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Abstract

The study of impurities in low-dimensional antiferromagnets has been a very active field in magnetism ever since the discovery of high-

temperature superconductivity. One of the most dramatic effects is the appearance of large Knight shifts in a long range around non-

magnetic impurities in an antiferromagnetic background. The dependence of the Knight shifts on distance and temperature visualizes the

correlations in the system. In this work, we consider the Knight shifts around a single vacancy in the one- and two-dimensional

Heisenberg model.

r 2006 Elsevier B.V. All rights reserved.

PACS: 75.10.Jm; 75.20.Hr

Keywords: Low-dimensional antiferromagnets; Impurities; Spin chains
Doping and impurity effects in low-dimensional quan-
tum antiferromagnets remain of strong interest in the
condensed matter physics community, spurred by high-T c

superconductivity and other exotic effects in those systems.
One of the most basic questions to ask is how an
antiferromagnetic systems responds to an uniform applied
magnetic field and how this response is changed in the
presence of impurities. This question will be answered in
detail for a two-dimensional (2D) spin-1

2
Heisenberg model.

The results will then be compared to the one-dimensional
spin-chain model which does not order at low tempera-
tures.

Let us first consider a generic antiferromagnet, i.e. a
collection of spins of size S which are assumed to order
antiferromagnetically at low temperatures. This implies
two sublattices A and B with long-range correlations
throughout the lattice at low temperatures. The magnetic
moments are correlated in parallel on the same sublattice,
but antiparallel to the other sublattice. The size of the order
parameter may be reduced by temperature or quantum
front matter r 2006 Elsevier B.V. All rights reserved.
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fluctuations, but it is assumed to be non-zero. The effect of
an applied magnetic field B can be intuitively understood
as described by standard textbooks [1]. If the field is
perpendicular to the order (transverse field), all spins can
tilt slightly towards the field as shown in Fig. 1. A uniform
magnetization is induced in the entire sample with a
finite magnetic susceptibility w ¼ qm=qB ¼ �q2F=qB2 at
low temperatures. Note that if the field was applied
parallel to the antiferromagnetic order, the response would
be very small, since it costs more energy to induce a
longitudinal magnetization. In an isotropic antiferromag-
net, the order is therefore always aligned transverse to
the field as shown in Fig. 1. At non-zero temperatures,
spin-waves become excited, which can be polarized with
the field. Therefore, the susceptibility increases with
increasing temperature in the ordered phase. On the other
hand, at very high temperatures in the non-ordered phase
the susceptibility is well described by the Curie–Weiss-law
SðS þ 1Þ=3ðT þYÞ, i.e. decreasing with temperature. The
typical susceptibility of an antiferromagnet therefore shows
a broad correlation maximum as shown in Fig. 2. Even
in antiferromagnetic models which do not order at low
temperatures this correlation maximum is well established,
as for example in the spin-1

2
chain [2]. In this system the

entangled quantum state gives rise to exotic effects such
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Fig. 2. Generic magnetic susceptibility for an antiferromagnet.

Fig. 1. The effect of a magnetic field B on a generic antiferromagnet.

Fig. 3. The effect of a magnetic field B on an antiferromagnet with one

single impurity (vacancy).
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as a diverging derivative of the susceptibility with respect to
T as T ! 0 [3].

We will now consider what happens to the individual
spins when a vacancy is introduced into the antiferromag-
netic order on sublattice B as shown in Fig. 3. Because of
the antiferromagnetic order all spins on sublattice A form
one large magnetic moment of size SN=2, while all spins on
sublattice B amount to a magnetic moment of SðN=2� 1Þ.
The total system has, therefore, an effective net classical
moment of size S which can align with the magnetic field,
following a Curie-law with diverging susceptibility S2=3T .
This means that all spins on the sublattice A have a
diverging susceptibility of S2=3T and all spins on sublattice
B have a negative diverging susceptibility of �S2=3T . This
alternating Curie-type response is much larger than the
uniform canting of the spins at low temperatures discussed
above. One single impurity is therefore sufficient to induce
an antiferromagnetic longitudinal order throughout the
lattice in the presence of a magnetic field. So far we have
neglected that in a quantum antiferromagnet the order
parameter m is reduced by quantum fluctuations (m ¼ 1
represents the maximum alignment of all spins on the
respective sublattices). Since the induced longitudinal order
stems from the existing transverse order in the system, it
must also be proportional to mS2=3T (m�80% for the
spin-1

2
Heisenberg AF on a 3D cubic lattice, and m�60%

on the 2D square lattice). Therefore, we can write
approximately for the local response around an impurity,
according to this intuitive picture

wðrÞ ¼ w0 þ ð�1Þ
rxþryþ1m

S2

3T
, (1)

where w0 is the susceptibility per site of the pure system.
The induced response is alternating (Fig. 3) while the
uniform response remains largely unchanged (Fig. 1).
We will now test this picture for the 2D spin-1

2

Heisenberg model,

H ¼ J
X

hi;ji

Si � Sj, (2)

where hi; ji denotes nearest-neighbor sites on a periodic
square lattice. This model is known to exhibit antiferro-
magnetic order as T ! 0. However, for any finite
temperature the order is destroyed by quantum fluctua-
tions. Among the ordered antiferromagnets, this model is
therefore at the extreme borderline to a quantum entangled
state. The quantum Monte Carlo program we developed
uses the loop algorithm in a single cluster variety
implemented in continuous time [4–7], which gives efficient
and fast updates even at very low temperatures.
According to Eq. (1) the local response around a static

vacancy

wðrÞ ¼ b
X

i

hSz
i Sz

ri (3)

can be separated into a sum of uniform and staggered parts
on the lattice

wðrÞ ¼ wuniðrÞ þ ð�1Þ
rxþrywstagðrÞ, (4)

the amplitudes of which are both slowly varying on the
scale of one lattice spacing. In order to extract those two
components we numerically extrapolate the data on the
even sublattice to the odd sublattice and vice versa and
define

wuniðrÞ ¼
wevenðrÞ þ woddðrÞ

2
, (5)

wstagðrÞ ¼
wevenðrÞ � woddðrÞ

2
. (6)

The results for the staggered and uniform parts are
shown in Figs. 4 and 5 for T ¼ 0:05 J. The uniform part
drops off very fast to the limiting value w0, but is strongly
enhanced around the impurity. The staggered part also
approaches a limiting value w1�0:6 ðS

2=3TÞ, which has
the expected Curie-behavior as shown in Fig. 6 in
agreement with m�0:6 for the 2D Heisenberg model
[8,9]. However, a broad peak around the impurity remains,
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Fig. 4. (Color online) wstagðrÞ for T ¼ 0:05 J.

Fig. 5. (Color online) wuniðrÞ for T ¼ 0:05 J.
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Fig. 6. The ratio 12Tw1 as a function of b ¼ 1=T .
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which appears to be largely temperature independent.
Therefore, Eq. (1) appears to be indeed valid for longer
distances from the impurity, while for shorter distances
quantum effects dominate. We expect that this picture
becomes more and more accurate for larger spin models in
higher dimensions. Our simulations for the 2D model are in
full agreement with previous calculations, where the
impurity susceptibility of the entire system has been
considered [10–17]. For more details on the effect of more
than one impurity, see Ref. [18].
We now wish to compare the situation to a model which

does not order at low temperatures, such as the 1D spin-12
Heisenberg model. In this case, vacancies cut the chain, so
that we need to consider a semi-infinite chain. This
problem has been considered before [19], with some
surprising results. A large alternating response is also
induced by the impurity, but this increases with the
distance from the edge. Finite temperatures, finite fields,
or finite system sizes will limit the range of the alternating
part, but generally the maximum alternating response is
not closest to the impurity site. A typical response is shown
in Fig. 7 for T ¼ 0:05. It is clear that such a complicated
pattern is an indication of a collective state in this quantum
many body system, which gives some indication of the
nature of the valence bond state [20].
In conclusion we have analyzed the local response to a

uniform magnetic field in low-dimensional spin-1
2
antiferro-

magnets with one vacancy. For the 2D model an intuitive
picture of a long-range antiferromagnetic order describes
the results well far away from the impurity site. Only the
more local enhancement is specific to the model and must
be attributed to quantum effects or corrections from spin-
wave theory. We therefore can argue that the local
response is always accurately described by Eq. (1) for
larger distances from a vacancy in any ordered antiferro-
magnet, where m is the order parameter, which typically
depends on spin, dimension and temperature. Therefore, a
single impurity induces a large Curie-divergent alternating
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Fig. 7. The local response for a semi infinite chain at T ¼ 0:05 J.
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response throughout an ordered antiferromagnet, if a field
is applied transverse to the underlying magnetic order (this
is automatically the case in an isotropic model). The
response in the immediate vicinity is specific to the model,
but can sometimes also be intuitively understood, e.g. by a
valence bond basis [20]. The situation is quite different for
the 1D quantum antiferromagnet, where strongly en-
tangled quantum states dominate the picture.

Our results will have direct consequences on NMR and
mSR experiments on doped antiferromagnets [21–24].
For the one-dimensional case the exotic boundary effects
have already been confirmed, which are manifest through
NMR satellites with a characteristic 1=

ffiffiffiffi
T
p

dependence
[24]. For ordered antiferromagnets it is important to
distinguish between the ordered sublattice magnetization
[25] and the field induced staggered magnetization, which
we have described here. The field induced effects should
show a more dramatic Curie-like temperature dependence
and are assumed to be perpendicular to the sublattice
magnetization.
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