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The local density of states in finite quantum wires is calculated as a function of discrete energies and

position along the wire. By using a combination of numerical density matrix renormalization group

calculations and analytical bosonization techniques, it is possible to obtain a good understanding of the

local spectral weights along the wire in terms of the underlying many-body excitations.
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There has been increasing interest in quasi-one-
dimensional quantum wires over the last few decades.
Tunneling experiments have revealed signatures of strong
correlations in different setups ranging from a power law
behavior of the temperature dependent conductance in
carbon nanotubes [1,2] to being able to map out the mo-
mentum resolved tunneling in parallel quantum wires in a
GaAs=AlGaAs heterostructure [3–5]. By now, the local
tunneling density near nanotube edges can be measured
fully resolved in energy and position [6], which has been
interpreted as the interference pattern of collective excita-
tions. Standing waves at discrete energies corresponding to
the few lowest lying levels have also been observed in
finite tubes with screened interactions [7,8]. It can be
expected that similar experiments will be able to identify
collective excitations in short finite wires if the screening
from the substrate can be reduced.

The central quantity of interest is the local density of
states (LDOS) of inserting one particle at position x to
reach an excited state h!nj with N0 þ 1 particles from the
ground state jN0i
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x jN0ij2�ð!�!nÞ

¼ � 1

�
Im

Z 1

0
ei!tGRðt; xÞdt: (1)

Using the Luttinger liquid formalism, it is now well under-
stood how the scaling laws of the LDOS and the correlation
functions are affected by boundaries [9–15]. The position
resolved LDOS in finite wires was considered in Ref. [16]
for the lowest few levels assuming a perfect degeneracy in
the Luttinger liquid model.

From the numerical side, it is surprising that so far only
very few works [17] were able to analyze the DOS in
interacting lattice models. Part of the difficulty appears to
be that the LDOS in Eq. (1) is related to the time-dependent
Green’s function GRðtÞ. In dynamical DMRG methods,
dramatic progress has been made. Recently, it was possible
to determine the spectral function as a function of the
photoemission wave vector [17]. Unfortunately, individual
levels have not yet been resolved due to a finite correlation
time or a finite cutoff in the Lehmann representation of the
Green’s function. To our knowledge, there have been no

numerical calculations for the LDOS in interacting lattice
models so far.
In this Letter, we are now able to quantitatively calculate

the LDOS of a finite quantum wire by using a combination
of bosonization and DMRG techniques [18]. In the nu-
merical DMRG calculations, we follow a direct approach,
by targeting several excited states h!nj in the sector with
one additional fermion on top of the ground state. Keeping
track of the particle number and all the anticommuting

transition operators c y
x , it is then possible to evaluate the

matrix elements of the LDOS in Eq. (1) with very good
spatial and energy resolution compared to calculating the
DOS via the Green’s function. Using bosonization, a gen-
eral analytic formula for the LDOS of nearly degenerate
states is derived. The combination of numerical and ana-
lytical calculations gives a good understanding of the
distribution of spectral weights over individual states.
The well-known power laws, however, can only be ob-
served after a summation over nearly degenerate states.
The effect of spin is also discussed.
We consider interacting spinless fermions hopping on a

finite wire with L sites and ’’open’’ (c 0 ¼ c Lþ1 ¼ 0)
boundary conditions

H ¼ �t
XL�1

x¼1

ðc y
x c xþ1 þ H:c:Þ þU

XL�1

x¼1

nxnxþ1; (2)

where nx ¼ : c y
x c x:. This is the simplest model that illus-

trates Luttinger liquid physics for �2t < U � 2t and is
often used to describe quantum wires. It is believed that the
results can be generalized to systems with spin as will be
discussed later. Tunneling one single particle (or hole) into
an interacting wire will create excited states that may in
general involve several more fermions (i.e., a so-called
"single particle" excitation may still be a many-body en-
tangled state). In a non-interacting (U ¼ 0) system, eigen-
states are created from the vacuum by creation operators

cyn ¼
ffiffiffiffiffiffiffi
2

Lþ1

q P
xc

y
x sinðkn þ kFÞx, where the wave vector

kn ¼ n �
Lþ1 is measured relative to the Fermi point kF ¼

ðN0 þ 1Þ �
Lþ1 , which is chosen so that the number of par-

ticles in the filled Fermi sea is given by N0 with energy E0,
and there is no charging energy to the N0 þ 1 particle
sector as indicated in Fig. 1. A typical example of a
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single-particle excitation in a tunneling experiment is the

creation of one fermion above the filled Fermi sea jai ¼
cy2 jN0i as shown in Fig. 1. In that case, the LDOS in Eq. (1)

is simply given by the square of the corresponding standing

wave. A second example of a possible excitation jbi ¼
cy1c

y
0c�1jN0i is shown in Fig. 1, where also one additional

fermion is created and another one has been excited from
the Fermi sea. For noninteracting fermions, the overlap

matrix elements hbjc y
x jN0i of this many-body excited state

vanish in the LDOS Eq. (1), but this is no longer true for the
interacting case. Using numerical results and bosonization,
we are now able to describe quantitatively how spectral
weight is shifted from ’’simple excitations’’ (type jai) to
many-body excited states (type jbi) due to interactions and
how this is reflected in the standing waves of the LDOS.

Note, that if the dispersion relation was exactly linear,
the states jai and jbi would be degenerate. In fact, a linear
spectrum is often assumed because in that case, all many-
body excitations are exactly quantized with energy levels
!n ¼ vFkn ¼ vF�

Lþ1 n relative to E0, where the number of

possible partitions of n ¼ P1
‘¼1 ‘m‘ into integers m‘ gives

the degeneracy of the level !n (e.g., for n ¼ 3 ¼ 2þ 1 ¼
1þ 1þ 1, there are three possible partitions). However,
numerically we keep track of the exact spectrum of the
finite lattice model, which is never exactly linear so that the
degeneracies are lifted.

Even without assuming a linear spectrum, the problem

can be bosonized by defining shifting operators dn ¼P
‘c

y
‘þnc‘ for n � 0, which obey bosonic commutation

relations ½d�n; dn0 � ¼ n�n;n0 on the infinitely continued

spectrum [19]. The zero mode d0 ¼
P

‘ðcy‘ c‘ � hcy‘ c‘ikF Þ
counts the number of particles relative to the filled Fermi
sea. It is possible to create any fermion state with a given
particle number in terms of the dn. For example, we find by
combinatorial methods that the addition of one fermion is
represented by the following superposition of many-body
bosonic states

cyn jN0i ¼
X

P
‘
‘m‘¼n

Y
‘

1

m‘!

�
d‘
‘

�
m‘ j0i; (3)

where j0i represents the ground state with N0 þ 1 fermi-
ons. Here, the sum runs over occupation numbers m‘ ¼

hd‘d�‘i=‘ which correspond to all possible partitions of
n ¼ P

‘‘m‘ [20]. In particular, the states in Fig. 1 are given
by

ja=bi ¼ 1

2
ðd21 � d2Þj0i: (4)

The local addition of one fermion is described by c y
x �

e�ikFxc y
RðxÞ � eikFxc y

Rð�xÞ, where

c y
RðxÞ ¼ cðxÞ exp

�X
n>0

e�iknx
dn
n

�
exp

�X
n<0

e�iknx
dn
n

�
(5)

in accordance with open boundary conditions [9–12]. The

prefactor cðxÞ ¼ iffiffiffiffiffiffiffiffiffiffiffiffi
2ðLþ1Þ

p ei½�0�d0�x=ðLþ1Þ� also contains the

zero modes d0 and �0, which exactly create the ðN0 þ
1Þ-particle ground state j0i ¼ ei½�0�d0�x=ðLþ1Þ�jN0i. The
ambitious reader may enjoy verifying that the state in
Eq. (3) is normalized and that the free fermion result

jhN0jcnc y
x jN0ij2 ¼ 2

Lþ1 j sinðkF þ knÞxj2 can also be eval-

uated with bosons using Eqs. (3) and (5).
Interactions U can now be treated by a Bogoliubov

transformation dn ¼ �~dn þ �~d�n where the rescaling pa-

rameters � ¼ 1
2 ð1=

ffiffiffiffi
K

p þ ffiffiffiffi
K

p Þ and � ¼ 1
2 ð1=

ffiffiffiffi
K

p � ffiffiffiffi
K

p Þ
are characterized by the Luttinger liquid parameter K.
For the model in Eq. (2), K and the Fermi velocity vF

are known exactly as a function of U by comparison with
Bethe ansatz, e.g., at half filling 1=2K ¼ 1�
arccosðU=2tÞ=� and vF ¼ 2tK sinð�=2KÞ=ð2K � 1Þ. The
interacting Hamiltonian becomes diagonal H ¼ �vF

Lþ1 �P1
‘¼1 ‘

~d‘ ~d�‘ up to nonlinear corrections, which are de-

scribed by higher order operators. The prefactor of the
transformed fermion operator in Eq. (5) is given by

cðxÞ ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðLþ 1Þp

�
�

Lþ 1
a

�
�2�

2 sin
�

Lþ 1
x

�
��

; (6)

where the inconsequential zero modes are left out. Here, a
is a cutoff parameter of order one lattice constant, which is
inversely proportional to the effective momentum range of
physical states. In fact, after the transformation and normal

ordering in Eq. (5), an infinite sum e��2
P

n>0
1=n would

appear to be divergent, which must be regularized by the
cutoff a. While the effective momentum range is of course
always finite in the lattice model, it is not known how to
calculate it analytically from the microscopic model.
However, from our numerical data, it is possible to deter-
mine a as a function of U as we will see later.
The transformed boson vacuum and all eigenstates cor-

respond to complicated many-fermion superpositions,
which we can now analyze numerically. We implement
the model in Eq. (2) with L ¼ 78 sites and N0 þ 1 ¼ 40
using a multitarget DMRG. By keeping reflection and
particle number symmetries, the position resolved matrix

elements hEjc y
x jN0i of 67 excited states hEj are calculated.

The eigenenergies E agree to at least 8 digits with the exact
Bethe ansatz.

FIG. 1 (color online). Single-particle excitations on the filled
Fermi sea for the noninteracting system.

PRL 101, 206401 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

14 NOVEMBER 2008

206401-2



We use the simplest example of the states jai and jbi in
order to illustrate how the LDOS changes with U as shown
in Fig. 2. The spectral weight of the many-body state jbi
increases with interactions. The wave function can be
analyzed with the help of Eq. (5) so that the eigenstates

are known in terms of bosonic excitations, e.g., jbi �
ð0:541~d21 � 0:455~d2Þj0i for U ¼ 1:6t.

The exact bosonic states are determined by higher order
operators in the bosonized Hamiltonian, which are not
known quantitatively. However, since the complete nearly
degenerate subspace for a given energy !n ¼ vFkn is
known, it is in principle possible to calculate the sum of
the LDOS of nearly degenerate states, i.e., �nðxÞ ¼R
!�!n

�ð!; xÞd!. By summing over bosonic eigenstatesQ
n
‘¼1ð‘m‘m‘!Þ�1=2 ~dm‘

‘ j0i, corresponding to all partitions of
n ¼ P

‘‘m‘, we have found a general analytic expression
for this ’’total LDOS’’

�nðxÞ ¼ jcðxÞj2 X
n¼P ‘m‘

��������
Yn
‘¼1

�m‘

‘ffiffiffiffiffiffiffiffiffiffiffi
‘m‘!

p eikFx � c:c:

��������
2

(7)

where �‘ðxÞ ¼ �eik‘x þ �e�ik‘x. This formula is the ana-
lytic generalization of the LDOS that previously was only
known for the first three levels [16]. The total LDOS shows
a pattern of standing waves that are modified by collective
bosonic excitations in the form of characteristic density
modulations as shown in Fig. 3. The analytical result in
Eq. (7) can be compared with the numerical data as shown
in Fig. 3 for the example of levels up to n ¼ 5 forU ¼ 1:4t
(K � 0:67). The overall scale is the only adjustable pa-
rameter, which determines the cutoff in Eq. (6), that ranges
from a ¼ 0:3 . . . 0:7 as U ¼ 0:2 . . . 1:8t is increased. Note,
that the lattice structure of the model (2) is incommensu-
rate with the rapid oscillations of the LDOS, which leads to
a beating of the signal. The quantitative agreement is very
good up to small deviations near the boundary.

The number of nearly degenerate states at each energy
!n grows rapidly with the number of partitions

� expð� ffiffiffiffiffiffiffiffiffiffiffi
2n=3

p Þ=4n ffiffiffi
3

p
, and each of those states has an

increasingly complex wave function so that a description
in terms of approximate power laws is normally used.
Indeed, if the position dependence is integrated over, the
total DOS �n ¼ P

x�nðxÞ in Eq. (7) should follow an
approximate power law

�n � �

�
�a

Lþ 1
n

�
2�2

¼ �

�
a

vF

!n

�
2�2

; (8)

where � ¼ ��1ð1þ 2�2Þ.
However, this only holds for the sum over all nearly

degenerate states. The individual states, on the other hand,
show a much more interesting energy dependence of the
position integrated DOS as shown in Fig. 4. The dominant
spectral weight in each multiplet has evolved from the
original simple excitation in Eq. (3) (type jai), which has
a surprisingly flat energy dependence. The many-fermion
states (type jbi) are much more numerous, but have a much
smaller DOS.
The position integrated total DOS of each level in Fig. 4

agrees well with the integral of Eq. (7). There is no sign of
any deviations from the low energy theory, which should
break down as the cutoff is approached !� vF=a, i.e.,
before the DOS in Eq. (8) reaches the noninteracting value
of unity. The alternation of the analytical results relative to
the power law is due to boundary effects, which induce
additional oscillations with sin2!x=vF [14]. For longer
range interactions, it is also possible to use a momentum
dependent Luttinger liquid parameter [21].
The situation as shown in Fig. 4 is actually quite generic

for interacting systems also in higher dimensions: The

FIG. 2 (color online). DMRG data for the LDOS
jhbjc yðxÞjN0ij2 (first row) and jhajc yðxÞjN0ij2 for L ¼ 78,
where jbi and jai are eigenstates that have evolved from the n ¼
2 states in Fig. 1 when interactions U are switched on. The
spectral weight is shifted towards jbi with increasing interac-
tions, but jai remains dominant.

FIG. 3 (color online). DMRG data for the total LDOS of
different levels n for U ¼ 1:4t (crosses) compared to the boson-
ization results in Eq. (7) with a ¼ 0:56 (solid line). Dots mark
the LDOS from bosonization at discrete lattice points.
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single-particle spectral weight is spread over many-body
excitations, thereby renormalizing position, width, and
total weight. Our results show quantitatively how an effec-
tive finite lifetime of quasiparticle states evolves due to a
spread over many-body states.

In one-dimensional systems with spin degrees of free-
dom 	 ¼" , # , the excitations can be described by two
independent bosonic theories for spin and charge [19]. The
spectrum is again given in the form of nearly degenerate
multiplets ! ¼ !ns þ!nc , but now labeled by two quan-

tum numbers (ns, nc) for spin and charge with!ns ¼ vskns
and !nc ¼ vcknc , where vc ¼ vs in the noninteracting

case. A single-particle state cyn;	jN0i is now divided over
all spin and charge multiplets (ns, nc) corresponding to the
different possibilities to write the sum n ¼ ns þ nc.
However, for a given n ¼ ns þ nc, the multiplets (ns, nc)
may now be of quite different energy since in general vc >
vs for repulsive interactions. The spectral weight is there-
fore spread into several nondegenerate spin and charge
multiplets, which is fundamentally different from higher
dimensional systems. Moreover, the degeneracy within
each multiplet is also lifted in the same fashion as above.
In each multiplet, there is again exactly one dominant state.
The LDOS also shows a very interesting superposition of
spin and charge density waves [16]. However, the smoking
gun for Luttinger liquid behavior in a finite wire would be
to identify the increasing number of states due to spin-
charge separation and the degeneracy splitting with in-
creasing !, which is very different from an equally spaced
single-particle spectrum.

In summary, we were able to describe the LDOS for
finite quantum wires in detail by a combination of analyti-
cal and numerical methods. The analytical results allow the
calculation of the total LDOS in each multiplet. The
DMRG calculations give the detailed distribution of local
spectral weights over all many-body states in the low
energy region. The combination of both methods shows
explicitly how the wave functions and boson representa-
tions of excited states evolve as interactions are turned on.
The cutoff parameter aðUÞ can be determined from DMRG
for the standard model in Eq. (2). Our results show that
power laws are not sufficient to adequately describe the
low energy behavior of individual levels. Instead, a large
number of discrete states with varying spectral weights and
oscillating wave functions would be the generic signature
of Luttinger liquid behavior in finite wires.
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FIG. 4 (color online). DMRG data for U ¼ 1:8t and L ¼ 78 of
the position integrated DOS �ð!Þ ¼ P

x�ð!; xÞ for each indi-
vidual state (crosses). The stars represent the sum over all nearly
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well with the integral of Eq. (7) (circles).
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