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Projection optimization method for open-dissipative quantum fluids and its application
to a single vortex in a photon Bose-Einstein condensate

Joshua KrauB ®,"" Marcos Alberto Gongalves dos Santos Filho®,

12§

Francisco Ednilson Alves dos Santos,?* and Axel Pelster®!-$
' Physics Department and Research Center OPTIMAS, University Kaiserslautern-Landau,

Erwin-Schrodinger Strafse 46, 67663 Kaiserslautern, Germany
2Departamenm de Fisica, Universidade Federal de Sdo Carlos, Sao Carlos, Sdo Paulo 13565-905, Brazil

® (Received 13 December 2023; accepted 30 April 2025; published 1 July 2025)

Open dissipative systems of quantum fluids have been well studied numerically. In view of a complementary
analytical description, we extend here the variational optimization method for Bose-Einstein condensates of
closed systems to open-dissipative condensates. The resulting projection optimization method is applied to a
complex Gross-Pitaevskii equation, which models a photon Bose-Einstein condensate. Together with known
methods from hydrodynamics, we obtain an approximate vortex solution, which depends on the respective open
system parameters and has the same properties as obtained numerically in the literature.
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I. INTRODUCTION

Atomic or molecular Bose-Einstein condensates represent
closed quantum many-body systems as their magneto-optical
or optical trapping isolates them perfectly from the laboratory
environment. Their dynamics are generically described by the
time-dependent Gross-Pitaevskii equation [1,2]. Its solutions
in the absence or presence of vortices have been investigated
by numerous studies, either numerically or analytically. In the
former case, modern programming languages supporting open
multiprocessing are now available, significantly reducing ex-
ecution time on multicore processors (see, e.g., Refs. [3,4]).
The latter case is typically based on a variational optimiza-
tion method, which relies on the existence of an underlying
action. With a suitably chosen trial condensate wave func-
tion, the corresponding variational parameters are fixed by
applying the Hamilton principle, which qualitatively captures
the physics to be investigated. Thus, the spatial degrees of
freedom are eliminated and the quest for solving the Gross-
Pitaevskii equation is reduced to solving coupled nonlinear
ordinary differential equations for the time dependence of the
variational parameters. In this way, for instance, the low-lying
excitation modes and frequencies of Bose-Einstein conden-
sates can successfully be determined [5-7].

Bose-Einstein condensates can occur not only in closed
but also in open-dissipative quantum many-body systems.
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Modern prime examples are provided by quasi-equilibrium
magnons at room temperature under pumping [8] and exciton-
polariton condensates in a gallium arsenide microcavity [9].
Nowadays, photon condensates are also relevant, which have
been observed in dye-filled microcavities [10] and, quite re-
cently, also in a vertical-cavity surface-emitting laser [11-13].
Another upcoming platform is a hybrid atom-optomechanical
system in which a single mechanical mode of a nanomem-
brane in a cavity is optically coupled to a far distant atomic
Bose-Einstein condensate residing in the potential of the out-
coupled standing wave of the cavity light [14]. As for such
open-dissipative systems, neither the energy nor the particle
number are conserved quantities, and an action for deriving
the underlying equations of motion is not readily available.
For example, the variational optimization method outlined
above for closed systems cannot be straightforwardly ap-
plied to open-dissipative systems. It would require a careful
adaptation within the corresponding Schwinger-Keldysh ac-
tion framework, see the review in Ref. [15] and references
therein. A priori, it is unclear which variational ansatz would
be reasonable for both the classical and the quantum field
on the microscopic level. This problem can be circumvented
by considering the equations of motion for the cumulants
of the condensate wave function [16—19]. They can be self-
consistently evaluated with a corresponding ansatz for the
condensate wave function, where its cumulants represent the
variational parameters to be determined. Most common is
a Gaussian approximation neglecting all the cumulants of
higher than second order. Thus, one focuses on calculat-
ing the particle number, the center-of-mass, and the width
as the zeroth, first, and second cumulant of the condensate
wave function, respectively. This allows us, for instance, to
successfully describe the nonequilibrium quantum phase tran-
sition in a hybrid atom-optomechanical system [20,21] and
to determine the collective modes of a photon Bose-Einstein
condensate with thermo-optic interaction [22]. Furthermore,
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it should be noted that applying the cumulant optimization
method to closed systems yields the same results as the varia-
tional optimization method.

However, the cumulant optimization method has a limited
range of applicability. For practical reasons, it can only be
applied to physical situations, where the condensate wave
function consists of a finite number of cumulants. For in-
stance, it can not be applied to describe a vortex in an
open-dissipative system like a photon condensate, which is
of fundamental physical interest. On the one hand, the effec-
tive interaction strength for photon condensates is so small
[10,22-25] that one would expect from the standard Gross-
Pitaevskii theory such a large healing length that no vortex
could fit into a finite-sized system. But, surprisingly, the in-
terplay of pumping and nonlinear losses can nevertheless lead
to a finite vortex core size [26]. On the other hand, such a
vortex turns out to behave differently than in the standard
Gross-Pitaevskii theory for closed systems. Due to the open-
dissipative nature of such a quantum fluid, its velocity field has
not only an incompressible tangential component but also a
compressible radial component, yielding a spiral vortex shape
[26,27]. The radial velocity component implies that the vortex
does not preserve the particle number, thus, it acts as a particle
source. Because of the reasons mentioned, it would be useful
to have also in such open-dissipative systems an optimization
method available which is capable of determining the proper-
ties of those spiral vortices in a quantitative way.

To this end, we proceed in the rest of the paper as follows.
In Sec. II, we introduce a projection optimization method
for open-dissipative systems, which contains the cumulant
optimization method as well as the variational optimization
method as a special case. Afterwards, this is applied to a
complex Gross-Pitaevskii equation [28] in Sec. III, where the
interplay between pumping and nonlinear losses gives rise to
a spiral vortex. The obtained approximate analytical results
are then compared in Sec. IV with a numerical solution of the
underlying complex Gross-Pitaevskii equation. In particular,
we focus the discussion on the radial velocity as it stems from
the openness of the considered system.

II. PROJECTION OPTIMIZATION METHOD

Optimization methods are essential in finding approxi-
mate analytical solutions. Especially in arbitrary systems,
where no action-based principle is applicable, finding a so-
lution can be quite complicated. Therefore, we generalize in
Sec. I A the variational optimization method to arbitrary
systems by invoking a projection optimization method. Sub-
sequently, Sec. IIB discusses how our approach can be
visualized and geometrically interpreted.

A. General formulation

In the following, we formulate the projection optimization
method from a general point of view. Let us consider an
arbitrary system described by the field ¥ = (W', ..., ¥V),
where W denotes an element of the underlying Hilbert space
H = (H, (e, o)), which consists of a C-vector space H and
a scalar product (e, @). In addition, we assume that the field

fulfills the equation of motion
EOM[¥*, W] = 0. 1)

The aim is now to find an approximate solution of (1) by using
a suitable trial field ¥ (a), which depends on a set of trial pa-
rameters o with o € R, according to W & y(a). To this end,
we use the scalar product in order to project the equation of
motion for the trial field onto a parameter manifold, which is
spanned by the trial parameters. The latter can be determined
by solving the set of coupled algebraic equations

ay* oy

where 3y/da’ = (3y'/0al, ..., 9y /da’). Note that the
method can be spatiotemporally generalized by using o =
a(x,t) € C and by exchanging partial derivatives with func-
tional derivatives. With this, (2) will become, in general, a set
of partial differential equations instead of algebraic equations.

This projection optimization method can be motivated
heuristically as it reduces to the variational optimization
method for closed systems [5,6]. In the following, we restrict
ourselves for the sake of simplicity to the case N = 1, as the
generalization for N > 1 is straightforward. Furthermore, we
assume that some action A[W*, W] exists, which can be ap-
proximated with a trial ansatz for the field as mentioned above
according to A(a) ~ A[y*(«), ¥ (a)]. Then we specify the
general Hilbert space H to be the space L? over C with the
inner product

<EOM*[¢*, vl > + <E0M[¢*, vl > =0,

(f.g) = / FH 0800 x. 3)

An extremization of the approximated action with respect to
the trial parameters thus yields the variational equations
1) SA ay*  SA 9
A AW AN Vp o @y
sart Sy* dal - 8y do!
They can be rewritten using (3) as
3A oy* 8 0
SA BTN [BA 2V,
SY dat S+ dart

which corresponds to (2) for closed systems using the identi-
fication

(&)

A

L\
Thus, in case (6) holds, the projection optimization method
is, indeed, equivalent to the variational optimization method
for closed systems. Moreover, there exist many special cases
of the projection optimization method in the literature. For
instance, the equivalence of the method proposed in Ref. [29]
for determining the dynamics of a trapped Bose-Einstein
condensate can straightforwardly be shown. Furthermore,
the cumulant optimization method proposed for describing
the nonequilibrium quantum phase transition in a hybrid
atom-optomechanical system [20,21] and for calculating the
collective modes of a photon Bose—Einstein condensate with
thermo-optic interaction [22] represents a special case of the
projection optimization method. In addition, beyond mean-
field calculations of steady-state properties of open-dissipative
systems governed by a Lindblad master equation in Ref. [30]

= EOM[V*, ¥]. (6)
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turn out to also be equivalent by identifying appropriately the
underlying scalar product.

B. Geometrical interpretation

We show now that the projection optimization method can
also be visualized and geometrically interpreted. To this end,
we consider for the sake of simplicity the example of a system
of first-order ordinary differential equations describing the
time evolution of an N-dimensional vector X = (X', ..., X™)
according to

EOMX)=X-FX) =0, 7

where F(X) = (F!(X), ..., F¥(X)) represents some under-
lying vector field. Let us assume that this dynamics is
approximately described by N trial functions x(e«), which
depend on a set of M trial parameters & = (!, ..., «™). Note
that we don’t restrict the choice of N and M.

By identifying X ~ x(«) we aim at projecting approxi-
mately the original time evolution of X(¢) to a corresponding
one a(t) for the trial parameters. Thus, the goal is to map the
set of differential equations (7) to another one

EOM(a) = & — f(a) = 0, (8)

with a  yet-to-be-determined vector field f(a) =

@), ..., M@)).
According to the projection optimization method, the re-
duction from (7) to (8) is achieved by evaluating

9
<X—F(x),87’;>=0, i=1,....N, ©)

where (e, o) stands here for the Euclidean scalar product of
the N-dimensional vector space. This prescription now has a
quite intuitive geometrical interpretation. Namely, we recog-
nize that the approximative ansatz X ~ x(«) means that the
trajectory X(¢) lies roughly on an M-dimensional manifold,
whose embedding in the N-dimensional vector space is de-
fined according to x(e¢). Thus, this manifold is characterized
by a parametrization with respect to the trial parameters «, see
the illustration in Fig. 1. Then the partial derivatives 9x/dc
and 8x/da’ represent tangent vectors to the manifold, which
point perpendicular to the > = const and «! = const lines in
the tangent plane at point X, respectively. Therefore, Eq. (9)
amounts to projecting the original dynamics (7) with respect
to all tangent vectors of the manifold. This is a natural condi-
tion to impose as the approximative ansatz X ~ x(oc) implies
that both the velocity x and the original vector field F(x)
lie roughly in the tangent plane of the manifold at point x
as is depicted in Fig. 1. Therefore, they must have the same
coefficients with respect to an expansion in the basis of the
tangent space, i.e., the tangent vectors 9x/da’.

Now we evaluate the projection (9) by applying the chain
rule and using the Einstein summation convention

-ja_’f
oo/

, (10)

which leads to

[ 9x 0x 0x
a’ <W’ﬁ>=<F(X)’ %> (11

o~ = const.

| f o = const.

X2

X1

FIG. 1. Illustration of projection optimization method for N = 3
and M = 2. Approximative ansatz X & x(a) implies that velocity x
and vector field F(x) roughly lie in tangent plane of manifold x(«) at
point x spanned by tangent vectors 9x/da! and dx/dc>.

The scalar product of two tangent vectors on the left-hand side
of (11) defines the covariant metric of the manifold

ox(ar) 8x(oc)>

dal ’ ol

gji(er) =< (12)

which has the contravariant version g as its inverse, accord-
ing to
ik k
gjig" =9;", (13)

with & % denoting the Kronecker symbol. The scalar product
on the right-hand side of (11) defines the projected compo-
nents of F(x) on the manifold

(14)

d
fil) = <F(x<a)>, X(“)>,

dat
which has its contravariant components given by
fi(@) = g/ (@)fi(@). s)

Given that f is the vector representing the projection of F onto
the manifold, f can be regarded as an approximation of F in
the sense that they are nearly identical, differing only in the
components perpendicular to the manifold, which are omitted
in f.

The final equation of motion for the parameters « can be
obtained by multiplying both sides of (11) by g/, thus giving
a! = fi(ar), which corresponds to (8) in vector notation. This
implies that the projected equations of motion (8) follow from
the original ones (7) through the simple substitutions X — o
and F — f.

III. PHOTON BOSE-EINSTEIN CONDENSATE

In this section, we apply the projection optimization
method to a concrete problem in the realm of photon Bose-
Einstein condensation. Motivated by Ref. [27], we derive at
first in Sec. I A the underlying cGPE in two dimensions
for a photon Bose-Einstein condensate [28]. Subsequently, in
Sec. III B, we formulate and analytically solve the projection
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optimization equation for a homogeneous condensate in the
presence of a single vortex steady state.

A. Complex Gross-Pitaevskii equation

A photon Bose-Einstein condensate represents a prime
example of an open-dissipative system and is therefore pre-
destined for applying the projection optimization method. In
the following, we consider a photon condensate generated in
a dye-filled microcavity [10], where the microscopic physics
is well understood [18,31]. Due to multiple absorptions and
emissions of photons by the dye molecules, thermalization is
achieved. This is described by a detailed balance condition in
the form of the Kennard-Stepanov relation [32-35] between
the coefficients of absorption Bj(w) and emission Bjj(w)
according to

B
12(w) — Blo—wzp) , (16)
By (w)

with the inverse temperature § = 1/kgT, the photon fre-
quency w, and the zero-phonon-line frequency wyzpp. The
dynamics of a single-mode system is heuristically motivated
at the mean-field level [35]. To this end, the photon field W is
modeled by a generalized Gross-Pitaevskii equation (gGPE)
[36]

Y U V24 V(r)+ gw)?
h— = |—— r
ot 2m &
i
+ §(B21M2 — BpM; — E)}‘I’, a7

where V describes an external potential. Moreover, m and g
denote the effective mass and the photon-photon interaction
strength, respectively. The additional imaginary term includes
the absorption Bj;M; and the induced emission By M, of
photons due to having M; and M, dye molecules in the ground
and excited state, as well as the losses X of the empty cavity.
Note that the spontaneous emission is neglected in (17), as
it would result in an additional stochastic noise term. For
a complete description of the dynamics, the gGPE (17) is
self-consistently coupled to rate equations for the number of
excited and ground-state molecules [35]

oM, ,
o pMy — gM> — (By My — BioM)|W|°,  (18)
oM, M,
= (19)
dt ot

where the latter equation follows from the conservation of
the total molecule number M = M| + M,. In (18), the first
term pM, represents a global pumping term with strength p
and the second term gM, denotes nonradiative decays, while
By 1M,|W|? and BpM;|W|? correspond to the induced emis-
sion and absorption of photons, respectively. In order to obtain
a simplified description, we introduce the weighted molecule
population inversion D = B;M, — B1,M; and consider its
temporal change

D= —[p+q-+ By +B)|YI’ID + (Byp — qBi)M .
(20)

Note that Eq. (20) contains the dynamics of the population
inversion of a laser [37] in the special case that the coefficients
of absorption and emission coincide, i.e., By} = Bj,. For the
considered single-mode system, this formally corresponds to
w = wyzpL according to the Kennard-Stepanov relation (16).

The steady state of the system is characterized by D = 0
and W = W, e #/" where 1 stands for the chemical poten-
tial of the photon Bose-Einstein condensate. Thus, Eq. (20)
determines the weighted population inversion

Dy
D= P E—— )
14 [Wol*/n

where Dy = (B21p — B12g)M/(p + g) denotes the population
inversion solely due to the pump and relaxation processes
and 7 = (p+ q)/(B12 + B1) stands for the saturation pho-
ton condensate density. Merging (21) with (17), we obtain
the following generalized Gross-Pitaevskii equation for the
steady-state photon field:

2y

h2
pWo = | —=— V2 + V(r) + glWo|*
2m

+ 1<L - E) N7 (22)
2\ 1+ W ?/a -

where the imaginary term on the right-hand side is inter-
preted as the difference of particle gains and losses. It is
worth noting that models similar to (22) are applied in various
open-dissipative systems, such as exciton-polariton conden-
sates [38,39], topological lasers [40], and more generally in
nonequilibrium quantum fluids [27].

In the following, we focus on describing a homogeneous
open-dissipative system, i.e., we put V(r) = 0. In cases that
the photon number is small enough, Eq. (22) reduces to the
complex Gross-Pitaevskii equation (cGPE) heuristically pro-
posed in Ref. [28]:

" 2 ) 1 2
uWo = | ——— V" +g[Wo|" + = (y = T|¥|7) |Yo. (23)
2m 2

Here, y = Dy — X stands for an effective pumping strength,
whereas I'|Wy|? represents a density-dependent dissipation
with strength I' = Dy /7. Note that the nonlinear dissipation in
(23) can also be understood from the phenomenological point
of view of modeling the dye bleaching as a limiting factor
of a single experimental cycle [10,23,41]. And, furthermore,
the mean-field model (23) can also be derived microscopi-
cally from a Lindblad master equation, where single-particle
incoherent pumping and two-body loss are described by cor-
responding jump operators [15]. While Ref. [28] investigates
(23) for a vortex-free steady-state solution, we determine now
the steady-state condensate wave function in the presence of a
single vortex.

B. Single vortex steady state

Here we apply the projection optimization method to the
case of a single vortex in a homogeneous system and work
out an analytical solution. Assuming that the vortex is located
at the origin and has the asymptotic behavior Wy(x) — /i
for |x| — o0, this fixes both the chemical potential u = gns

033007-4



PROJECTION OPTIMIZATION METHOD FOR ...

PHYSICAL REVIEW RESEARCH 7, 033007 (2025)

and the saturation density ny = y /I". Furthermore, we use the
polar coordinates r, ¢ and decompose the time-independent
wave function according to the Madelung transformation

Wo(r, ) = /15 y/n(r) &9 (24)

where the dimensionless density profile n(r) is assumed not to
depend on ¢ due to cylindrical symmetry. In addition, we in-
troduce the total velocity field via v(r, ¢) = EV®(r, ¢)/m and
decompose it using the Helmholtz vector decomposition [42]
into v(r, ¢) = v;(¢p) + v,(r) with the rotational tangential part
v;(¢) and the nonrotational radial part v,(r). This leads via
V(@) = hV®,(p)/m = hle,/(mr) and v,.(r) = hiV®,.(r)/m
to corresponding phases, where we assumed in analogy to
closed systems that the rotational phase is given by &, = l¢
with the vorticity / = 1. By separating the real and imagi-
nary parts of Eq. (23), we obtain two equations

B (Vi/n 12 m
0=+ 5 f‘ﬁ)‘avf‘g”s”’ 25)
\% 1
O=Vow+2J§~w—ﬁW—me, (26)

which define the density and the radial velocity, respectively.
The latter represents an inhomogeneous ordinary differential
equation of first order for the radial velocity, which can ap-
proximately be solved by choosing a physically reasonable
trial ansatz for the density. To this end, we read off from (25)
and (26) that the density is only indirectly affected by pump
and losses via the radial velocity. Therefore, we assume that
the density profile for a vortex in this open-dissipative system
coincides with the one in a closed system [43,44], i.e.,
2
27

nr) = s
where the vortex width « stands for a yet-unknown length
scale. To determine a physically reasonable value for the trial
parameter «, one can use the projection optimization method
(2) for the Hilbert space H = L? with the scalar product (3)
in D = 2 dimensions. Inserting therein the equation of mo-
tion (23) together with the Madelung transformation (24), the
Helmbholtz decomposition for the velocity field and the density
profile (27) yields
2 00 3 2
h =8 _"_
r 4T 4ma?

2m0

r(r2-+-a2)2 @9
This relation connects the radial velocity field v, with the
vortex width «. Note that an alternative way to derive Eq. (28)
relies on considering (25) as the underlying equation of mo-
tion for the density and applying the projection optimization
method to it with the density ansatz (27). In order to evaluate
Eq. (28) further, we first need the solution of Eq. (26). Us-
ing (27) and applying standard techniques together with the
Dirichlet boundary condition that the radial velocity vanishes
at the origin, one obtains

azy 2+ o? 2+ a? 1
v (r) = E[ 3 In < o2 ) — ;i|er . (29)

Thus, the radial velocity turns out to also vanish in the limit
[r| — oo. Combining Egs. (28) and (29) yields for the vortex
width o two solutions. From these we select the one which

reproduces in the limit I", y — 0 the result & = +/2& with the
coherence length & = i/ /2mgns, as this is known from the
literature for the closed system case [43,44]. With this, we

obtain
(B
o =2 = 1—,/1—{— . (30)
r g

Note that, demanding a real-valued density, Eq. (30) implies
a restriction for the losses I' in units of g according to 0 <
IT"/g| < 1. Due to the relation between the chemical potential
W and the saturation density ng this also implies a restriction
for the pumping y in terms of p according to 0 < |y/u| <
1. In order to have a complete description of the system, we
conclude this section by mentioning the radial phase, which
follows from integrating the radial velocity (29)

azym r? r2 + o\ r? + o?
q)r(V)Z—W[§2<—a—2) —l+ln< a2 > 2 ]

3D

Here, ¢, stands for the second polylogarithm function, and
the integration constant is chosen such that the radial phase
vanishes at the origin.

IV. NUMERICAL SIMULATION AND DISCUSSION

In the following, we compare the analytical solution of
the ¢cGPE (23) derived in the previous section with a cor-
responding numerical simulation. To achieve this, we first
introduce the numerical method employed. We then examine
the impact of finite-size effects on the numerical solution and
conclude with a comprehensive comparison of the analytical
and numerical steady-state solutions.

A. Numerical method

We start with writing the cGPE (23) in dimensionless form.
To this end, we scale the particle density with the saturation
density ns as well as choose for length and time the appro-
priate units of £ and & /~/2c¢, respectively, with ¢, = /gng/m
denoting the sound velocity. With this, we end up with

i% = [—vz +lplP -1+ %o(l - |w|z>}w, (32)
where the remaining dimensionless parameter o = I'/g de-
scribes the losses. The dimensionless partial differential
equation (32) is numerically solved by employing the pseu-
dospectral method [45] with the simulator XMDS?2 [46]. To
this end, time stepping is performed using a fourth-order adap-
tive Runge-Kutta integration scheme with a minimum time
step of A, = 107>. The spatial part is solved using a cosine
basis applied to a box with side lengths Ly =L, =L and a
grid spacing of A, = A, = 0.5. The cosine basis effectively
imposes zero Neumann boundary conditions at the box edges.
The initial condition is prepared using

r ilg
Vo 9) = s, (33)
r
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FIG. 2. Finite-size effects and radial phase divergence for
0=0.3. Each curve shows the radial phase obtained from numerical
simulations with varying box sizes L. The dotted line represents
a second-order polynomial fit in In(L), as described by Eq. (35),
illustrating the phase growth with increasing box size. Inset: Leading
order coefficient as function of loss parameter o with black dots and
red line representing the numerical result and the expected behavior
extracted from asymptotic analysis of the analytically obtained phase
field, see Eq. (34).

with r = /x + y2, ¢ = arctan (y/x) and [ = 1. Thus, choos-
ing x € [-L,/2,L,/2] and y € [—L,/2, L,/2] puts initially a
vortex with constant circulation in the center of the integra-
tion box, as it is known from a closed system behavior [44].
For long enough simulation time, which is of the order of
t, ~ 5% 10%, we obtain with this a steady-state flow around the
vortex, which is noticeably different from the initial condition
(33).

B. Finite-size effects

Unlike the analytical case, where we have L = oo, all
numerical simulations are performed for a finite-sized box of
length L < oo. Consequently, it is essential to examine the in-
fluence of finite-size effects. To address this delicate issue, we
analyze the numerically determined radial phase for different
box sizes L, as illustrated in Fig. 2 for o = 0.3. Additionally,
from the analytically determined radial phase (31), we read
off that it diverges logarithmically in the large-distance limit:

rooo Q2Ym

®,(r,L = 00) —> e In?(r). (34)

Note that divergent phases are not uncommon in open dissi-
pative systems, as discussed in Refs. [47-49] for solutions of
the generalized Ginzburg-Landau equation or in Refs. [15,50]
for solutions of the anisotropic Kardar-Parisi-Zhang equation.

In contrast to (34), however, a constant numerical radial
phase emerges for every finite box size L due to the effec-
tive Neumann boundary conditions. Furthermore, as shown in
Fig. 2, this constant value increases with the box size L. The
phase growth is fitted by using a second-order polynomial in

In(L), which is inspired by the analytical result (34):
®,(L, L) = coIn*(L) + c1 In(L) + ¢z, (35)

enabling a comparison of the leading-order coefficient. As
shown in Fig. 2, the numerically fitted data for o = 0.3 shows
a very good quantitative agreement with the analytically pre-
dicted first-order logarithmic divergence. Moreover, for small
loss parameters o, the analytically derived and numerically
extracted leading-order coefficients align well. However, for
o > 0.3, the numerical coefficient grows significantly faster
with increasing losses compared to the analytical coefficient.
This discrepancy implies that, at larger distances, the numeri-
cally determined radial phase crosses the analytical result at a
certain distance, depending on o. This behavior contrasts with
other comparisons between numerical and analytical results,
where the analytical values always remain above the numer-
ical ones. This can be explained as follows: with increasing
losses o, the ‘openness’ of the system grows, causing the
velocity field to reach higher absolute values. As a result,
photons accelerate more rapidly than for smaller loss parame-
ters and are influenced by the numerically induced Neumann
boundary conditions at much smaller distances. Consequently,
the crossing of analytical and numerical values arises due to
finite-size effects. For higher o, not only does the leading-
order divergence in Eq. (34) play a role in the numerical
fitting function (35), but the values of ¢y and c¢; can no longer
be chosen independently, as was the case in the analytical
approach. In addition, while only a qualitative comparison
between analytical and numerical results is feasible for larger
o, the leading-order divergence was successfully predicted
analytically and verified through numerical simulations inde-
pendent on o.

Nevertheless, Fig. 2 also shows that for small distances all
radial phase profiles coincide regardless of L. Therefore, it is
reasonable to neglect finite-size effects in the following when
comparing results at small distances.

C. Comparison with projection optimization

Comparing the results obtained from the projection opti-
mization method with the corresponding ones from numerics
yields, at first, an excellent agreement. This can be read off, for
instance, from the contour map of the phase of the condensate
wave function for the dimensionless loss parameter ¢ = 0.40,
see Fig. 3. The contour lines clearly reveal a spiral behavior
of the flow. This is a direct consequence of a radial veloc-
ity contribution v,, which results from the open-dissipative
nature of the system and competes with the usual tangen-
tial velocity field. The nature of the competition between
circular and radial components of the velocity field can be
better visualized by inspecting the current of the condensate
flow j = hImy Vyr* /m with Im{. . .} indicating the imaginary
part. Figure 4 depicts the flow around a vortex for the same
dimensionless loss parameter o = 0.40 observed at increas-
ing length scales from top to bottom. A visual inspection
seems to indicate that the flow obtained from the projection
optimization method agrees well with the corresponding nu-
merical one. This is confirmed by comparing the respective
density profiles in Fig. 5(a). Increasing the dimensionless loss
parameter ¢ yields so tiny differences between the projection
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FIG. 3. Contour map of the phase around the vortex with dimen-
sionless loss parameter o = 0.40. The contour lines, shown in white,
demonstrate the spiral nature of the vortex. Here, (a) follows from

the projection optimization method, while (b) is obtained from the
numerical solution.
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FIG. 4. Current around vortex with dimensionless loss parameter
o = 0.40. Left column (a),(c),(e) determined analytically using the
projection optimization method and right column (b),(d),(f) obtained
by numerically solving cGPE (32). From top to bottom, different
characteristics of the flow are visible for varying system length
scales. (a),(b) illustrate that, near the vortex core, the flow is mostly
circular similar to the behavior of vortices in closed system BECs.
(c),(d) depict spiral behavior at some intermediate distance from the

vortex, whereas (e),(f) show mostly radial behavior far away from
the vortex core.
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FIG. 5. Profiles of (a) dimensionsless density, defined in (24),
shifted horizontally for the purpose of illustration, and (b) radial
velocity for different loss parameters o obtained from projection
optimization method (solid lines) and from solving cGPE (32) nu-
merically (dashed lines). Insets in (a) show vortex width « defined in
(27) and magnified density profile for o = 0.5. Inset in (b) depicts
that maximal radial velocity changes linearly with the losses.

optimization method and the numerics that they are only vis-
ible through magnification, see the right inset of Fig. 5(a).
This can also be understood from Eq. (25) as the density is
only indirectly affected by the dissipation through the radial
velocity. However, this turns out to be different for the radial
velocity as a function of the distance from the vortex core.
From Eq. (26), we recognize that the radial velocity is directly
affected by dissipation. And, indeed, according to Fig. 5(b),
we observe that the projection optimization method leads to
a larger deviation from the numerical result for increasing o.
This is visible, for instance, at the maximal radial velocity,
which occurs at the order of the coherence length & and
increases linearly with the dimensionless loss parameter o,
see the inset of Fig. 5(b). Furthermore, we read off from
Fig. 5(b) that the radial velocity falls off more slowly than
1/r. Therefore, the resulting streamlines for the velocity field
depicted in Fig. 4 reveal that one can distinguish three dif-

ferent regions. The streamlines change from being circular
in the near field, over spiral at some intermediate distance
from the vortex core, up to radial in the far field. This is
due to a superposition of an incompressible circular velocity
field dominating the near field and a compressible velocity
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field being relevant in the far field. This finding from an-
alyzing the vortex solution of the complex Gross-Pitaevskii
equation agrees with the numerical work of Ref. [27], where a
nonresonantly excited two-dimensional polariton condensate
is analyzed after having adiabatically eliminated the exciton
reservoir.

V. SUMMARY AND OUTLOOK

We introduced a projection optimization method, which
allows an approximative analytic description for open-
dissipative quantum fluids. Applying it to the complex
Gross-Pitaevskii equation modeling a photon condensate
wave function, we determined the density and phase profiles,
along with the corresponding velocity profile for a single
vortex. Furthermore, we analytically predicted the divergence
of the numerical radial phase for an infinitely large box and
demonstrated the finite-size effects. Furthermore, due to the
superposition of an incompressible tangential and a compress-
ible radial component, we obtained a spiral vortex shape,
which agreed well with the numerics for small dissipation. In
particular, we demonstrated that the projection optimization
method is capable of determining the relevant length scale,
which characterizes the spiral vortex. Both the density and the
radial velocity turned out to vary on the order of the coherence
length. But whereas for closed systems the coherence length is
determined by the density and the interaction strength, here it
depends on pump and losses due to the open-dissipative nature
of the quantum fluid. With this, we could show exemplarily
that the projection optimization method allows us to ex-
tract useful analytic information for open-dissipative quantum
systems at least for small losses, which complements the so far
existing numerical studies in the literature. In order to obtain

more accurate analytical results with the projection optimiza-
tion method in a systematic way, one could improve the ansatz
for the density (27). To this end, one could use the available
asymptotic analysis of vortices in closed systems, see e.g.
Refs. [51,52], or one could embark on a corresponding asymp-
totic analysis for the underlying complex Gross-Pitaevskii
equation. In addition, this work plays a crucial role in un-
derstanding the motion of vortex pairs, which, according to
established numerical simulations, deviates from the standard
point vortex description of closed systems [26]. Furthermore,
we anticipate that these results will have direct implications
for our understanding of the Berezinksii-Kosterlitz-Thouless
phase transition [53-55] in open-dissipative systems.
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