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Engineering quantum droplet formation by cavity-induced long-range interactions
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We investigate a dilute Bose gas with both a short-range contact and an effective long-range interaction
between the atoms. The latter is induced by the strong coupling to a cavity light mode and is spatially
characterized by a periodic signature and a tunable envelope rooted in the pumping of the cavity. We formulate
a Bogoliubov theory based on a homogeneous mean-field description and quantum fluctuations around it. The
competition between the repulsive contact interaction and the long-range interaction allows the formation of
self-bound quantum droplets. This generic approach is applied to two cavity setups, one without and one with
a momentum-conserving effective long-range interaction between the atoms in the form of a driven dispersive
cavity mode and a multimode cavity, respectively. For both cases we show analytically how the size and the
central density of the cavity-induced quantum droplets depend on the contact interaction strength and on the
shape of the spatial envelope of the long-range interaction.
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I. INTRODUCTION

Classical matter typically exists in one of three aggregate
states: solid, liquid, or gas. Their unique properties result from
the interactions between their constituent particles. At suffi-
ciently low temperatures, quantum effects play a major role
and enable more exotic states of matter. For example, below
2.17 K, 4He exists as a superfluid [1,2], i.e., a quantum liquid
that flows without friction and has no entropy. In 1970 it was
predicted that a new state, the supersolid, with both superfluid
and solid properties should appear at very low temperatures
[3]. Although the experimental search for a supersolid has
long focused on 4He, no conclusive supersolid properties have
yet been discovered [4].

Helium, like a classical liquid, is capable of forming
droplets, although it must be kept at low temperatures [5]. In
the realm of ultracold dilute quantum gases, the existence of
a new type of droplets was theoretically predicted by Petrov
in Bose-Bose mixtures [6] and later experimentally verified
[7–9]. Unlike ordinary liquids, this quantum droplet state
exhibits exceptionally low densities and is the result of an
intricate interplay between weak mean-field attraction and
repulsive quantum fluctuations. The latter stabilize the gas,
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which would otherwise be unstable from a mean-field per-
spective. A proper theoretical description of quantum droplets
involves an extension of the mean-field Gross-Pitaevskii
equation (GPe) by the famous Lee-Huang-Yang (LHY) cor-
rection [10]. As an alternative to homo- and heteronuclear
atomic mixtures, a dipolar Bose-Einstein condensate (BEC)
of magnetic atoms [11] can become unstable and break into
multiple isolated self-bound quantum droplets when the dipo-
lar interaction exceeds the contact interaction [12,13]. The
corresponding dipolar extended GPe [14,15] includes both an
isotropic short-range contact interaction and an anisotropic
long-range dipolar interaction, as well as the dipolar LHY
correction [16–18].

An important advantage of dipolar BECs over their Bose-
Bose mixture counterparts is the hosting of an unstable roton
mode, which was predicted theoretically in 2003 [19,20] and
later verified experimentally [21,22]. It facilitates the spon-
taneous formation of a density pattern in a Bose superfluid
and allows the formation of a supersolid [23–27]. In the initial
realizations of quantum droplets, their mutual distance was
too large to establish global phase coherence among them,
which is mandatory for a superfluid. Only in 2019, three
experiments with erbium and dysprosium atoms showed that
phase-coherent quantum droplets and thus a supersolid exist
in a very narrow parameter window as long as the number
of atoms is sufficiently large [23–25]. In such a scenario,
global phase coherence emerges precisely when the quantum
droplets are connected by a background BEC.

Quantum droplet formation requires the presence and com-
petition of two independent interactions in an ultracold atomic
system. When atoms are coupled to an optical cavity, a long-
range interaction between them is effectively induced [28].
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In addition, a roton mode is observed whose softness is
controlled by the strength of the cavity-induced interaction
[29]. When the roton mode becomes unstable, the system
undergoes a quantum phase transition to a self-organized
checkerboard density pattern accompanied by superradiance
in the cavity [30].

The long-range interaction in the cavity BEC system is
qualitatively different from the dipolar one, which decays
as ∝ r−3. When talking about long-range interactions, the
type with such an algebraic decay is commonly considered
[31]. The type of interaction is typically characterized by a
stretched exponential decay of the form exp(−arα ). In view
of recent proposals to engineer a variety of such interactions
in cavity BEC systems [32], we present here a generic theory.
The effective interaction is realized by coupling of the BEC to
a driven dispersive cavity mode, with the caveat that it is not
momentum conserving. In multimode cavities, a similar long-
range interaction can be realized with a translation-invariant
interaction potential.

We proceed as follows. In Sec. II we discuss the criteria
for a stable droplet and present a generic minimal model of
the ground-state energy that can satisfy these conditions. We
identify three different classes of allowed parameters, which
leads to the corresponding classification of quantum droplets.
In Sec. III we work out the homogeneous mean-field descrip-
tion and the quantum fluctuation correction around it for a
generic system with both a contact and an effective long-range
interaction between the atoms. The latter is characterized by
a spatially periodic signature that is modified by a tunable
spatial envelope. Based on these results, we discuss in Sec. IV
the case of a single-mode cavity coupled to a BEC, where the
atoms are pumped by a transverse pump beam scattered into
the cavity. The transverse cavity mode profile naturally pro-
vides an envelope with the finite-range coupling to the cavity.
It thus leads to an effective long but finite-range interaction
between the atoms, which we present in part in Ref. [33].
The general results for such a system are discussed in Sec. V.
Finally, in Sec. VI we summarize our findings on how the
properties of cavity-induced quantum droplets can be tuned
by both the contact interaction strength and the shape of the
spatial envelope of the long-range interaction.

II. DROPLET CLASSIFICATION

The formation of a quantum droplet as a self-trapping
quantum liquid that avoids self-evaporation relies on the ful-
fillment of three generic conditions originally introduced in
the context of superfluid helium droplets [5]:

(C1) zero pressure,

(C2) positive bulk compressibility,

(C3) negative chemical potential. (1)

The energy density of a minimal model that satisfies these
conditions contains two terms. The first term is usually due
to the mean-field energy and depends quadratically on the
density n, while the second term also depends algebraically on
the density with a power exponent that differs from the former
by the parameter γ . For example, a three-dimensional Bose-
Bose mixture and a dipolar Bose gas allow for a distinct class

of quantum droplets where the mean-field term is attractive
and repulsive quantum fluctuations are characterized by the
exponent 5/2, such that γ = 1/2. A second class of quan-
tum droplets occurs in a one-dimensional Bose-Bose mixture
where, conversely, the mean-field contribution is positive and
the quantum corrections yield a negative one with the expo-
nent parameter γ = −1/2 [34].

In this work, we theoretically introduce a third class of
quantum droplets. They should arise in systems, such as those
realizable in cavity BEC experiments, that exhibit specific
long-range interactions. In such a scenario, the quantum fluc-
tuations of the cavity give rise to the roton mode. Unlike
for the other droplet types, the corresponding energy density
cannot be expressed as a function of atomic density alone.
Consequently, when applying the above droplet conditions
(1), we cannot rely on the study of the system energy density.
However, as we will show, it is possible to generalize these
conditions to our finite-size system by using the correspond-
ing effective ground-state energy as the basis for a generic
minimal model. To this end, we assume that the number N of
atoms is fixed and consider the effective ground-state energy
of a self-bound quantum liquid in the form

E0(N,V ) = α(N )

V
+ β(N )

V 1+γ
+ Eμ(N ). (2)

Importantly, here we permit a system-size-independent energy
contribution Eμ(N ), which does not affect the equilibrium
size, but only influences the chemical potential. For a self-
bound droplet, the energy E0 must have a minimum at a
certain system volume V0(N ) > 0 (C1), which implies(

∂E0

∂V

)
N

∣∣∣∣
V =V0

!= 0 ⇒ V0(N )γ = − (1 + γ )β(N )

α(N )
. (3)

In order that this local extremum is actually a minimum, we
must demand (C2)(

∂2E0

∂V 2

)
N

∣∣∣∣
V =V0

!
> 0 ⇒ γα < 0. (4)

The combination of (3) and (4) finally leads to three possible
classes of parameters α, β, and γ that can realize a quantum
droplet:

(D1) α < 0, β > 0, γ > 0,

(D2) α > 0, β < 0, 0 > γ > −1,

(D3) α > 0, β > 0, γ < −1. (5)

The analog of the third droplet condition (C3), by virtue of
(C1), becomes(

∂E0

∂N

)
V =V0

= 1

V0

dα

dN
+ 1

V 1+γ

0

dβ

dN
+ dEμ(N )

dN

!
< 0, (6)

which yields

dα

dN
− α

(1 + γ )β

dβ

dN
+ dEμ(N )

dN
< 0. (7)

This must be checked for the specific N dependence of α(N ),
β(N ), and the energy shift Eμ(N ).

In Fig. 1 we sketch the two droplet conditions (C1) and
(C2) of Eq. (1) for a BEC and the three possible droplet
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FIG. 1. Sketch of the effective ground-state energy E0 of the
model Eq. (2) against the inverse system size 1/V for a weakly
interacting BEC and the three droplet classes of Eq. (5). The energy
minima at the equilibrium volume V0, obtained from Eq. (3), are
indicated by dots. The sketch parameters are α = 0.5, β = 0.01,
γ = 1/2; (D1) α = −1.35, β = 1, γ = 1/2; (D2) α = 0.6, β = −1,
γ = −1/2; and (D3) α = 1, β = 1/2, γ = −5/3. The curve for (D3)
includes a system size independent shift Eμ.

classes (D1)–(D3). A simple BEC with only repulsive weak
contact interaction has an effective energy E0 = gN2/2V ,
which grows as ∝ 1/V with the inverse system size. In the
infinitely dilute limit, its ground-state energy is zero. The
established dipolar droplets and Bose-Bose mixture droplets
in three dimensions belong to the class (D1) defined in Eq. (5).
In the dilute limit, 1/V → 0, the unstable attractive mean field
∝ −1/V dominates. Figure 1 shows that the interplay with its
positive repulsive quantum correction ∝ 1/V 3/2, which dom-
inates in the dense limit, leads to a minimum of the effective
energy. Thus, a stable droplet is formed between these limits
for finite system size and density. One-dimensional Bose-
Bose mixtures, on the other hand, belong to the class (D2).
They form droplets through the interplay of the attractive
quantum fluctuation contribution ∝ −1/V 1/2 and the repul-
sive mean-field term ∝ 1/V so that the energetic minimum is
seen in the green plot of Fig. 1.

We will show in this work that the long-range interactions
engineered in cavity BEC systems realize the third droplet
class (D3). In the limit 1/V → 0 the effective energy E0

follows a power law ∝ 1/V 1+γ due to the quantum correction
term. In Fig. 1 we choose γ = −5/3 based on our results
in Sec. IV. In the physical systems discussed below, the di-
vergence of E0 in the infinitely dilute limit is an artifact of
the validity of the approximations we use in the derivation.
In the limit 1/V → ∞, the repulsive mean field determines
the effective ground-state energy with the growth ∝ 1/V . For
this effective energy model of type (D3) to satisfy the droplet
condition (C3), the presence of a sufficiently negative size-
independent energy Eμ(N ) is required, which occurs naturally
in the systems we study in this work.

III. GENERIC MODEL

We study an effective generic model of a dilute gas of
bosonic atoms (of individual mass M) in d dimensions in a

cavity. The atoms experience two different types of density-
density interactions: a contact interaction of strength g and an
effective long-range interaction mediated by the cavity. The
effective Hamiltonian is (with h̄ = 1)

Ĥeff =
∫

V
dd r ψ̂†(r)

[
− ∇2

2M
+ g

2
ψ̂†(r)ψ̂ (r)

]
ψ̂ (r)

+ 1

2

∫
V

dd r
∫

V
dd r′ψ̂†(r)ψ̂ (r)VC (r, r′)ψ̂†(r′)ψ̂ (r′),

(8)

where ψ̂ , ψ̂† are bosonic field operators and the long-range
interaction potential,

VC (r, r′) = Iv(r, r′) fξ (r, r′), (9)

has three real-valued constituents. The interaction strength
is denoted by I and v(r, r′) denotes a dimensionless peri-
odic function, obeying |v(r, r′)| � 1 as well as the symmetry
v(r, r′) = v(r′, r). Furthermore, fξ (r, r′) represents a dimen-
sionless envelope with widths ξ, which is characterized by the
properties fξ (0, 0) = 1, | fξ (r, r′)| � 1, lim|ξ|→∞ fξ (r, r′) = 1,
and the symmetry fξ (r, r′) = fξ (r′, r). Below in Secs. IV and
V we consider two different experimental setups, described
effectively by the Hamiltonian (8) and by a long-range inter-
action potential of the form (9). This justifies the following
analysis of useful properties of the interaction potential (9)
and the subsequent development of a Bogoliubov theory for
the effective Hamiltonian (8). The resulting ground-state en-
ergy will then be used to study the formation of cavity-induced
droplets.

A. Fourier transformation

The atoms occupy a space of finite extent Lν in each
direction ν = 1, . . . , d , so the volume of the system is V =∏d

ν=1 Lν . Since we are not concerned here with edge effects,
we assume periodic boundary conditions in each of the direc-
tions. Therefore, the field operators can be expanded in their
respective Fourier series

ψ̂ (r) = 1√
V

∑
p

eipr ψ̂p, (10)

with the Fourier amplitudes given by

ψ̂p = 1√
V

∫
V

dd re−iprψ̂ (r), (11)

where the momentum components take the discrete values
pν = 2πmν/Lν with integer mν . We choose the origin of the
coordinate system such that the λ-periodic potential v(r, r′) is
an even function, i.e., v(r, r′) = v(−r,−r′). The periods λν

are integer fractions of the system extension Lν in each direc-
tion, i.e., we have λν = Lν/lν for lν ∈ Z \ {0}. Consequently,
the periodic potential v(r, r′) can be represented by its Fourier
series,

v(r, r′) =
∑
k,k′

eikr+ik′r′
ṽk,k′ , (12)
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with the Fourier amplitudes given by

ṽk,k′ =
∫

V

dd r
V

∫
V

dd r′

V
e−ikr−ik′r′

v(r, r′), (13)

with kν = 2π jν/λν , k′
ν = 2π j′ν/λν and jν, j′ν ∈ Z. Note that

the set of wave vectors k, denoted as KC , is a proper sublattice
of the set of momenta p since the respective periods are
commensurable. We will exclude k = 0 from KC , which will
turn out to be necessary to have a purely beyond mean-field
effect of the long-range interaction. Physically, this means
that the periodic potential v(r, r′) does not have a constant
baseline, neither in r nor in r′, i.e., ṽk,0 = ṽ0,k′ = 0. Below,
the introduction of the expansion (12) into various spatial
integrals over the volume V will lead to the selection of the
Fourier amplitudes of the rest of the integrand, corresponding
to the set KC , which will be the only ones that result in a
nonzero contribution.

The above symmetry properties of v(r, r′) translate to the
Fourier amplitudes via

ṽk,k′ = ṽk′,k = ṽ−k,−k′ . (14)

Note that we do not impose translational invariance on
the long-range potential (9) since we are also interested in
potentials realized as effective interactions mediated by dis-
sipative bosonic modes, which do not necessarily conserve
momentum.

To continue, we need the Fourier expansion of the envelope
function

fξ (r, r′) =
∑
p,p′

eipr+ip′r′
f̃ξ (p, p′), (15)

where the Fourier amplitudes read

f̃ξ (p, p′) =
∫

V

dd r
V

∫
V

dd r′

V
e−ipr−ip′r′

fξ (r, r′). (16)

First, we note that f̃ξ (0, 0) is the spatial average of the dimen-
sionless envelope fξ (r, r′). In the following, we assume that
fξ (r, r′) varies only weakly on the scale of the system size so
that it can be well approximated by its spatial average f̃ξ (0, 0)
next to the complex exponentials in Eq. (16) and then taken
out of the integrals. In this way, we arrive at

f̃ξ (p, p′) ≈ δ
(d )
p0 δ

(d )
p′0 f̃ξ (0, 0). (17)

Thus, f̃ξ (0, 0) is the only envelope property relevant to the
discussion in the following.

B. Mean field

Motivated by the preceding section, we analyze the model
Hamiltonian (8) within the framework of Bogoliubov theory.
For this purpose, we employ the ansatz

ψ̂ (r) = √
n + φ̂(r), (18)

where the first term denotes the homogeneous mean field with
the particle density n = N/V and the effect of the quantum
fluctuations around this mean field are described by the fluc-
tuation operator φ̂(r). We start by neglecting the quantum
fluctuations so that the first line in the effective Hamiltonian

Eq. (8) gives straightforwardly the atomic mean-field energy,

Emf,A = gn2

2
V. (19)

The double integral in the second line of Eq. (8) yields the
cavity-induced contribution,

Emf,C = In2

2

∫
V

dd r
∫

V
dd r′v(r, r′) fξ (r, r′). (20)

Taking into account the Fourier series in Eq. (12) of the
periodic function v(r, r′) and (17) yields

Emf,C = IN2

2
ṽ0,0 f̃ξ (0, 0). (21)

Thus, the long-range interaction contributes to the homoge-
neous mean field only if ṽ0,0 �= 0 and f̃ξ (0, 0) �= 0. In the
following, we are interested in going beyond mean-field ef-
fects in a homogeneous system. Therefore we will continue
with the examination of long-range interactions without the
spatially constant background and assume ṽ0,0 = 0. In this
case, we have Emf,C = 0, so the mean field of the system is
unaffected by the long-range interaction VC and the mean-field
chemical potential is given by μmf = gn.

C. First-order quantum fluctuations

To determine the effect of quantum fluctuations, we
Fourier-expand the fluctuation operator,

φ̂(r) = 1√
V

∑
p

′eipr φ̂p, (22)

where the primed sum denotes omitting the p = 0 term. In-
serting the ansatz of Eq. (18) into the model Hamiltonian
Eq. (8) yields in first order,

Ĥ1 = In3/2
∫

V
dd r[φ̂(r) + φ̂†(r)]

×
∫

V
dd r′v(r, r′) fξ (r, r′). (23)

Due to the Fourier expansions (12), (15), and (22) as well as
the approximation (17), this leads to the result

Ĥ1 = IN3/2 f̃ξ (0, 0)
∑

k∈KC

(φ̂−k + φ̂
†
k )ṽk,0, (24)

which vanishes due to the assumed absence of the constant
baseline of v(r, r′).

D. Second-order quantum fluctuations

Let us next turn to the second-order effect of the quan-
tum fluctuations. The corresponding part of the Hamiltonian
Eq. (8) reads

Ĥ2 = 1

2

∑
p

′
[

p2

2M
(φ̂†

pφ̂p + φ̂−pφ̂
†
−p) − p2

2M

+ gn(φ̂−p + φ̂†
p)(φ̂p + φ̂

†
−p) − gn

]
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+ IN

2

∑
p,p′

′ ∑
k,k′∈KC

[(
φ̂pδ

(d )
−pk + φ̂†

pδ
(d )
pk

)
ṽk,k′

× f̃ξ (0, 0)
(
φ̂p′δ

(d )
−p′k′ + φ̂

†
p′δ

(d )
p′k′

)]
, (25)

where in the double sum we used the approximation of
Eq. (17). We introduce the quasiposition operator x̂p =√

M/p2(φ̂p + φ̂
†
−p) and the quasimomentum operator ŷp =

−i
√

p2/4M(φ̂−p − φ̂†
p), which satisfy x̂†

p = x̂−p, ŷ†
p = ŷ−p,

and [x̂p, ŷp′] = iδ(d )
pp′ [35]. Then, Eq. (25) reduces to the ex-

pression

Ĥ2 = 1

2

∑
p

′
(

ŷ†
pŷp + ω2

px̂†
px̂p − p2

2M
− gn

)

+ IN

2
f̃ξ (0, 0)

∑
k,k′∈KC

ṽk,−k′
|k||k′|

M
x̂†

k x̂k′ . (26)

From the second line, we see that the long-range interaction
couples exclusively the quasiposition operators x̂k for wave
vectors k ∈ KC . Note that this type of coupling depends on
the choice of v(r, r′) as an even and symmetric function. The
modes p /∈ KC , that do not couple to the cavity, follow the
familiar Bogoliubov dispersion,

ωp =
√

p2

2M

(
p2

2M
+ 2gn

)
. (27)

Thus, it remains to determine the respective dispersion for
the long-range coupled modes KC = {k1, . . . , kd̃}, where we
denote the number of these modes by d̃ = |KC |. To this end,
we define �̂x = (x̂1 . . . x̂d̃ )T and analogously �̂y as well as
the effective coupling,

ṽi j = ṽki,−k j

|ki||k j |
M

, (28)

between the modes i and j. Hence, the Hamiltonian of
Eq. (26) can be rewritten as

Ĥ2 = 1

2

∑
p/∈KC

′
(

ŷ†
pŷp + ω2

px̂†
px̂p − p2

2M
− gn

)

+ 1

2

⎡
⎣ �̂y †Id̃×d̃ �̂y + �̂x †h �̂x −

∑
k∈KC

(
k2

2M
+ gn

)⎤
⎦. (29)

Finding the remaining eigenmodes 
k with k ∈ KC thus relies
on the diagonalization of the real symmetric matrix

h = diag
(
ω2

1, . . . , ω
2
d̃

) + IN f̃ξ (0, 0) ṽ, (30)

where ωi = ωki . Note that the symmetry of the matrix ṽ

follows directly from Eq. (14). The Fourier transform of the
envelope f̃ξ (0, 0), that carries the dependence on the spatial
extent of the system, appears as a mere prefactor to the inter-
action matrix ṽ. In conclusion, the zero-point energy of the

quantum fluctuations reads

Eqf = 1

2

∑
p/∈KC

′
(

ωp − p2

2M
− gn

)

+ 1

2

∑
k∈KC

(

k − k2

2M
− gn

)
. (31)

E. Discussion

By implementing the Bogoliubov transformation, we have
naturally separated the modes into those unaffected and those
affected by the long-range interaction. Similarly, the energy
correction due to quantum fluctuations Eqf = Eqf,A + Eqf,C

contains the term Eqf,A, which is exclusively due to the atomic
contact interaction, and the correction Eqf,C , which occurs
only in the presence of the cavity-induced long-range inter-
action. To this end, we complete the sum in the first line of
Eq. (31) by extracting the respective terms from the second
line and obtain

Eqf,A = 1

2

∑
p

′
(

ωp − p2

2M
− gn

)
, (32)

Eqf,C = 1

2

∑
k∈KC

(
k − ωk). (33)

The atomic fluctuation correction Eqf,A due to the contact
interaction can be evaluated in the continuum limit. With the
proper regularization for the chosen system dimension [36],
this yields in one and three dimensions, respectively [6,34],

E1D
qf,A = −2L

√
M

3π
(gn)3/2, (34)

E3D
qf,A = 8V M3/2

15π2
(gn)5/2. (35)

For a dilute Bose gas, the quantum correction due to the
contact interaction g is of subleading order compared to
the atomic mean-field contribution Emf,A, regardless of the
underlying spatial dimension d . Therefore, without loss of
generality, we can limit our discussion to systems where
Emf,A 
 Eqf,A holds. Thus, from now on we will neglect the
quantum fluctuation correction Eqf,A due to the contact inter-
action. Furthermore, we note that the cavity-induced quantum
fluctuation energy correction Eqf,C naturally depends on the
spatial extent of the system via f̃ξ (0, 0), which appears within
at least some of the eigenmode frequencies 
k. This leads
to the fundamental conclusion that the spatial average of the
envelope fξ (r, r′) crucially determines how the quantum fluc-
tuation correction of the long-range interaction depends on the
system extension. In the following, we discuss two generic
cases in which it is straightforward to find analytically the
eigenmodes involving the long-range interaction.

First, we consider a long-range interaction that is trans-
lationally invariant and thus momentum conserving. In
principle, both its components v(r, r′) and fξ (r, r′) must be
translationally invariant. However, within the conditions im-
posed on the envelope that allow us to state Eq. (17) and
derive Eq. (29), the envelope contributes only a prefactor
f̃ξ (0, 0). Therefore, for a momentum conserving interaction,
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FIG. 2. Dispersion relation Eq. (37) for the simple one-
dimensional example of KC = {−k, k}. Dots mark the discrete
modes of the finite system with the distinct roton at p = k. The black
line indicates the continuum limit of the discrete modes indicated
by the dots. The blue solid line shows the continuum of dispersion
without the long-range interaction, I = 0. The horizontal blue line
marks the roton mode value for I = 0. Consequently, the difference
between the actual roton value and the blue horizontal line shown
by the red arrow represents the roton contribution to the long-range
induced quantum correction Eqf,C .

it is sufficient that the matrix ṽ is diagonal, i.e., that the
periodic function v(r, r′) is translationally invariant. Then, the
second line in Eq. (26) has the consequence that only those
modes k and k′ couple which satisfy the condition k = k′.
Consequently, the fluctuation Hamiltonian Ĥ2, expressed in
the quasiposition and quasimomentum operators, turns out to
be already diagonal, i.e.,

Ĥ2 = 1

2

∑
p/∈KC

′
(

ŷ†
pŷp + ω2

px̂†
px̂p − p2

2M
− gn

)

+ 1

2

∑
k∈KC

(
ŷ†

kŷk + 
2
kx̂†

k x̂k − k2

2M
− gn

)
, (36)

where the dispersion of the modes affected by the long-range
interaction reads


k =
√

ω2
k + k2

M
IN f̃ξ (0, 0)ṽk,−k. (37)

If the long-range interaction is attractive, i.e., I < 0, then
these modes give rise to a roton at each k ∈ KC for which
ṽk,−k �= 0. Thus, the momenta at which a roton is located
in momentum space are selected by the wave vectors re-
flecting the periodicity of the long-range interaction v(r, r′).
We visualize this phenomenon in Fig. 2 for a simple one-
dimensional example with KC = {−k, k}. The corresponding
quantum correction of the ground-state energy relative to the
case without the long-range interaction is given by Eq. (33).
For the roton case, it is indeed negative. Importantly, the roton
depth depends on the system size via the spatial average of
the envelope f̃ξ (0, 0). This directly implies that the quantum
energy correction Eqf,C (33) depends on the system size. Thus,
its respective derivative (∂Eqf,C/∂V )N is added to the mean-
field one and gives rise to the conditions for droplet formation
in Eq. (3).

Second, we consider the case where v(r, r′) has the prop-
erty that all coupled modes have the same modulus, i.e., |k| =
|k′| for all k, k′ ∈ KC . Since the modes ωk in Eq. (27) depend
only on k2, we conclude that ωk = ωk′ for all k, k′ ∈ KC . In
addition, we assume ṽi j = ṽk2/M for all ki, k j ∈ KC , i.e., all
entries in the interaction matrix ṽ are equal. In this scenario, it
is straightforward to analytically find the eigenmode modified
by the long-range interaction in the form


 =
√

ω2
k + k2

M
IN f̃ξ (0, 0)d̃ ṽ, (38)

whereas the remaining (d̃ − 1) eigenmodes turn out to be de-
generate and lie in the dispersion ωk, i.e., they are unaffected
by the long-range interaction. Therefore, provided that I < 0,
then 
 is a discrete roton mode that softens at

Icr = − k2/2M + 2gn

2N f̃ξ (0, 0)d̃ ṽ
. (39)

Furthermore, it contributes to the zero-point energy via

Eqf,C = 1
2 (
 − ωk), (40)

which is negative due to the roton characteristic. This quantum
fluctuation energy of an individual mode has the peculiar
property that it is not extensive but intensive, so it would
vanish in a proper thermodynamic limit. Nevertheless, it is
a viable energy contribution for a finite-sized system, which
leads to intricate consequences for the effective ground-state
energy E0 = Emf,A + Eqf,A + Eqf,C , as it participates in the
competition between the respective energy contributions. Pro-
vided that their interplay is such that the droplet conditions
(C1)–(C3) are satisfied, a finite quantum droplet is real-
ized. We have already argued that Eqf,A � Emf,A is negligibly
small. Hence, the key aspect must be the competition be-
tween the long-range induced quantum correction Eqf,C and
the contact interaction mean-field contribution Emf,A. We find
that a roton having Eqf,C < 0 with an appropriate dependence
on the system size imposed by the choice of the envelope
fξ (r, r′) provides such a suitable competition with a repulsive
mean-field energy Emf,A > 0.

Formally, the Fourier transform of the envelope f̃ξ (0, 0) is
a function of Lν/ξν and can be expanded around Lν/ξν = 0
in the limit ξν → ∞ to get a qualitative insight into how
the shape of the envelope enters the long-range interaction
correction in Eqs. (37) and (40) through the roton frequency

k. Due to the restrictions imposed on the envelope, the
atoms effectively see only its spatial average, so that even the
expansion to the first nontrivial order in Lν/ξν gives quite a
good quantitative approximation. This allows us to derive a
qualitative effective minimal model analogous to Eq. (2) from
the long-range quantum correction Eqf,C .

IV. FACTORIZED ENVELOPE
IN A SINGLE-MODE CAVITY

A factorized long-range interaction is realized, for in-
stance, in the setup of a three-dimensional BEC coupled to
a single cavity mode as sketched in Fig. 3.
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FIG. 3. Sketch of a cavity BEC setup with a single-mode cavity.
The BEC in blue is pumped by a broad beam along both directions of
the y axis. The cavity axis is along the x axis with photon loss through
the right mirror with a rate κ . The cavity mode has a Gaussian
transverse profile with waist ξ .

A. Setup

The BEC of N two-level atoms is pumped by a transverse
beam in a Jaynes-Cummings type coupling [28]. Its theoret-
ical description is performed in a frame rotating at the pump
frequency ωP within the rotating wave approximation [28]. It
is also assumed that the pump detuning �A = ωP − ωA < 0
with respect to the internal atomic transition frequency ωA

is large so that the excited atomic state can be adiabatically
eliminated. The system is then described by the cavity mode
â, detuned by �C = ωP − ωC < 0, and by the bosonic field
operator ψ̂ (r) of the atomic ground state. The corresponding
Hamiltonian of the cavity BEC system [28,37] reads

Ĥ =
∫

V
d3r

{
ψ̂†(r)

[
− ∇2

2M
+ h2(r)

�A
+ G(r)h(r)

�A
(â + â†)

+ G2(r)

�A
â†â + g

2
ψ̂†(r)ψ̂ (r)

]
ˆψ (r)

}
− �Câ†â.

(41)

We assume that the pump beam propagates along the y axis
and is so broad that we can neglect its transverse spatial
dependence and have only a two-dimensional envelope, which
will be introduced below. In such a case, the pump mode func-
tion is simply h(r) = h0 cos (ky), where h0 denotes the pump
Rabi frequency, and we can neglect the pump influence on
the atomic confinement in the xz plane. The penultimate term
in the first line of Eq. (41) is due to pump self-interference
after back reflection. To focus on the central features of the
system, we will neglect this term, since it can be canceled
in the experiment by an additional field along the pump
axis. We assume that the cavity mode is TEM00 and de-
note the Rabi frequency of the coupling to the atoms at the
mode’s center by G0. Thus, the cavity mode function G(r) =
G0 cos (kx) exp [−(y2 + z2)/ξ 2] provides a Gaussian envelope
of waist ξ transverse to the cavity axis in x direction. The
Rabi frequency G0 is proportional to the cavity electric field
strength and the single atom-cavity coupling strength U0 and

is determined by U0 = G2
0/�A. The last term in the first line

of Eq. (41) contains a linear coupling of the cavity photons to
the atoms, which is enhanced by the scattering of the pump
light. This term is crucial as it is responsible for the cavity
population and allows the transition from an empty cavity
and homogeneous cloud to a superradiant self-organized state
via the Dicke quantum phase transition [38]. The first term
in the second line describes the optomechanical interaction
of the cavity field with the atomic cloud. Finally, the last
term in the integral of Eq. (41) represents the atom-atom
contact interaction described by the pseudopotential strength
g = 4πas/M, where as denotes the s-wave scattering length.
In this work, we consider the following hierarchy of parameter
values |�A| 
 |�C | 
 ωR = k2/(2M ) 
 gn, |U0|, which is
congruent with available experimental setups. Furthermore,
ωR is the recoil energy and we assume that the atoms are
contained in the box of size L = V 1/3 < ξ , which is enclosed
by the cavity mode.

B. Effective model

Cavity BEC experiments have inherent photon losses that
allow a nondestructive observation of the system by measur-
ing the outcoupled light [37]. Also, the quantum fluctuations
can be detected by nondestructively measuring the quantum
fluctuations of the escaping photons [39]. As usual, the losses
can be modeled by white noise fluctuations �̂(t ) obeying
〈�̂(t )〉 = 0 and 〈�̂(t )�̂†(t ′)〉 = 2κδ(t − t ′), where κ denotes
the cavity loss rate. The cavity mode dynamics is then de-
scribed in the Heisenberg picture by the quantum Langevin
equation [40],

i
dâ

dt
= [â, Ĥ ] − iκ â + i�̂. (42)

In the presence of the envelope, it has the form

i
dâ

dt
= (−�C − iκ + U0 Ŝ′)â + G0h0

�A
Ŝ + i�̂, (43)

where we have introduced

Ŝ =
∫

V
d3r cos(kx) cos(ky)e−(y2+z2 )/ξ 2

ψ̂†(r)ψ̂ (r), (44)

Ŝ′ =
∫

V
d3r cos2(kx)e−2(y2+z2 )/ξ 2

ψ̂†(r)ψ̂ (r). (45)

Due to the large cavity detuning |�C | and the damping κ ,
we can determine the cavity field as a steady state in a Born-
Oppenheimer approximation [37] in the form

â = G0h0

�A(�C + iκ − U0 Ŝ′)
Ŝ. (46)

Next, we expand the denominator in powers of U0 Ŝ′/(�C +
iκ ), keep only the zeroth-order term, and obtain

â = G0h0

�A(�C + iκ )
Ŝ. (47)

The operator Ŝ′ occurs explicitly only in higher-order terms,
which physically correspond to the interaction of three or
more particles. Thus, omitting Ŝ′ is equivalent to restricting
the description to two-body interactions only. This is feasible
since we consider the parameter regime where the number
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of cavity photons is small and U0‖Ŝ′‖/|�C + iκ| � 1. The
remaining ambiguities in the operator ordering are resolved by
Jäger et al. in Ref. [41], which ultimately leads to the effective
Hamiltonian,

Ĥeff = ĤA + G0h0

2�A
(â†Ŝ + Ŝ†â). (48)

With this, we obtain, up to the order O(U 2
0 /(�2

C + κ2)), the
effective Hamiltonian in Eq. (8) for the atomic field, repre-
senting the model for droplet formation in Ref. [33]. Here the
cavity-induced interaction turns out to be of the form given in
Eq. (9). Combining cavity and pump parameters leads to the
interaction strength

I = 2G2
0 h2

0�C

�2
A

(
�2

C + κ2
) . (49)

Furthermore, the periodic potential reads

v(r, r′) = cos(kx) cos(ky) cos(kx′) cos(ky′), (50)

and the envelope is given by

f (2)
ξ (r, r′) = e−(y2+z2 )/ξ 2−(y′2+z′2 )/ξ 2

, (51)

where the superscript (2) refers to the second-order powers
in the exponents. Thus, we can directly apply the general
formalism developed in Sec. III. The transformation of the
envelope f̃ (2)

ξ (p, p′) turns out to be given by nonelementary
integrals. Conveniently, for m �= 0 we have the inequality that
is graphically illustated in Fig. 9(a) in Appendix A,∣∣∣∣∣

∫ + L
2

− L
2

dx

L
ei 2πm

L xe
− x2

ξ2

∣∣∣∣∣ <
L2

2π2m2ξ 2

∫ + L
2

− L
2

dx

L
e
− x2

ξ2 . (52)

Thus, for p, p′ �= 0 we get the estimate∣∣ f̃ (2)
ξ (p, p′)

∣∣
f̃ (2)
ξ (0, 0)

<
∏

ν=1,2

′ L2

2π2m2
νξ

2
×

∏
ν=1,2

′ L2

2π2m′2
ν ξ 2

, (53)

where the primed products exclude the terms mν = 0 and
m′

ν = 0. Noticing that (2π2)−1 ≈ 0.05, we conclude that
Eq. (17) is valid as long as L < ξ . The envelope is then
taken into account through its p = p′ = 0 Fourier series
coefficient (16)

f̃ (2)
ξ (0, 0) =

[√
πξ

L
erf

(
L

2ξ

)]4

. (54)

Thus, Eq. (21) is directly applicable together with Eq. (54).
Since the wave number k of the light field is nonzero, the
long-range periodic potential v(r, r′) only couples the four
modes KC = {(±k ± k 0)T } with the same modulus

√
2k and

we have ṽk,k′ = 1/16 for all k, k′ ∈ KC . The conditions of
Eq. (38) are fulfilled, so the quantum fluctuation correction of
the cavity modes is given by Eq. (40), with the roton energy


 =
√

ω2
k + k2

M

IN

2

[√
πξ

L
erf

(
L

2ξ

)]4

, (55)

and the Bogoliubov dispersion

ωk =
√

k2

M

(
k2

M
+ 2gn

)
. (56)

µ

FIG. 4. Effective ground-state energy E0 per particle with its
mean field Emf,A and cavity-induced quantum fluctuations contribu-
tions Eqf,C plotted against the inverse of the length of the atomic
cloud L [33]. The energy correction of an infinite-range cavity E (∞)

qf,C ,
i.e., L/ξ → 0, is subtracted in order to bring together the curves and
is plotted for the sake of comparison as a constant red dashed line.
An energy minimum is realized marked by the vertical gray dashed
line indicating an equilibrium droplet size at 1/L0. Other parameters
are N = 103, I = −85 Hz, ξ = 50 µm, as = 100 a0, and M = 87 u.

C. Results

We analyze the effective energy E0 = Emf,A + Eqf,C in ac-
cordance with the aforementioned criteria for the existence
of quantum droplets (C1)–(C3) [33]. Primarily we require
that, for a fixed number N of atoms, the system realizes an
energy minimum, according to (C1) and (C2), which results
in an equilibrium volume V0. To this end, we discriminate
between the competing contributions of the energy E0. For
the repulsive contact interaction of a stable BEC, consisting
of, e.g., 87Rb atoms, the mean-field energy Emf,A = gN2/(2V )
is positive. By itself, it does not have a minimum at a finite
volume. Only due to the competition with the cavity quantum
fluctuations Eq. (40), together with Eqs. (55) and (56), an
energetic minimum can occur as shown in Fig. 4. Imposing
a negative cavity detuning �C < 0 leads to a negative cavity
parameter in Eq. (49), i.e., I < 0, implying a negative cavity
quantum correction Eqf,C < 0 based on its roton characteris-
tics. As our theory is based on a homogeneous mean-field
phase, we must stay below the self-organizing superradiant
Dicke phase transition. The latter occurs, when the roton-
mode in Eq. (55) becomes soft, i.e., when 
 = 0, from which
we determine the critical value

Icr = − 2(k2/M + 2gn)

N[
√

πξerf (L/2ξ )/L]4
. (57)

In the limit of ξ → ∞, where the square bracket in the de-
nominator approaches 1, this agrees with the well-established
result for cavities with infinite-range interactions [40]. The
fact that we are dealing with the zero-point motion of an
individual roton mode carries fascinating implications for
the quantum energy correction Eqf ≈ Eqf,C . In the thermody-
namic limit, one takes N, L, ξ → ∞, while the atom density
N/V and the ratio L/ξ of the system length L and the
pump waist ξ remain constant. Furthermore, the coupling of
an individual atom to the cavity vanishes G0 → 0 so that
IV remains constant [42]. Thus, the energy contribution of
the roton is then intensive, rendering the quantum droplet
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formation a finite-size effect. This has profound consequences
as the largest possible cavity energy correction at 
 = 0 is
eventually overwhelmed by any extensive energy term in the
limit of large N .

D. Analytic approximations

To get a deeper insight into the cavity energy, we perform
some analytical approximations to the energy contribution of
the quantum fluctuations Eqf,C . For this purpose, we recall
that the requirement of a homogeneous mean-field implies
the restriction L/ξ < 1. Physically, this means that the atomic
system effectively perceives only the center of the envelope.
This justifies the subsequent expansion of the envelope in
Eq. (51) up to the second order with respect to L/ξ , i.e.,

f (2)
ξ (r, r′) = 1 − y2

ξ 2
− z2

ξ 2
− y′2

ξ 2
− z′2

ξ 2
+ O

(
L4

ξ 4

)
. (58)

With L denoting the system extension in each dimension,
i.e., |y|, |z|, |y′|, |z′| < L/2, already the second-order expan-
sion turns out to be quite accurate for L/ξ < 1. Applying this
approximation to the roton mode in Eq. (55) yields


 ≈
√

ω2
k + k2

M

IN

2
− IN

12
√

1 + (4gn + IN )M/2k2

L2

ξ 2
,

(59)

up to the term O(L4/ξ 4). In the following, we denote the first
zeroth-order term in L/ξ as 
(∞), since it is the roton mode
of the cavity with infinite-range interactions, i.e., for ξ → ∞.
This demonstrates explicitly that we can recover the results
known for the infinite-range interaction at any point during
the calculation. The subsequent term of order L2/ξ 2 then car-
ries the characteristic information of the envelope f (2)

ξ (r, r′),
which is imprinted on the cavity-induced roton mode 
. Due
to the quadratic dependence on L, we cast it in the form of a
harmonic oscillator potential DL2/2 with the effective spring
constant

D = −IN

12ξ 2
√

1 + (4gn + IN )M/2k2
. (60)

However, we have to take into account that Eq. (60) still
depends, for fixed particle number N , on the system volume
V via the s-wave scattering term gn. Below the Dicke phase
transition Icr, where the radicant of the square root in the
denominator of Eq. (60) approaches zero, we can use the fact
that gnM/k2 � 1. This amounts to discarding terms, which
involve the s-wave scattering, in both the roton 
 and its
ground-state energy Eqf,C , leading to

E (∞)
qf,C ≈ 1

2

[√
k2

M

(
k2

M
+ IN

2

)
− k2

M

]
, (61)

alongside with D ≈ − IN/(12ξ 2
√

1 + INM/2k2). The un-
derlying effective potential then reads

E0(N,V ) = E (∞)
qf,C + gN2

2V
+ D

2
V 2/3. (62)

We can directly relate the respective terms in this expres-
sion to the parameters of the minimal model Eq. (2). The
infinite-range interaction cavity correction E (∞)

qf,C is within the

approximations independent of the atomic system size and
can, thus, be understood as a constant energy shift as illus-
trated in Fig. 4. The second term in Eq. (62) represents the
mean-field contribution to the effective energy and is linear in
1/V , thus the identification with Eq. (2) leads to α = gN2/2.
Restricting ourselves to a stable BEC implies α > 0 due to
the positive s-wave scattering interaction strength g > 0. The
third term in Eq. (62) is proportional to V 2/3, which corre-
sponds in the minimal model Eq. (2) to the term V −1−γ with
γ = −5/3. From the corresponding prefactor, we find β =
D/2. For a roton mode we have to choose I < 0 and, there-
fore, we conclude β > 0. Summing up the model parameters,
the competition of a repulsive s-wave scattering and a cavity-
induced roton mode results in α > 0, β > 0, and γ < −1
such that the cavity-induced quantum droplets correspond to
droplet class (D3) of Eq. (5). The size of these droplets,
i.e., the equilibrium system volume V0, can be determined
analytically within the minimal model Eq. (62) by inserting
the parameter values into the general solution from Eq. (3),
yielding

V0 =
(

−18ξ 2gN

I

√
1 + INM

2k2

)3/5

. (63)

In this way, we have determined how the droplet size varies
with the respective system parameters in leading order. In
terms of the contact interaction strength g we find V0 ∼ g3/5 ∼
a3/5

s . In addition, the dependence on the envelope width, which
in the present realization is given by the cavity waist ξ , reads
V0 ∼ ξ 6/5. Here, we have to keep in mind that the theory is
constrained to L/ξ < 1, and, therefore, the droplet volume
must be restricted to V0 < ξ 3 for self-consistency. Below the
Dicke phase transition, which occurs for the vanishing of
the radicant of the square root in Eq. (63), we obtain the
dependence V0 ∼ N3/5 on the atom number. The tunability
with respect to the cavity-induced interaction strength I < 0
is given by V0 ∼ |I|−3/5.

In Fig. 5, we show how the droplet density n0 depends
on the interaction parameters g and I. Note that the droplet
density deviates from the expectation n0 ∼ |I|3/5 in Fig. 5
because the cavity interaction strength I approaches the Dicke
critical point Icr when the square root in Eq. (63) takes sig-
nificant effect. Furthermore, the theory visualized in Fig. 4
predicts that the densities of the cavity-induced quantum
droplets are orders of magnitude more dilute than both the
observed quantum droplets in dipolar Bose gases or Bose-
Bose mixtures [7–9,12] and the BECs commonly prepared in
experiments [29,30,43]. This is mainly due to the fact that here
the mean-field contact interaction competes with the quantum
fluctuation correction, while the standard droplet realizations
use Feshbach resonances to almost completely suppress the
mean-field contribution. The relation V0 ∼ g3/5 visualized in
Fig. 5 indicates that a similar suppression of the mean-field
would result in an increase of the droplet density by one to
two orders of magnitude.

E. Thermodynamic properties

In this section, we discuss the cavity-induced droplets from
the point of view of statistical mechanics. The first droplet
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µ

FIG. 5. Dependence of the droplet density n0 on the interaction
parameters, i.e., on the cavity interaction strength I (red, top scale)
and the s-wave scattering length as (blue, bottom scale). We set as =
0.1 a0 and I = 0.95Icr, respectively. The lower bound of the y axis
is given by the self-consistency constraint V0 < ξ 3. Parameters are
N = 104, ξ = 50 µm, and M = 87 u.

condition (C1) in Eq. (3) translates to a thermodynamic sys-
tem with zero total pressure, i.e., P0 = −(∂E0/∂V )N = 0. On
the one hand, the mean-field contact interaction leads to the
positive pressure Pmf = gn2/2. On the other hand, the roton
contributes the negative pressure Pqf,C = −D/(3L), which
competes with the mean-field pressure in order to realize
an energetic minimum. The total pressure of the system is
plotted in Fig. 6 as a function of the number N of atoms
and the system size L. The droplet solution is characterized
by the equilibrium system size L0, which corresponds to
zero pressure P0 = 0 for each number N of atoms along the
magenta line. The pressure is negative above this line and
positive below it. The latter corresponds to a positive com-
pressibility K (P0 = 0) = −V (∂P0/∂V )N |V =V0 > 0, which is
the thermodynamic counterpart of the droplet condition (C2).
It obeys K (P0 = 0)/n0 < gn0 implying that also the corre-
sponding speed of sound cs = √

K (P0 = 0)/Mn0 is modified
accordingly by the quantum fluctuation correction.

The inset of Fig. 6 visualizes the equilibrium density n0 that
realizes the zero pressure condition (C1). It increases mono-
tonically in accordance with the analytical prediction n0 =
N/V0 ∼ N2/5 until it diverges near a critical number of atoms
of roughly Ncr ≈ 4000. This divergence occurs because the
critical long-range interaction strength Icr, which is required
for the occurrence of the self-organizing Dicke phase transi-
tion, decreases with increasing N as follows from Eq. (57). In
more physical terms this can also be understood as follows.
Once the roton goes soft, i.e., the radicant of the square
root in Eq. (63) approaches zero, the equilibrium system size
V0 becomes arbitrarily small. This leads to a divergence of
the droplet density n0, which accompanies the divergence of
the quantum fluctuations close to the Dicke phase transition.
Note that the latter also implies a divergence of the quantum
depletion that has not yet been taken into account in the Bo-
goliubov treatment presented above. In Ref. [33] we present
the pressure diagram of Fig. 6 by adjusting the cavity-induced

FIG. 6. System pressure P0 as a function of the number N of
atoms and the system extension L for the cavity interaction strength
I = −25 Hz. The magenta line marks zero pressure P0 = 0 corre-
sponding to the droplet solution. The inset shows the density and the
single-particle energy difference �E = E0(N − 1) − E0(N ) in blue
and red, respectively, along the magenta line shown in the main plot.
We note that the roton mode grows softer with increasing number
of atoms, therefore the cavity energy correction grows stronger.
Remaining parameters are the same as in Fig. 4.

interaction strength I for each atom number N such that it
has a constant value I = 0.95 Icr relative to the Dicke critical
point.

Next, we examine the evaporation condition (C3) for the
parameters of the model in Eq. (62), where α = gN2/2 and
β = D/2. For a finite system, we have to check explicitly
that the single-particle energy difference �E = [E0(N − 1) −
E0(N )]|P0=0 remains positive, as displayed in the inset of
Fig. 6. Analytically, we study its thermodynamic counterpart
(∂E0/∂N )V0 < 0, which is the negative chemical potential.
The mean-field term α/V in E0 contributes to the chemical po-
tential μmf,A|V0 = gn0, which is positive for a repulsive contact
interaction. In addition, we also have to take into account the
system size dependent quantum fluctuation correction term
proportional to β, yielding(

∂DV 2/3

2∂N

)
V =V0

= − IV 2/3
0

24ξ 2
√

1 + INM/2k2

+ I2NV 2/3
0 M/2k2

48ξ 2[1 + INM/2k2]3/2 . (64)

We observe for a roton I < 0 that both terms are positive.
The negative competing part in the chemical potential is, in
fact, provided by the infinite-range interaction term

μ
(∞)
qf,C = ∂E (∞)

qf,C

∂N
= I

8
√

1 + INM/2k2
. (65)
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Using Eq. (63) it becomes apparent that μ
(∞)
qf,C compensates

the mean-field chemical potential. Concluding from Eq. (57)
that IM/2k2 � 1 and that the system size is limited by the
cavity waist according to V 2/3

0 /ξ 2 < 1, we find that the chem-
ical potential contribution stemming from the infinite-range
interaction term in Eq. (65) is even significantly larger than the
term in Eq. (64) because of gn0M/2k2 � 1. Subsequently, the
total effective chemical potential is negative for the droplets,
as supported by the inset of Fig. 6.

F. Quartic exponent in the envelope

With the general formalism laid out in Sec. III we can now
explore how the shape of the envelope affects the self-trapping
mechanism of the cavity-induced quantum droplets. To this
end, we consider the same setup of Fig. 3 with a factorized
envelope, but instead of Eq. (51), we choose a quartic expo-
nent according to

f (4)
ξ (r, r′) = e−(y4+z4 )/ξ 4−(y′4+z′4 )/ξ 4

. (66)

For this, the inequality∣∣∣∣∣
∫ + L

2

− L
2

dx

L
ei 2πm

L xe
− x4

ξ4

∣∣∣∣∣ <
L4

4π2m2ξ 4

∫ + L
2

− L
2

dx

L
e
− x4

ξ4 (67)

holds. We illustrate this inequality in Fig. 9(b) of Appendix A.
Thus, for p, p′ �= 0 we obtain the estimate∣∣ f̃ (4)

ξ (p, p′)
∣∣

f̃ (4)
ξ (0, 0)

<
∏

ν=1,2

′ L4

4π2m2
νξ

4
×

∏
ν=1,2

′ L4

4π2m′2
ν ξ 4

, (68)

where the primed products exclude the terms mν = 0 and
m′

ν = 0. Taking into account that (4π2)−1 ≈ 0.025, we con-
clude that Eq. (17) is valid as long as L < ξ . Consequently,
we only need to consider

f̃ (4)
ξ (0, 0) =

[
2ξ

L
�

(
5

4

)
− ξ

2L
�

(
1

4
,

L4

16ξ 4

)]4

, (69)

where �(s, x) is the upper incomplete gamma function and
to find a roton given by Eq. (38). With this at hand we can
investigate the effective energy E0 in a similar manner as for
the Gaussian envelope above. Figure 7 shows the resulting
energy minimum with respect to the system size. The cavity
correction shapes the effective energy potential as prescribed
by its envelope. Expanding the quartic envelope in Eq. (66)
in the limit L/ξ → 0 we find that the first nontrivial term is
of the order L4/ξ 4. Analogous to the case of the Gaussian
envelope discussed above, this roton correction competes with
the mean-field contact interaction. However, we now get a
weaker self-confinement of the system due to the different
shape resulting from the quartic exponent. Consequently, the
resulting droplet density depicted in Fig. 7 is about 40% of
the density realized with identical parameters for the Gaussian
envelope in Fig. 4. The droplet class remains the same (D3),
but now we have the exponent γ = −7/3. This result indi-
cates that a smaller exponent γ results in a quantum droplet
of larger density for otherwise identical parameters. Adjusting
the shape of the envelope is an intriguing tuning parameter in
our setup. Qualitatively changing the self-confinement it leads

µ

FIG. 7. Effective system energy E0 per particle with its mean-
field Emf,A and quantum fluctuation cavity contribution Eqf,C for
the quartic exponent envelope (66) in dependence of the inverse of
the atomic system extension L. A constant shift stemming from the
infinite-range cavity E (∞)

qf,C has already been subtracted. An equilib-
rium droplet size L0 is realized at the energy minimum marked by
the gray dashed line. Remaining parameters are the same as Fig. 4.

to a variation of the droplet size, the ground-state energy, and
the parameter γ , as is further elaborated in the Appendix B.

V. TRANSLATION-INVARIANT INTERACTION
IN A MULTIMODE CAVITY

In the previous section, we analyzed the case of a single-
mode cavity, where the envelope of the long-range interaction
can be engineered by appropriately choosing the transversal
modes of the cavity and the pump. In the effective long-
range interaction, Eq. (9), this results in an envelope fξ (r, r′),
which factorizes in its r and r′ arguments as is exemplified,
e.g., in Eq. (66). A different situation was considered in
Refs. [44–48], which deals with an almost degenerate con-
focal cavity. Thus, a multitude of cavity modes contributes
to the effective long-range interaction, which can lead to a
translation-invariant envelope in the plane orthogonal to the
cavity axis. In order to simplify the following calculation, we
study the one-dimensional case in the pump direction y of the
effective interaction, which is analogous to the study of an
external optical lattice with quantum Monte Carlo methods
in Ref. [49]. By assuming that the atoms are placed in just
one half-plane of the cavity at a distance much larger than the
interaction range ξ , mirror image interactions are suppressed
[48]. Furthermore, an additional beam is used to cancel the
nontranslation invariant contributions in the interaction [48],
yielding an effective long-range interaction of the form

VC (y, y′) = I cos[k(y − y′)]e−|y−y′ |2/ξ 2
. (70)

The total effective atom-only Hamiltonian then reads

Ĥeff =
∫ + L

2

− L
2

dy ψ̂†(y)

[
− ∇2

2M
+ g

2
ψ̂†(y)ψ̂ (y)

]
ψ̂ (y)

+ 1

2

∫ + L
2

− L
2

dy
∫ + L

2

− L
2

dy′ ψ̂†(y)ψ̂ (y)

×VC (y, y′)ψ̂†(y′)ψ̂ (y′). (71)
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Note that a similar effective system can be created in a ring
cavity as was studied in the superradiant regime with mean-
field methods in Ref. [50]. In order to check the condition
f̃ξ (p, p′) � f̃ξ (0, 0) of the envelope, for m, m′ ∈ (Z \ {0})d

for the envelope f (ti)
ξ (y, y′) = exp(−|y − y′|2/ξ 2) we can ap-

ply the same methods as for a factorized envelope of the
previous section. However, here one has to consider the spe-
cial case p = −p′ in the same way as one has to analyze the
situation p = p′ = 0 for a factorized envelope. The generic
transformation

f̃ (ti)
ξ (p, p′) =

∫ + L
2

− L
2

dy

L

∫ + L
2

− L
2

dy′

L
e−i(py+p′y′ )e

− |y−y′ |2
ξ2 , (72)

for p = −p′ allows with the substitution u = y′ − y to obtain
an estimate for the substituted integral by Eq. (52) and apply
the approximation Eq. (17). This yields

f̃ (ti)
ξ (p,−p) ≈ δp0 f̃ (ti)

ξ (0, 0), (73)

where the spatial average of the envelope occurring in the
roton mode reads

f̃ (ti)
ξ (0, 0) = ξ 2

L2

(
e
− L2

ξ2 − 1
) +

√
πξ

L
erf

(
L

ξ

)
. (74)

Analyzing Eq. (73) for p �= −p′ unveils that all terms in
f̃ (ti)
ξ (p, p′) are either suppressed polynomially like 1/(πm)2 or

exponentially like e−(πmL/ξ )2
, where m ∈ Z \ {0} is the integer

determining the momentum p = 2πm/L. Thus we can apply
once again Eq. (17) under the restriction L/ξ < 1.

Based on these results for the transformation of the
translation-invariant envelope, we proceed with the Bogoli-
ubov theory as outlined in Sec. III. For the wave number
k �= 0 of the pump field, the homogeneous mean-field en-
ergy turns out to be unaltered Emf,A = gN2/2L. Choosing
the periodic function v(y, y′) = cos[k(y − y′)] in combination
with the envelope f (ti)

ξ (y, y′) = exp(−|y − y′|2/ξ 2) leads to
the translationally invariant long-range interaction of Eq. (70),
which restricts the coupling between the modes to cases that
are momentum conserving. Thus, the Bogoliubov transforma-
tion leads to a fluctuation Hamilton operator of the generic
form Eq. (29) with an already diagonal matrix h. We then have

Ĥ2 = 1

2

∑
p/∈KC

′
(

ŷ−pŷp + ω2
px̂−px̂p − p2

2M
− gn

)

+ 1

2

∑
p=±k

′
(

ŷ−pŷp + 
2
px̂−px̂p − p2

2M
− gn

)
, (75)

with the roton dispersion following from Eq. (37) in the form


p =
√

p2

2M

[
p2

2M
+ 2gn + IN f̃ (ti)

ξ (0, 0)

]
. (76)

The roton formed here is part of the dispersion as visual-
ized in Fig. 2 in contrast to the previous cases of long-range
interactions that are not translationally invariant. Addition-
ally, the roton correction involves here a roton at p ∈ {−k, k}
in this one-dimensional case. According to the translation-
invariant variant of Eq. (33) this results in a prefactor of
2 in the one-dimensional cavity-induced quantum correction

µ

FIG. 8. Effective energy per particle and its constituents for the
multimode cavity system realizing a translation-invariant long-range
interaction versus the inverse system size 1/L. The system-size in-
dependent energy shift of the infinite-range interaction term E (∞)

qf,C

is subtracted. The droplet size L0 at the minimum of the total
system energy E0 marked by the gray dashed line. Parameters are
k2/2M = 2π×3560 Hz, I = −21.25 Hz, N = 103, ξ = 50 µm, and
gn0/(k2/2M ) = 1.6×10−4.

according to Eq. (40)

Eqf,C = 
k − ωk . (77)

The effective energy E0 formed by the mean-field Emf,A =
gN2/2L and the fluctuation correction of the translation invari-
ant long-range interaction mediated by the multimode cavity
from Eq. (77) are depicted in Fig. 8. The repulsive mean-field
energy Emf,A scales with 1/L. For I < 0 the cavity-induced
fluctuations cause the formation of two roton modes with
negative quantum correction Eqf,C . As demonstrated in Fig. 8
it depends on the system size L in such a way that it counters
the mean-field energy. Their competition forms a minimum
of the effective energy E0 at the equilibrium system size L0.
Therefore, the system satisfies conditions (C1) and (C2). Ex-
panding the envelope transformation Eq. (74) around ξ → ∞
according to

f̃ (ti)
ξ (0, 0) = 1 − L2

6ξ 2
+ O

(
1

ξ 4

)
, (78)

reveals that the cavity-induced quantum fluctuation energy has
again an infinite-range interaction term E (∞)

qf,C and a leading
term of L2 spatial dependence. Although the infinite-range
interaction term does not play a role for conditions (C1)
and (C2), it fixes the self-evaporation condition (C3). Thus,
all three conditions for a quantum droplet are fulfilled by
that translation-invariant system. Applying the same approx-
imations as for the single-mode cavity we find also for the
multimode case a qualitative description of the effective en-
ergy in the form

E0(N, L) = E (∞)
qf,C + gN2

2L
+ D

2
L2. (79)

The prefactor of the quantum self-trapping of the system is
given here by

D = −IN

6ξ 2
√

1 + (4gn + IN )M/2k2
. (80)
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The qualitative dependence coincides with that of the
two-dimensional factorized Gaussian envelope discussed in
Sec. IV. Quantitative differences result from the changed di-
mensionality and a twice as large prefactor in the quantum
fluctuation correction caused by the translational invariance.
In comparison with the minimal model of Eq. (2) we now
consider a one-dimensional system V = L with the parame-
ters α = gN2/2 > 0 and β = D/2 > 0, which are basically
unchanged compared to the factorized Gaussian envelope in
a three-dimensional system, but the exponent is now differ-
ent and amounts to γ = −3. Nonetheless, we have again a
quantum droplet of class (D3) according to the general classi-
fication scheme in the introduction.

VI. CONCLUSIONS

In this work, we study analytically a weakly interacting
dilute Bose gas in a cavity. Due to the cavity-induced long-
range interaction, the Bose gas is effectively governed by
two types of interactions with quite different ranges. The
cavity-induced interaction decays in space due to the mode
envelope function and has a finite range that is much larger
than the size of the atomic gas. It creates a system size de-
pendent coupling and effectively leads to the formation of a
few distinct rotons whose depth depends on the system size.
Consequently, the energy correction resulting from the rotons
varies with the size of the system and competes with the mean-
field energy of the Bose gas, leading to the formation of a
quantum droplet that replaces a simple BEC. This mechanism
for the emergence of quantum droplets differs significantly
from the one already known for quantum droplets in dipo-
lar Bose gases and Bose-Bose mixtures [7–9,12]. Namely,
there a Feshbach resonance destabilizes the Bose gas in the
mean-field, while quantum fluctuations for contact or dipo-
lar interaction then provide stabilization towards a liquidlike
self-bound state. Thus, we theoretically reveal an additional
class of quantum droplets with unusual properties, which has
not yet been considered before. Since the destabilizing effect
comes from only a few roton modes, the quantum fluctua-
tion energy from the long-range interaction turns out to be
not extensive.

These generic results are then specified for the well-
established realization of the long-range interaction as an
effective coupling of atoms to a single mode of an optical
cavity [28,37]. We found that the cavity-mediated interaction
induces a roton mode whose properties can be modified by
tuning cavity parameters, e.g., the pump laser strength, the
cavity detuning, or the waist of the pump beam. With this
we can derive analytically the underlying effective energy
whose extremalization yields the size of the self-bound quan-
tum droplet. The corresponding predicted density turns out
to be orders of magnitude more dilute in comparison with
the already observed quantum droplets in dipolar Bose gases
or Bose-Bose mixtures [7–9,12]. To increase the quantum
droplet density requires either a weaker contact interaction
strength or a stronger cavity-mediated interaction strength.
However, the latter is limited by the critical value for the self-
organizing Dicke phase transition, where the homogeneous
condensate breaks down.

From the point of view of a thermodynamic description
the mean-field contribution of the contact interaction yields
a positive pressure to the atomic system, while the quantum
fluctuation correction of the cavity leads to a negative pres-
sure. From the resulting competition, a mechanically stable
quantum droplet emerges, whose positive bulk compressibil-
ity turns out to be smaller than that of a weakly interacting
Bose gas without a cavity. Interestingly, the mechanical
droplet criteria concerning pressure and compressibility are
indifferent to a constant shift in the effective energy, which
originates from an infinite-range interaction term. However,
this term turns out to be indispensable to avoid a self-
evaporation of the quantum droplet as it controls its chemical
potential. With this also the thermodynamic investigation un-
derlines that a Bose gas coupled to a single cavity mode leads
to a novel droplet class. Furthermore, the fitting parameters
of the effective energy potential, which determine the class
of cavity-induced quantum droplets, can be modified by engi-
neering both the extent and the spatial shape of the envelope
that characterize the effective long-range interaction. This di-
rectly influences the properties of the quantum droplet such as,
e.g., its size. In particular, we found that a Gaussian envelope
yields denser quantum droplets than a quartic envelope for
otherwise same system parameters.

As a second special case investigated in this work is the
realization of a translation-invariant long-range interaction,
which can be engineered in multimode cavities. Our results
show that the qualitative mechanism underlying the quantum
droplet formation is the same as for the single-mode cavity, al-
though the physical origin of the interaction envelope is quite
different. Yet, quantitatively it turned out that the translation-
invariant case has the tendency to lead to larger quantum
droplet densities as more roton modes contribute to that quan-
tum fluctuation correction of the ground-state energy.
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APPENDIX A: NUMERICAL VERIFICATION
OF THE INEQUALITIES USED

Here, we illustrate in Fig. 9 the validity of the inequalities
Eqs. (52) and (67) for L < ξ by numerical evaluation.

APPENDIX B: TUNING THE EXPONENT
IN THE ENVELOPE

Here we further explore the tuning and control of quantum
droplet properties by introducing the exponent c in the
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FIG. 9. Graphical visualization of the validity of Eq. (52) in (a) and of Eq. (67) in (b) in dependence of the system extension L relative to
the envelope width ξ . The horizontal line in (a) marks the value of 1.

envelope with the generic ansatz

f (c)
ξ (r, r′) = exp

(
−|y|c + |z|c

ξ c

)
exp

(
−|y′|c + |z′|c

ξ c

)
.

(B1)

Assuming that the approximation Eq. (17) holds for an
arbitrary c > 0 when the interaction is of global range L < ξ ,
we need only the spatial average

f̃ (c)
ξ (0, 0) =

{
2ξ

cL

[
�

(
1

c

)
− �

(
1

c
,

(
L

2ξ

)c)]}4

= 1 − 4

1 + c

(
L

2ξ

)c

+ O
((

L

2ξ

)2c
)

. (B2)

From Eq. (38) the roton mode is determined by f̃ (c)
ξ (0, 0)

with d̃ = 4 and ṽ = 1/16 and hence the quantum correction
Eq. (40). Analyzing the right-hand side of Eq. (B2) we
deduce that the first nontrivial term in the cavity-induced
pressure is Pqf,C ∝ Lc−3. We also find that the parameter c is
related to the droplet classification by γ = −(1 + c/3) for the
three-dimensional system under investigation V = L3. Hence
the droplet is of type (D3) for any choice c > 0.

We analyze the interplay between the Bose gas mean-field
Emf,A and the quantum correction Eqf,C as a function of the
envelope exponent c in Fig. 10. In Fig. 10(a) we find that
the exponent parameter c does affect the droplet size L0. As
suspected from Sec. IV F, a larger exponent such as c = 4
results in a more dilute droplet than the Gaussian envelope
c = 2. In Fig. 10(a) we now find that decreasing the exponent

µ

µ

FIG. 10. In (a) the effective energy per particle E0/N is plotted against the inverse system size 1/L for five different choices of the envelope
exponent c. The droplet size L0 corresponding to the minimum of E0 is indicated by a dashed line in the corresponding color. The dashed
horizontal line indicates the value of the infinite-range quantum correction E (∞)

qf,C/N . The parameters are N = 103, ξ = 50 µm, I = −85 Hz,
as = 100 a0, M = 87 u, ωR = 2π×3560 Hz. In (b) we display the inverse droplet size 1/L0 against the exponent in the envelope c for three
parameter sets. The first, with the same parameters as in subplot (a), is labeled “(a)”. The set “N/2” uses identical parameters except that
the number of atoms is halved to N/2 = 500. Finally, the parameter set “5as” uses the same parameters as subplot (a) but for five times
the s-wave scattering length 5as = 500 a0. The optimal exponent c that leads to the densest droplet is indicated by a dashed vertical line.
If 1/L0 < 0.02 µm−1, then the condition L/ξ < 1 is violated, which is necessary for the approximation leading to analytical solvability. To
indicate this, a gray horizontal line separates the region of applicability above from the pathological region below. The curves are drawn as
dashed lines in the region where the approximation breaks down to further indicate this.
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below c = 2 leads, surprisingly, to a nonmonotonic behavior
of the droplet density. The maximum droplet density is ob-
tained at the value c = 1.36 for the chosen parameter values.
This is further investigated in Fig. 10(b). We observe that the
optimal exponent c to create the densest possible droplet is
sensitive to the remaining set of parameters. In Fig. 10(b),
taking only half of the atoms N/2 leads to an optimal c of
about 1.02. Conversely, increasing the s-wave scattering by
a factor of 5 shifts the optimal exponent to c ≈ 1.85. In the
limit c → 0 the envelope Eq. (B1) becomes spatially constant,
so the interaction becomes infinite range. Consequently, if

c → 0, then a droplet can no longer be generated, so we obtain
1/L0 → 0.

In Fig. 10(a) one can also see the relation between the
effective energy per particle E0/N and the exponent c. It is
evident that a larger exponent leads to a more negative E0. If
we examine the right-hand side of Eq. (B2), then we see that
the correction term (L/2ξ )c relative to the infinite-range order
1 decreases in magnitude as the exponent c increases. Thus,
a larger c moves the effective energy E0 closer to the value
of E (∞)

qf,C/N (≈ −17.37 Hz for the chosen parameters), i.e., to
more negative values.
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