such as, e.g., the equi-
librium density that scales approximately as ny ~ g~3/> with
respect to the contact interaction strength. It is also possible to
optimize the setup with respect to the cavity mode width and
explore the dependence ny ~ £ 6/°.

D. Thermal effects

In any experiment, the thermal pressure of the Bose gas
Py, o T*(gn)=3/% [see Eq. (C3)] will contribute by shift-
ing the equilibrium point to a lower density. Therefore, an
optimization of the experiment should focus on enabling
a denser droplet. At nanokelvin temperatures, a system of
N =100 atoms and an envelope waist £ = 5Sum can sus-
tain the droplet close to the Dicke phase transition 7 =
0.997Z,. To get a stable droplet with the same parameters as
in Fig. 1, the condensate must be at T < 0.1 nK. Conden-
sates have been prepared at such low temperatures [41], even
at tens of picokelvin, with matter wave lensing techniques
[42,43]. Increasing the interaction strength g proves effective
in suppressing detrimental thermal effects. While finite tem-
peratures may even be beneficial to promote quantum effects
in other types of droplets [44], they hinder the formation of
cavity quantum droplets of type (D3). Due to Py, o T*, the
temperature window is narrow for a droplet, where Py is
significant.

IV. CONCLUSIONS

We have shown that a mean-field stable BEC can be turned
into a stable quantum droplet when coupled to a single-mode
cavity with transverse pumping. The zero-point energy of
the cavity quantum fluctuations then provides an attractive
quantum correction to the mean-field BEC contact interaction
energy if the cavity is red detuned. The dependence of the
attractive term on the BEC volume is crucially influenced by
the shape of the cavity mode function, which determines the
cavity-induced atom-atom interaction. The Fourier transform
of the mode function envelope determines the roton eigenfre-
quency and thus the finite-size behavior of the roton energy
contribution. An alternative view is that the cavity quantum
fluctuations, once strongly coupled to the BEC, exert a signifi-

cant negative pressure on the atomic cloud. It turns out that the
spatial profiles of the light fields inducing the finite-range in-
teraction are essential for droplet formation. The equilibrium
density of cavity-induced quantum droplets can be controlled
by varying the strength of the transverse pump or the cavity
detuning. Self-boundedness is a key experimental hallmark of
these quantum objects. If a condensate is prepared, coupled
to the cavity, and then released by removing the external
trapping along at least one axis, absorption imaging could
reveal whether the cloud maintains its form or expands.
Although we have focused on the simplest form of a cavity-
induced long-range interaction, the theory can account for any
envelope function f(r, ") and system dimension. Our theory,
e.g., can directly be applied [36] to multimode cavities with
an envelope f(x, x') = exp[—(x — x)>/&2] [31]. Those have
been studied in a lattice with quantum Monte Carlo techniques
[35] and in terms of numerical solutions for ring cavities [45].
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APPENDIX A: APPROXIMATIONS LEADING TO EQ. (3)

When the homogeneous mean-field approximation
Y (r) = (¥ (r)) = /n is used in the second line of Eq. (1),
one finds

2
E |:f d3r (eikx + e—ikX)(eiky + e—iky)e_(y2+zz)/§z:| . (A])
321y

Since the atoms occupy a cube of volume V = L?, it de-
composes into the product of integrals given in Eq. (3). For
discrete momenta, k = 2wm/L for m € Z and for the con-
straint L < &, the Gaussian e/% varies slowly compared to
the fast oscillating exponential e** for k # 0. Hence, we can
approximate the Gaussian envelope by its spatial average

L2 L2 L2
/ du eikue—uz/f2 ~ / dueiku / @e—rf/éz
—L)2 —L)2 1 L

L
- SkOﬁEerf<E> . (A2)

In this approximation, the spatial integral in Eq. (A1) vanishes
since k # 0.

APPENDIX B: BOGOLIUBOV THEORY

To include quantum fluctuations, we expand the Hamil-
tonian in Eq. (1) up to the second order in ¢(r) = ¥ (r) —
/1. The linear order vanishes upon applying Eq. (A2). The

033216-5



MIXA, RADONJIC, PELSTER, AND THORWART

PHYSICAL REVIEW RESEARCH 7, 033216 (2025)

quadratic order reads

~

24272
Ay = [ @ [é"‘(—v— ¥ gn)¢ + Gh+419 )] [ | @+ 6 cosin) costhye” } ,

B

where we suppressed the spatial dependence of the fluctuation operators ¢ and ¢ for brevity. The plane wave expansion of the

fluctuation operator ¢(r)

=20 bpe™ //V leads to

-y (5
< P\ 2M
p.p

2

where the primed sum indicates the omission of the zero
momentum terms. The integrals are performed using the
Kronecker integral representation f_LZZ due™ = L§,y and
Eq. (A2), yielding

o= S (5 )i+
p
2 R R 2
32V2{[f5erf( §>] Z(¢k+¢;>} , (B3)

kEICC

with K¢ = {(£k £k 0)7}. Its eigenmodes are obtained by
a standard Bogoliubov transformation to the quasiparticles of
the modes unaffected by the cavity-induced interaction p ¢
K. An additional transformation is required for those k € K¢
that are coupled to the cavity. The former follow the standard
Bogoliubov dispersion

P’ (P’
= (2 (£ 4 oem).
“p \/2M<2M+ g”)

To determine the eigenmodes for k € K¢, it is convenient
to express the Hamiltonian in terms of the quasiposi-

tion %, = VM ((;31, + qgip)/ V/p* and quasimomentum J, =
—iy/ pz(qs_p — (13;) /~/4M operators of Ref. [46], yielding

A 1 P’
7 SN IS
qu—z E (ypyp+a) p—2——gn)

PEKc
k2
(ﬂ + gn)] (B5)

Here, we have defined ¥ = (R, *x, %, f,)7 and y anal-
ogously, where K¢ = {ky, k», k3, k4}. The cavity-mediated
interaction in Eq. (2) only couples quasiposition operators so
that the eigenmodes can be read off from the eigenvalues of
the 4 x 4 matrix coupling the four modes in K¢:

INK? L\
h=wilaxa + —— 1375 [\/L_ée f(i)} Jaxa, (B6)

where J4y4 is the matrix of all elements 1. The eigenvalues
are {wy, wg, wg, 2}, with the first three obeying the standard
Bogoliubov dispersion w; from Eq. (B4) and the last being
affected by the cavity according to Eq. (5). Using these eigen-

am . 2 A AT
5 G-y + ¢;¢,,)}

(B4)

><l>

Tyxay + 30X —

. &r _. noa »
>¢p’/ 7e—l(P—P)’ (g bpdy / _el(p+P)r+HC>
Vv

IN . [ d? ipr_ P 2
+ —{ Z’|:¢p[ ar cos(kx) cos(ky)e P S + Hc]} ,
P vV

(B2)

(

modes, we find the quantum fluctuations zero-point energy

2

1 p
qu:§§/(a)p—w—gn

) + %(Q —wp).  (B7)

The first term is the LHY correction of a Bose gas [9] that is
to be evaluated in the continuum limit with the proper renor-
malization and equals 8V M>*?(gn)>/?/(157?). In a weakly
interacting dilute Bose gas, as studied here, the LHY correc-
tion is negligible compared to the mean-field energy in Eq.
(4). The second term encapsulates the deviation of the roton
dispersion from the Bogoliubov one due to the presence of the
cavity-mediated interaction. It is exactly the cavity-induced
quantum fluctuation correction E,. given in Eq. (7).

APPENDIX C: DERIVATION OF THE THERMAL
PRESSURE

At finite temperature, the effective energy Eo(N,V,T) =
Ewns + Eaic + Eq acquires an additional thermal contribution

[44,47]:
1 —e P9
(—] — e—ﬁwk>' (Cn

The sum over the momenta is evaluated as an integral in
the continuum limit. The ultralow-temperature regime implies
large B, such that the Bogoliubov dispersion can be approxi-

— e PN s/

1 1
Ep = 3 Z/ln(l — e Pory 4 Eln

p

mated as phononic, i.e., In(1 — e #») ~ In(1
[47]. This gives

E w2V M3/? n 1 1 —e P9 2
_— —_— n —_—
"7 T 904 gn) 2 T B \1— e
The resulting thermal pressure is then
T2 M2
=—""-, C3
= 26 (an) 2 (C3)

where the remaining roton contribution is negligible.
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