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Interference and interactions inmesoscopic rings
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Abstract

We consider a mesoscopic ring connected to external reservoirs by tunnel junctions. The ring is capacitively coupled to an
external gate electrode and may be pierced by a magnetic �eld. Due to strong electron–electron interactions within the ring
the conductance shows Coulomb blockade oscillations as a function of the gate voltage, while Aharonov–Bohm interference
e�ects lead to a dependence on the magnetic 
ux. The Hamiltonian of the ring is given by a Luttinger model that allows for
an exact treatment of both interaction and interference e�ects. We conclude that the positions of conductance maxima as a
function the external parameters can be used to determine the interaction parameter g, and the shapes of conductance peaks
are strongly a�ected by electron correlations within the ring. ? 1997 Elsevier Science B.V. All rights reserved.
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Mesoscopic devices have proven to be a rich
source of novel physical phenomena. Originally, the
main focus were numerous interference e�ects like
weak localization, universal conductance 
uctua-
tions, and persistent currents. Later it was realized
that in the same mesoscopic systems interactions
give rise to equally interesting physics like Coulomb
blockade and strong correlations. In this article,
we consider a particular experimental arrangement
where purely quantum-mechanical interference ef-
fects and essentially classical interaction e�ects
combine in a way that can be utilized to study the
electronic properties of mesoscopic systems in more
detail.

∗ Corresponding author.

We consider a device consisting of a small ring
(circumference L) of interacting electrons connected
to two non-interacting reservoirs by tunnel junctions
(see inset of Fig. 1). The left and right tunnel junctions
are at positions xL and xR, respectively. The ring is
capacitively coupled to an external gate electrode and
may be pierced by a magnetic 
ux. We consider a
small AC voltage applied to the right lead and wish
to evaluate the current at the left junction.
We describe the ring using the spinless Luttinger

model. In the bosonized form the Hamiltonian reads
[1]

Hring =
�˜
2L

[
v
g
(N̂ − N0)2 + gv(Ĵ − J0)2

]

+
∑
q 6=0
˜v|q|b†qbq;
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Fig. 1. Positions of conductance resonances in the (Vg ; �)-plane for
interacting electrons (repulsive interactions, g = 1=

√
2). The labels

N and J denote the ground-state charge and current as a function
of the external parameters, and the shaded area indicates the
domain of validity of our analysis. The line segments with di�erent
slopes correspond to 
uctuations in the numbers of clockwise
and counterclockwise moving electrons, respectively. Inset: device
geometry.

where N̂ and Ĵ are zero modes associated with the
total charge and total current. Since the numbers of
clockwise and counterclockwise moving electrons on
the ring must both be integers, the quantum num-
bers N and J must satisfy (−1)N = (−1)J . The gate
voltage and magnetic 
ux determine the parameters
N0 = CVg=e and J0 = 2�=�0 which in turn determine
the ground-state charge and current. The parameter g
is a measure of the interaction strength, and equals
one for non-interacting electrons [2]. For later conve-
nience we de�ne 
 = 1

2(g+ g−1)− 1 which vanishes
in the non-interacting limit and is positive otherwise.
A straightforward application of the Kubo for-

mula shows that the conductance is proportional to
the retarded correlation function between the cur-
rents through the left and right tunnel junctions
[3]. This is most readily evaluated in imaginary
time. To lowest non-zero order in the tunneling
Hamiltonian the current–current correlation func-
tion is related to a product of four Fermion op-
erators in the ring, A(�1 − �2; �1 − �; �2 − �′) =〈
T�( †(�; xL) (�1; xL) †(�2; xR) (�′; xR))

〉
. The ex-

act evaluation of A is quite cumbersome (it consists
of 144 di�erent terms) although in principle straight-
forward. However, since the lowest-order expansion
in terms of the tunneling Hamiltonian is valid only
su�ciently far from resonance energies, only a small

subset of the terms need be considered. This approx-
imation is basically similar to the one used by Fazio
and co-workers [4] for an interacting ring connected
to superconducting leads. That allows us to evalu-
ate A in an approximate fashion, and yields the DC
conductance

� ≈ e2

h
|tLtR|2
˜2

DL(�F)DR(�F)|Gret(! = 0; xL − xR)|2;
(1)

where Gret(! = 0; xL − xR) is the retarded electron
Green’s function in the ring. Here tL=R are the tun-
neling amplitudes between the ring and the left and
right leads and DL=R are densities of state in the
leads.
The imaginary-time Green’s functionG(�; x) for in-

teracting electrons is well known in the T = 0, L =∞
case. By means of a conformal mapping we can
even obtain the Greens functions for the cases T ¿ 0;
L =∞ and T = 0; L¡∞. In the general case, the
Greens function must be periodic in x and antiperi-
odic in �, so it is not too surprising that G(�; x) is in
general given by a combination of doubly quasiperi-
odic Jacobi theta functions (elliptic functions) [5]
which reduce to hyperbolic or trigonometric functions
in the limits T→0 and L→∞. The Jacobi functions
appear also in the partition function and, therefore,
in expressions for several thermodynamic quantities
like persistent currents [6].
The parameters that are most readily accessible

in an experiment are the gate voltage and the
magnetic 
ux. They enter only the q = 0 part of
the Hamiltonian which we can re-write as H0 =
1
2Ec(N̂ − N0)2 + [(�˜vF)=2L](Ĵ − J0)2 where vF =
gv is the Fermi velocity of a non-interacting sys-
tem with the same density and Ec = �˜vF=g2L is the
charging energy. The conductance resonances cor-
respond to values of the gate voltage and magnetic

ux at which the ground-state quantum numbers N
and J change (degenerate ground state). In the
(Vg; �)-plane the resonance positions form a network
the shape of which depends on the interaction pa-
rameter g. Therefore, the interaction parameter can
be experimentally measured by studying the trajecto-
ries of conductance maxima as a function of the gate
voltage and magnetic 
ux.
The resonance line shape for small ��, i.e. close to

a resonance, is independent of the interaction para-
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meter g, which is a consequence of a �nite minimum
energy of the bosonic modes. The resonant contribu-
tion dominates for

��. ��c =
2�˜v
L

∣∣∣∣sin
(
�(xL − xR)

L

)∣∣∣∣



(up to logarithmic corrections); for ��/��c the val-
ley conductance levels o� to a constant value propor-
tional to (a=|xL − xR|)2
. For large separations �x =
|xL − xR| the crossover point ��c exceeds half of the
resonance spacing and the crossover is not observed.
At T = 0 the smallest �� that we can consider is

determined by when terms that are higher order in the
tunneling Hamiltonian become signi�cant. Therefore,
we expect that at T = 0 the peak width is given by
�� such that �L�R(

√
2a=L)2
(��)−2 ≈ 1 where �L =

|tL|2DL. Hence, the width of a conductance peak is
renormalized by the factor (a=L)
 by correlations in
the ring. The valley conductance, on the other hand,
is only renormalized by the factor (a=�x)2
. The two
renormalization factors have a simple interpretation:
near a resonance the lifetime of a charged excitation
of the ring is very long, all electrons in the ring must
respond to the extra charge and the ring size L is
important, whereas o�-resonance the life time of the
charged excitation is short, and only electron between
the two contacts feel the presence of an extra charge.
The experimental possibilities for the study of nano-

structures like the one we consider are develop-
ing rapidly. New techniques like conducting organic

molecules and carbon compounds are emerging to
complement the conventional semiconductor struc-
tures. In particular, it was recently demonstrated
[7, 8] that carbon nanotubes exhibit coherent electron
transport and can be used to fabricate nanoscale ring
structures. We believe these devices can be used to
experimentally study the system we have analyzed.
In conclusion, we have considered tunneling

through a �nite strongly interacting system within
the framework of an exactly solvable model. We �nd
that the positions of conductance resonances in the
(Vg; �)-plane can be used to determine the interaction
parameter g. We conclude that at T = 0 the heights
of resonance peaks are una�ected by interactions but
due to the narrowness of T = 0 resonances, the
peak conductance at a �nite temperature is reduced
by interactions. The valley current depends on both
interactions and the device geometry.
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