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Breakdown of the Kohn theorem near a Feshbach resonance in a magnetic trap
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We study the collective excitation frequencies of a harmonically trapped 85Rb Bose-Einstein condensate (BEC)
in the vicinity of a Feshbach resonance. To this end, we solve the underlying Gross-Pitaevskii (GP) equation by
using a Gaussian variational approach and obtain the coupled set of ordinary differential equations for the widths
and the center of mass of the condensate. A linearization shows that the dipole-mode frequency decreases when
the bias magnetic field approaches the Feshbach resonance, so the Kohn theorem is violated.
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I. INTRODUCTION

Many experiments focus on investigating collective exci-
tations of harmonically trapped Bose-Einstein condensates
(BECs) because they can be measured very accurately and,
therefore, allow for extracting the respective system parame-
ters [1]. Several studies show that the excitation of low-lying
collective modes can be achieved by modulating a system
parameter. One example is to change periodically the external
potential trap [2–8] or, more specifically, the trap anisotropy of
the confining potential [5,9–13]. Alternatively, this can also be
achieved by a periodic modulation of the s-wave scattering
length [14–20] or, possibly, by modifying the three-body
interaction strength [12,13,18].

In 1961 Kohn [21] showed in a three-dimensional solid that
the Coulomb interaction between electrons does not change the
cyclotron resonance frequency. This Kohn theorem can also
be transferred to the realm of ultracold quantum gases, where
it states that the center of mass of the entire cloud oscillates
back and forth in the harmonic trapping potential with the
natural frequency of the trap irrespective of both the strength
and type of the two-body interaction. The Kohn theorem
for a Bose gas is discussed explicitly in the Bogoliubov
approximation at zero temperature of Ref. [22]. The dynamics
of a trapped Bose-condensed gas at finite temperature is
consistent with a generalized Kohn theorem and satisfies
the linearized Zaremba-Nikuni-Griffin (ZNG) hydrodynamic
equations in Ref. [23]. In particular, the Kohn mode was
studied in an approximate variational approach to the kinetic
theory in the collisionless regime in Ref. [24]. The validity
of the Kohn theorem at finite temperature was also shown
within a linear response treatment in Ref. [25]. Later on it was
also examined in Ref. [26] for a specific finite-temperature
approximation within the dielectric formalism. Furthermore,
the dipole-mode frequency was studied by using a sum-rule
approach in Refs. [27–31]. The collective dipole oscillations
in the Bose-Fermi mixture were studied theoretically in
Refs. [28,29] and experimentally in Ref. [32], while the dipole
oscillation of a spin-orbit-coupled Bose-Einstein condensate
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confined in a harmonic trap was studied experimentally [30]
and investigated theoretically [30,31]. The dipole oscillation
was also discussed for a general fermionic mixture by using
the Boltzmann equation in Ref. [33].

Apart from a periodic modulation of a system parameter
the dipole mode can also be excited by introducing an abrupt
change in the potential. The experimental achievement [1,34]
has been confirmed in Refs. [35,36], where also the quadrupole
frequency was determined as an eigenfrequency of the hydro-
dynamic equations. The coupling between the internal and the
external dynamics of a Bose-Einstein condensate oscillating in
an anharmonic magnetic waveguide was studied in Ref. [37].
There are also several nonlinear effects including second- and
third-harmonic generation of the center-of-mass motion, and
a nonlinear mode mixing has been identified. In the more
recent work [38], the authors explored a different physical idea
by investigating the coupling between dipole and quadrupole
modes in the immediate vicinity of a Feshbach resonance.
They started by considering a Bose-Einstein condensate in
a magneto-optical Ioffe-Pritchard trap [39] with a controlled
bias field, where the dipole mode is excited. If the bias field
is close enough to a Feshbach resonance, the oscillation of
the entire cloud through the inhomogeneous bottom of the
trap causes an effective periodic time-dependent modulation
in the scattering length, which in turn changes the Kohn mode
frequency but also excites other modes like the quadrupole or
the breathing mode.

Although Ref. [38] introduces this appealing physical
notion, it only provides a rough quantitative study. Therefore
we calculate in this paper in detail the collective excitation
modes of a harmonically trapped Bose-Einstein condensate
in the vicinity of a Feshbach resonance for experimentally
realistic parameters of a 85Rb BEC [40,41]. To this end,
we consider the situation that a Bose-Einstein condensate
oscillates within a dipole mode in the z direction and inves-
tigate how the dipole-mode frequency changes when the bias
magnetic field approaches the Feshbach resonance in Sec. II.
Afterwards, we follow Ref. [38] and transform the partial
differential of the GP equation [42,43] for the condensate
wave function in Sec. III within a variational approach [44,45]
into a set of ordinary differential equations for the widths
and the center-of-mass position of the condensate in an
axially symmetric harmonic trap plus a bias potential. Our
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analysis is based on an exact treatment with the help of
the Schwinger trick [46]. The resulting theory on how to
determine the low-lying collective excitation frequencies is
developed step by step in Sec. IV. Afterwards, Sec. V compares
our results with the corresponding findings of Ref. [38]. In
addition we discuss two special cases, when the bias magnetic
field field approaches the Feshbach resonance and when it
is far away from the Feshbach resonance. It turns out that
the heuristic approximation in Ref. [38] is not valid neither
on top of the Feshbach resonance, nor far away from it.
Finally, in Sec. VI we summarize our findings and present the
conclusions.

II. NEAR FESHBACH RESONANCE

The dynamics of a condensed Bose gas in a trap at zero
temperature is described by the time-dependent GP equation
[44,45]

ih̄
∂ψ(r,t)

∂t
=

[
− h̄2

2M
� + Vext(r) + g2Nnc(r,t)

]
ψ(r,t), (1)

where ψ(r,t) denotes a condensate wave function and N

represents to the total number of atoms in the condensate.
On the right-hand side of the above equation we have
a kinetic-energy term, where M denotes the mass of the
corresponding atomic species, an external trap Vext(r), and
the third term is the two-body interaction with the condensate
density nc(r,t) = |ψ(r,t)|2 and the strength g2 = 4πh̄2as/M ,
which is proportional to the s-wave scattering length as. In
the presence of a magnetic field, the s-wave scattering length
can be tuned by applying an external magnetic field due to the
Feshbach resonance [35,47]:

as(B) = aBG

(
1 − �

B − Bres

)
, (2)

with the background s-wave scattering aBG, the width of the
Feshbach resonance �, and the resonance of magnetic field
Bres. In this paper, we consider a Bose-Einstein condensate
confined in a magneto-optical Ioffe-Pritchard trap composed
of a cylindrically symmetric harmonic potential with trap
anisotropy λ plus a bias [38,39]:

Vext(r) = V0 + Mω2
ρ

2
(ρ2 + λ2z2). (3)

Due to the atomic magnetic moment μB the potential is
generated by a corresponding magnetic field whose modulus
is given by

B = B0 + Mω2
ρ

2μB
(ρ2 + λ2z2), (4)

where B0 = V0/μB is the bias field.
From Eqs. (2) and (4), the interparticle interaction in the

atomic cloud moving in this potential is controlled by the
spatially dependent scattering length

as = aBG

[
1 − �

H + Mω2
ρ

2μB
(ρ2 + λ2z2)

]
, (5)

where H = B0 − Bres denotes the deviation of the bias
magnetic field B0 from the location of the Feshbach resonance
at Bres. In the following, we consider the potential (3) loaded
with a condensed cloud whose dipole mode is excited in the
z direction. In this configuration, far away from the Feshbach
resonance, the center of mass oscillates periodically at the
bottom of the trap with the Kohn mode frequency ωz = λωρ .

As an initial physical motivation we discuss the conse-
quences of the Thomas-Fermi (TF) approximation. Because
we assume to have a strong two-body interaction, we neglect
the kinetic-energy term in the time-independent counterpart of
Eq. (1) and obtain

μ = Vext(r) + g2nc(r). (6)

Far away from the Feshbach resonance we can consider the
potential contribution in Eq. (5) to be small, thus we expand
Eq. (5) up to the first order of the external potential, yielding

μ = Vext(r) + 4πh̄2aBGnc(0)

M

×
[

1 − �

H+�Mω2
ρ

2H2μB
(ρ2 + λ2z2) + · · ·

]
, (7)

where nc(0) is the TF density at the trap center with the
chemical potential μ = (h̄ωρ/2)(15Nλaeff/l)2/5. On the one
hand we read off from Eq. (7) an effective s-wave scattering
length

aeff = aBG

(
1 − �

H

)
. (8)

In the following discussion we have a 85Rb BEC in mind,
whose Feshbach resonance is characterized by a negative
background value of the s-wave scattering length, i.e., aBG <

0, and a positive width, i.e., � > 0 [40,41]. Thus, the
BEC is unstable, i.e., aeff < 0, provided that B0 < Bcrit + �.
Conversely, the TF approximation yields a stable BEC, i.e.,
aeff > 0, in the case that Bres < B0 < Bcrit = Bres + �. On the
other hand, we obtain from Eqs. (3) and (7) an effective Kohn
mode frequency

ωD,eff = λωρ

√
1 + 4πh̄2aBGnc(0)μ�

MH2μB
. (9)

Thus, on the right-hand side of the Feshbach resonance, i.e., for
Bres < B0 < Bcrit = Bres + �, we expect due to aBG < 0 that
the Kohn mode frequency (9) is smaller than the corresponding
one without the Feshbach resonance. In the following we will
show that this initial qualitative finding is confirmed by a more
quantitative analysis. In particular, it will turn out that the
leading change of the Kohn mode frequency far away from the
Feshbach resonance is, indeed, of the order 1/H2.

III. VARIATIONAL APPROACH

Instead of directly solving the Gross-Pitaevskii equation
for the condensate wave function, it is also possible to
determine its solution approximately within a variational
approach [44,45]. To this end the differential equation of
Gross and Pitaevskii (1) is reduced to a set of ordinary
differential equations for variational parameters, which appear
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in a suitable ansatz for the condensate wave function. Although
this represents a tremendous simplification of the description
of BEC dynamics, it has turned out to capture the essential
physics. For instance, even inherent nonlinear phenomena such
as parametric and geometric resonances could successively
be described within this variational approach [12,13,17].
Surprisingly, for a period modulation of the s-wave scattering
length around a relatively strong background value, it has
turned out that the variational equations for the BEC widths
coincide quantitatively even for long propagation times with
the condensate widths determined from solving the GP
equation [17]. Therefore, we are confident that it is suitable to
work out also a variational treatment of collective excitations
near a Feshbach resonance.

To this end, we start with casting Eq. (1) into a variational
problem, which corresponds to the extremization of the action
defined by the Lagrangian

L(t) =
∫

dr
[
ih̄

2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)

− h̄2

2M
|∇ψ |2 − V (r)|ψ |2 − g2N

2
|ψ |4

]
. (10)

In order to analytically study the dynamical system of a BEC
with two-body contact interaction, where the dipole mode is
excited in the z direction, we use a Gaussian variational ansatz
which includes the center-of-mass oscillation in the z direction
according to Refs. [38,44,45]. For an axially symmetric trap,
this time-dependent ansatz reads

ψG(ρ,z,t) = N (t) exp

[
− ρ2

2u2
ρ

+ iραρ + iρ2βρ

]

× exp

[
− (z − z0)2

2u2
z

+ izαz + iz2βz

]
, (11)

where N = (π3/2u2
ρuz)−1/2 is a normalization factor, while

uρ,z, z0, αρ,z, and βρ,z denote time-dependent variational
parameters, which represent radial and axial condensate
widths, the center-of-mass position, and the corresponding
phases. Note that the Gaussian variational ansatz (11) covers
only a subset of collective excitations; for instance, it cannot
describe the scissors mode [48].

Inserting the Gaussian ansatz (11) into the Lagrange
function (10), we obtain

L(t) = − h̄2

2M

[
1

2u2
z

+ 1

u2
ρ

+ 2u2
zβ

2
z + 4z2

0β
2
z + 4z0βzαz

+α2
z + 4u2

ρβ
2
ρ + 2

√
πuρβραρ + α2

ρ

]

− h̄

2

[
u2

zβ̇z + 2z2
0β̇z + 2z0α̇z + 2u2

ρβ̇ρ + √
πuρα̇ρ

]
−V0 − h̄2NaBG√

2πM

1

u2
ρuz

− Mω2
ρ

2

[
u2

ρ + λ2u2
z

2
+ λ2z2

0

]

+ 4h̄2NaBG�

πu4
ρu

2
zM

f, (12)

where we have introduced the integral

f =
∫ ∞

0
dρ

∫ ∞

−∞
dz

ρ exp
[−2ρ2

/
u2

ρ − 2(z − z0)2
/
u2

z

]
H + Mω2

ρ

2μB
(ρ2 + λ2z2)

. (13)

From the corresponding Euler-Lagrange equations we obtain
the equations of motion for all variational parameters. The
phases αρ,z and βρ,z can be expressed explicitly in terms of
first derivatives of the widths uρ , uz, and the center-of-mass
coordinate z0 according to

αρ = 0, αz = M

h̄
ż0 − 2z0βz, βρ,z = M

2h̄

u̇ρ,z

uρ,z

. (14)

Inserting Eq. (14) into the Euler-Lagrange equations for the
width of the condensates uρ , uz, and the center-of-mass
coordinate z0, we obtain a system of three second-order
differential equations for uρ , uz, and z0: After rescaling the
quantities according to

ui, ρ, z, z0 → l(ui,ρ,z,z0), t → tωρ, (15)

with the oscillating length l = √
h̄/(Mωρ), we obtain a system

of second-order differential equations for uρ , uz, and z0 in the
dimensionless form [38]

0 = üρ + uρ − 1

u3
ρ

− PBG

uzu3
ρ

×
[

1 − 16ε0f√
2πl3u2

ρuz

+ 4ε0√
2πl2uρuz

∂f

∂uρ

]
, (16)

0 = üz + λ2uz − 1

u3
z

− PBG

u2
zu

2
ρ

×
[

1 − 16ε0f√
2πl3u2

ρuz

+ 8ε0√
2πl2u2

ρ

∂f

∂uz

]
, (17)

0 = z̈0 + λ2z0 − 4PBGε0√
2πl2u4

ρu
2
z

∂f

∂z0
. (18)

Here we have introduced the dimensionless parameters

PBG =
√

2

π

NaBG

l
, ε0 = �

H , ε1 = HμB

(h̄ωρ)
, ε = ε0ε1.

(19)

In order to study the frequencies of collective modes both in
the vicinity of the Feshbach resonance and on the right-hand
side of the Feshbach resonance, i.e., for H > 0, we develop
now our own approach by using the Schwinger trick [46] in
order to rewrite the integral Eq. (13) in form of

f = l3
∫ ∞

0
dρ

∫ ∞

−∞
dz

∫ ∞

0
dSρ exp

[
−2ρ2

u2
ρ

− 2(z − z0)2

u2
z

]

× exp

[
−S − S

2ε1
(ρ2 + λ2z2)

]
. (20)

In the following, we concentrate on the topic how this violates
the Kohn theorem, i.e., how the dipole-mode frequency
changes when the bias magnetic field B0 approaches the Fesh-
bach resonance Bres. Within the linearization of the equations
of motions (16)–(18), we have to take into the account that
the equilibrium value of the center-of-mass position vanishes
according to Eq. (18). This allows us to expand the integral of
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Eq. (20) up to the second order of z0, which yields

f = l3
∫ ∞

0
dρ

∫ ∞

−∞
dz

×
∫ ∞

0
dSρ

[
1 + 4zz0

u2
z

− 2z2
0

u2
z

+ 8z2z2
0

u4
z

+ · · ·
]

× exp

[
−2ρ2

u2
ρ

− 2z2

u2
z

− S − S
2ε1

(ρ2 + λ2z2)

]
. (21)

Correspondingly, we determine the respective first derivatives
∂f

∂uρ
, ∂f

∂uz
, and ∂f

∂z0
which appear in the equations of motion

(16)–(18).

IV. RIGHT-HAND SIDE OF FESHBACH RESONANCE

We consider in this section the frequencies of collective
modes when the bias field B0 is larger than or equal to the
resonant magnetic field Bres, i.e., H = B0 − Bres � 0.

A. Collective-mode frequencies

At first we obtain a system of three second-order ordinary
differential equations for uρ , uz, and z0 in the dimensionless
form after inserting Eq. (21) into Eqs. (16)–(18):

0 = üρ + uρ − 1

u3
ρ

− PBG

uzu3
ρ

×
[

1 − 16
∫ ∞

0

εε
1/2
1 dS e−S (

2ε1 + Su2
ρ

)
(
4ε1 + Su2

ρ

)2 √
4ε1 + Su2

zλ
2

+ · · ·
]

,

(22)

0 = üz + λ2uz − 1

u3
z

− PBG

u2
zu

2
ρ

×
[

1 − 16
∫ ∞

0

εε
1/2
1 dS e−S (

2ε1 + Su2
zλ

2
)

(
4ε1 + Su2

ρ

) (
4ε1 + Su2

zλ
2
)3/2 + · · ·

]
,

(23)

0 = z̈0 + λ2z0

[
1 + 16PBG

u2
ρuz

×
∫ ∞

0

εε
1/2
1 dSe−SS(

4ε1 + Su2
ρ

)(
4ε1 + Su2

zλ
2
)3/2 + · · ·

]
. (24)

The time-independent solution of the condensate widths uρ =
uρ0, uz = uz0, and z0 = z00 is determined from

0 = uρ0 − 1

u3
ρ0

− PBG

uz0u
3
ρ0

[
1 − 16εε

1/2
1

×
∫ ∞

0

dSe−S(
2ε1 + Su2

ρ0

)
(
4ε1 + Su2

ρ0

)2
√

4ε1 + Su2
z0λ

2

]
, (25)

0 = λ2uz0 − 1

u3
z0

− PBG

u2
z0u

2
ρ0

[
1 − 16εε

1/2
1

×
∫ ∞

0

dSe−S(
2ε1 + Su2

z0λ
2
)

(
4ε1 + Su2

ρ0

)(
4ε1 + Su2

z0λ
2
)3/2

]
, (26)

0 = z00. (27)

Using the Gaussian approximation enables us to analytically
estimate the frequencies of the low-lying collective modes
[12,13,17,44,45] and the dipole-mode frequency. This is done
by linearizing Eqs. (22)–(24) around the equilibrium positions
(25)–(27). If we expand the condensate widths as uρ =
uρ0 + δuρ , uz = uz0 + δuz, and the center-of-mass motion as
z0 = z00 + δz0, insert these expressions into the corresponding
equations, and expand them around the equilibrium widths by
keeping only linear terms, we immediately get for the breathing
and quadrupole frequencies

ω2
B,Q = ω2

ρ

2

[
m1 + m3 ±

√
(m1 − m3)2 + 8m2

2

]
, (28)

where the abbreviations m1, m2, and m3 are calculated by
using MATHEMATICA [49]:

m1 = 1 + 3

u4
ρ0

+ 3PBG

u4
ρ0uz0

[
1 − 16εε

1/2
1

×
∫ ∞

0

dSe−S(
5S2u4

ρ0 + 18Su2
ρ0ε1 + 24ε2

1

)
3
(
Su2

ρ0 + 4ε1
)3

√
4ε1 + Su2

z0λ
2

]
, (29)

m2 = PBG

u3
ρ0u

2
z0

[
1 − 32εε

1/2
1

×
∫ ∞

0

dSe−S(
Su2

ρ0 + 2ε1
)(

2ε1 + Su2
z0λ

2
)

(
Su2

ρ0 + 4ε1
)2(

4ε1 + Su2
z0λ

2
)3/2

]
, (30)

m3 = λ2 + 3

u4
z0

+ 2PBG

u2
ρ0u

3
z0

[
1 − 8εε

1/2
1

×
∫ ∞

0

dSe−S(
16ε2

1 + 10Su2
z0ε1λ

2 + 3S2u4
z0λ

4
)

(
Su2

ρ0 + 4ε1
)(

4ε1 + Su2
z0λ

2
)5/2

]
.

(31)

The quadrupole mode has a lower frequency and is charac-
terized by out-of-phase radial and axial oscillations, while
in-phase oscillations correspond to the breathing mode. Fur-
thermore, the dipole-mode frequency is given by

ω2
D = λ2ω2

ρ

[
1 + 16PBG

u2
ρ0uz0

×
∫ ∞

0

εε
1/2
1 dS e−SS(

4ε1 + Su2
ρ0

)(
4ε1 + Su2

z0λ
2
)3/2

]
. (32)

B. Thomas-Fermi approximation

In order to find an analytical description for the condensate
widths uρ0, uz0, and their ratio uρ0/uz0 as well as the
frequencies of collective modes, we consider now the TF
approximation. Thus, we neglect the respective second term
in Eqs. (25) and (26), which comes from the kinetic energy.
Furthermore, we use the ansatz

uz0λ

uρ0
= 1 + η (33)
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and evaluate the resulting equations in the limit of a vanishing
smallness parameter η, yielding

uρ0 − PBG

uz0u
3
ρ0

[
1 − 16εε

1/2
1

∫ ∞

0
dS

e−S(
Su2

ρ0 + 2ε1
)

(
Su2

ρ0 + 4ε1
)5/2

]

= 0, (34)

λ2uz0 − PBG

u2
z0u

2
ρ0

[
1 − 16εε

1/2
1

∫ ∞

0
dS

e−S(
Su2

ρ0 + 2ε1
)

(
Su2

ρ0 + 4ε1
)5/2

]

= 0. (35)

Solving the remaining S integral we obtain the equilibrium
widths uρ0 and uz0 in TF approximation:

0 = u5
ρ0 − PBGλ

[
1 − ε

3

(
40

u2
ρ0

+ 64ε1

u4
ρ0

)
+ (

3u2
ρ0 + 4ε1

)
κ

]
,

(36)

λuz0 = uρ0, (37)

where we have introduced the abbreviation

κ = 8ε
√

πε1

u5
ρ0

e4ε1/u
2
ρ0 Erfc[2

√
ε1/uρ0], (38)

with the complementary error function

Erfc(x) = 2√
π

∫ ∞

x

dte−t2
. (39)

In the similar way we obtain the quadrupole, breathing, and
dipole-mode frequencies in TF approximation by inserting
Eq. (33) into Eqs. (29)–(32) and evaluating the limit η → 0.
Solving the remaining S integrals we obtain analytically the
quadrupole and breathing frequencies in the TF approximation
via Eq. (28) with the abbreviations

m1 = 1 + 3PBGλ

u5
ρ0

[
1 − 8ε

45u7
ρ0

(
107u5

ρ0 + 408u3
ρ0ε1

+ 256uρ0ε
2
1

) + κ

45

(
300u2

ρ0 + 880ε1 + 512ε2
1

u2
ρ0

)]
,

(40)

m2 = PBGλ2

u5
ρ0

[
1 − 8ε

15u7
ρ0

(
43u5

ρ0 + 152u3
ρ0ε1 + 64uρ0ε

2
1

)

+ κ

15

(
120u2

ρ0 + 320ε1 + 128ε2
1

u2
ρ0

)]
, (41)

m3 = λ2 + 2PBGλ3

u5
ρ0

[
1 − 16ε

15u7
ρ0

(
16u5

ρ0 + 64u3
ρ0ε1

+ 48uρ0ε
2
1

) + κ

15

(
90u2

ρ0 + 280ε1 + 192ε2
1

u2
ρ0

)]
, (42)

whereas the dipole-mode frequency in the TF approximation
reads explicitly

ω2
D = λ2ω2

ρ

{
1 + 32PBGλε

3u10
ρ0

[
u3

ρ0 + 4uρ0ε1

− κu5
ρ0

8ε
× (

3u2
ρ0 + 8ε1

)]}
. (43)

C. On top of Feshbach resonance

Now, as a physically important special case, we apply
the TF approximation to the condensate widths (36), (37)
and to the frequencies of collective modes (28) where the
abbreviations m1, m2, and m3 are defined in Eqs. (40)–(43) on
top of the Feshbach resonance. In the limit H → 0 or ε1 → 0
we obtain the condensate widths

u5
ρ0 − PBGλ

(
1 − 40ε

3u2
ρ0

)
= 0, (44)

λuz0 = uρ0, (45)

the breathing and quadrupole frequencies (28) from

m1 = 1 + 3PBGλ

u5
ρ0

(
1 − 856ε

45u2
ρ0

)
, (46)

m2 = PBGλ2

u5
ρ0

(
1 − 344ε

15u2
ρ0

)
, (47)

m3 = λ2 + 2PBGλ3

u5
ρ0

(
1 − 256ε

15u2
ρ0

)
, (48)

and the dipole-mode frequency

ω2
D = λ2ω2

ρ

(
1 + 32ελPBG

3u7
ρ0

)
. (49)

All these results on top of the Feshbach resonance turn out to
be finite in contrast to the finding of Ref. [38].

D. Far away from Feshbach resonance

Accordingly, we also apply the TF approximation to
the condensate widths (34), (35) and to the frequencies of
collective modes (28), where the abbreviations m1, m2, and
m3 are defined in Eqs. (40)–(43) for the case when B0 is far
away from the Feshbach resonance. In the limit H → ∞ or
ε1 → ∞ we have to expand the complementary error function
(39) for large real x

Erfc(x) = e−x2

√
π

(
1

x
− 1

2x3
+ 3

4x5
+ · · ·

)
, (50)

yielding a corresponding asymptotic expansion for κ from
Eq. (38)

κ = 8ε

(
1

2u4
ρ0

− 1

16u2
ρ0ε1

+ 3

128ε2
1

+ · · ·
)

. (51)
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Inserting the expansion (51) into Eqs. (36) and (40)–(43), we
get for the condensate widths

u5
ρ0 − PBGλ

(
1 − ε0 + u2

ρ0ε0

8ε1
+ · · ·

)
= 0, (52)

λuz0 = uρ0, (53)

the breathing and quadrupole frequencies Eq. (28) are given
by

m1 = 1 + 3PBGλ

u5
ρ0

(
1 − ε0 + ε0u

2
ρ0

8ε1
− 17u4

ρ0ε0

192ε2
1

+ · · ·
)

, (54)

m2 = PBGλ2

u5
ρ0

(
1 − ε0 − ε0u

2
ρ0

8ε1
+ 17u4

ρ0ε0

64ε2
1

+ · · ·
)

, (55)

m3 = λ2 + 2PBGλ3

u5
ρ0

(
1 − ε0 + ε0u

2
ρ0

4ε1
− 17u4

ρ0ε0

64ε2
1

+ · · ·
)

,

(56)

and for the dipole frequency

ω2
D = λ2ω2

ρ

(
1 + ε0PBGλ

2ε1u
3
ρ0

+ · · ·
)

. (57)

These results for B0 far away from the Feshbach resonance are
now compared with the corresponding findings of Ref. [38],
which we elaborate briefly in the next section.

E. Heuristic approximation

In this section we discuss the heuristic approximation of
Ref. [38] for evaluating the integral (13). To this end we
assume that the cloud size is much smaller than the oscillating
amplitude, which means that the cloud experiences the same
field at any point, i.e., the scattering length is homogeneous in
the entire cloud. This is equivalent to stating that the numerator
of the integral (13), i.e.,

ρ exp
[ − 2ρ2

/
u2

ρ − 2(z − z0)2
/
u2

z

]
(58)

is much narrower than the denominator

1

H + Mω2
ρ

2μB

(
ρ2 + λ2z2

) , (59)

which leads to the conditions

uρ �
√

2μBH
Mω2

ρ

, uz �
√

2μBH
Mω2

ρλ
2
. (60)

Thus, the heuristic approximation of Ref. [38] seems to be
valid for a sufficiently largeH, i.e., far away from the Feshbach
resonance.

In that case, we can expand Eq. (59) around the center of
mass ρ = 0 and z = z0, which gives us in leading order

1

H + Mω2
ρ

2μB
(ρ2 + λ2z2)

≈ 1

H + Mω2
ρ

2μB
λ2z2

0

. (61)

Within this approximation, the integral (13) can be evaluated
exactly and yields

f (uρ,uz,z0) ≈
√

2π

8H
u2

ρuz(
1 + Mω2

ρλ2z2
0

2μBH

) . (62)

By substituting Eq. (62) into Eqs. (16)–(18) and after introduc-
ing dimensionless parameters according to Eq. (19) we obtain
three second-order ordinary differential equations for uρ , uz,
and z0 [38]. A linearization yields the frequencies of collective
modes of Ref. [38] in the TF approximation to be

ω2
B,Q = ω2

ρ

(
2 + 3

2
λ2 ± 1

2

√
16 − 16λ2 + 9λ4

)
; (63)

thus they do not depend on the bias magnetic field B0.
Correspondingly, the dipole-mode frequency of Ref. [38] in
the TF approximation has the form

ω2
D = λ2ω2

ρ

(
1 + ε0PBGλ

2ε1u
3
ρ0

)
, (64)

where the dipole-mode frequency diverges on top of the
Feshbach resonance, i.e., for ε1 = 0.

V. RESULTS

We discuss in this section the respective results when the
bias field B0 is larger than or equal to the resonant magnetic
field Bres, i.e., H = B0 − Bres � 0. To this end we follow
Refs. [40,41] and consider a concrete experiment with N =
4 × 104 atoms of a 85Rb BEC in a harmonic trap with ωρ =
2π × 156 Hz along the radial direction and ωz = 2π × 16 Hz
along the axial direction. The Feshbach resonance parameters
are given by the background value aBG = −443a0, where a0

is the Bohr radius, the width � = 10.7 G, and the resonance
location at Bres = 155 G. The magnetic dipole moment μB

of 85Rb [50] is equal to one Bohr magneton mB = eh̄/(2Me),
which represents the magnetic moment of the Hydrogen atom
with the elementary charge e and the electron mass Me. With
this the dimensionless parameters (19) have the values

PBG = −856.732, ε0ε1 = ε = 9.6052 × 104. (65)

A. Right-hand side of Feshbach resonance

We plot in Fig. 1 the equilibrium widths of the condensate
uρ0, uz0, and the aspect ratio of uρ0/uz0 as a function of
magnetic field B0 for the experimental parameters (65) with
different trap anisotropy λ = 0.5 [Figs. 1(a) and 1(c)] and
λ = 2 [Fig. 1(b)]. The widths of the condensate (25) and (26)
are coupled, so we solve both equations iteratively. We read
off that the aspect ratio uρ0/uz0 turns out to coincide perfectly
with the trap aspect ratio λ; therefore, it is justified to use
the TF approximation (33) to find an analytical understanding
for the condensate widths. From Fig. 1 we also read off that
the heuristic approximation of Ref. [38] is not valid on top of
the Feshbach resonance and seems to be valid only far away
from the Feshbach resonance. Furthermore, Fig. 1 confirms
that the TF approximation in Eqs. (36) and (37) agrees quite
well with the equilibrium widths determined from Eqs. (25)
and (26). In addition Fig. 1(c) shows that the radial condensate
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FIG. 1. Equilibrium results for dimensionless condensate widths
uρ0, uz0, and aspect ratio uρ0/uz0 as a function of a magnetic field
B0 for different trap anisotropy (a), (c) λ = 0.5 and (b) λ = 2 for
the experimental parameters Eq. (65). Solid, dotted, and dashed
curves correspond to the heuristic approximation of Ref. [38], the
exact results (25) and (26), and the TF approximation (36) and (37),
respectively.

width uρ0 from Eq. (25) vanishes at the critical magnetic field
Bcrit = Bres + � = 165.7 G. As already anticipated due to the
heuristic argument of Ref. [38], the system on the right-hand
side of the Feshbach resonance is not stable beyond this critical
magnetic field Bcrit.

Figures 2 and 3 show the respective frequencies of
collective modes, for the experimental parameters (65) with
different trap anisotropy λ. From these figures we see how the
frequencies of collective modes change when one approaches
the Feshbach resonance. As already expected in Eq. (9), the
dipole-mode frequency on the right-hand side of the Feshbach
resonance turns out to be smaller than the dipole-mode
frequency far away from the Feshbach resonance. In particular
we observe that the approximate solution of Ref. [38] is
not valid on top of the Feshbach resonance. Our results and
the approximate solution of Ref. [38] for the dipole-mode
frequency in Fig. 2 disagree by only 0.05 G above the Feshbach
resonance for the experimental parameters (65). However, this
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FIG. 2. Dipole-mode frequency in units of ωρ as a function of
magnetic field B0 for different trap anisotropy λ = 0.5 and λ = 2
(a) for the experimental parameters (65), where solid, dotted, and
dashed curves correspond to the approximation solution of Ref. [38],
the exact result (32), and the TF approximation (43), respectively,
while panel (b) focuses on the region of interest for the experimental
parameters (black) and for the hypothetical value of the Feshbach
resonance � = 100.7 G (gray) with λ = 0.5 and λ = 2.
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FIG. 3. Frequencies in units of ωρ for quadrupole mode and
breathing mode as a function of a magnetic field B0 for different
trap anisotropy (a) λ = 0.5 and (b) λ = 2 for the experimental
parameters (65). Solid, dashed, and square-dotted curves correspond
to the approximate solution of Ref. [38], the TF approximation (28)
with the abbreviations m1, m2, and m3 from Eqs. (40)–(42), and
the TF approximation in the limit H → ∞ or ε1 → ∞ (28) with
the abbreviations m1, m2, and m3 being defined in Eqs. (54)–(56),
respectively.

is still an experimentally accessible range as the magnetic field
can be controlled up to an accuracy of 1 mG [51]. Furthermore,
Fig. 2(b) shows how the dipole-mode frequency changes
with the bias magnetic field B0 for a hypothetical Feshbach
resonance width � = 100.7 G. Thus, the difference between
our predication and the approximate solution of Ref. [38] is
more pronounced for a broader Feshbach resonance and for a
pancake-like condensate.

B. On top of Feshbach resonance

We remark that approaching the Feshbach resonance and
performing the TF limit represent commuting procedures
within our theory. In contrast to our findings the heuristic
approximation of Ref. [38] fails to predict a finite value for the
dipole-mode frequency on top of the Feshbach resonance [52].

Figure 4 shows the equilibrium widths of the condensate
uρ0, uz0 and the aspect ratio uρ0/uz0 following from the exact
results of Ref. [52] as solid lines versus trap aspect ratio λ

and the experimental parameters (65). From Fig. 4(b) we read
off that the aspect ratio uρ0/uz0 turns out to coincide perfectly
with the trap aspect ratio λ.

In Fig. 5(a) we plot the dipole-mode frequency as a function
trap anisotropy λ. The solid black curve corresponds to the
dipole-mode frequency far away from the Feshbach resonance
ωD = λ. Furthermore, the solid gray curve corresponds to

(a) (b)

uz0

uΡ0

0 0.5 1 1.5 2 2.5 3
0

50
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150

Λ
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0 0.5 1 1.5 2 2.5 3
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Λ

FIG. 4. Equilibrium results for (a) dimensionless condensate
widths uρ0, uz0 and (b) aspect ratio uρ0/uz0 as a function of trap aspect
ratio λ for the experimental parameters (65). Solid and dashed curves
correspond to the exact results of Ref. [52] and the TF approximation
(44) and (45), respectively.
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FIG. 5. Frequencies in units of ωρ for (a) dipole mode and
(b) breathing mode and quadrupole mode as a function of trap
aspect ratio λ for the experimental parameters (65). (a) The solid
black curve corresponds to the dipole-mode frequency far away the
Feshbach resonance which means that ωD = λωρ . The solid gray
and dashed curves correspond to the exact result of Ref. [52] and in
the TF approximation (49), respectively. (b) The solid and dashed
curves correspond to Eqs. (63) and in the TF approximation (28),
respectively, where the abbreviations are defined in Eqs. (46)–(48).

the exact result of dipole-mode frequency on top of the
Feshbach resonance [52] and the dashed curve corresponds
to the dipole-mode in the TF approximation (49) for the
experimental parameters (65). This result could be seen as
being inconsistent with the Kohn theorem [21], which says that
the dipole frequency is equal to the trap frequency and does
not depend on the two-body interaction strength. However,
the result of the Kohn theorem is a consequence of the
translational invariance of the two-body interaction, which is
no longer true in our case due to Eq. (5). As a consequence,
the dipole-mode frequency in the exact result of Ref. [52] and
its TF approximation (49) depend on the two-body interaction
strength PBG and the anisotropy of the confining potential λ

both explicitly and implicitly via the equilibrium values of the
condensate widths from Ref. [52].

In Fig. 5(b) we also show the breathing and quadrupole-
mode frequencies as a function of trap anisotropy λ. The
solid curves correspond to the frequencies of collective modes
far away from the Feshbach resonance, i.e., for ε = 0, while
the dashed curves correspond to the frequencies of collective
modes on top of the Feshbach resonance and in the TF
approximation (28), with abbreviations m1, m2, and m3 defined
in Eqs. (46)–(48) for the experimental parameters Eq. (65).
We observe that approaching the Feshbach resonance leads
to a significant change of the breathing-mode frequency,
whereas the quadrupole-mode frequency remains basically
unaffected.

C. Far away from Feshbach resonance

As we have ε0 → 1/H and ε1 → H according to Eq. (19),
the results (52)–(57) represent the 1/H and 1/H2 corrections
for the respective quantities. At first we observe by comparing
Eqs. (52) and (53) that the heuristic approximation of Ref. [38]
reproduces correctly the 1/H correction for the condensate
widths but fails to determine the subsequent 1/H2 correction.
This is not surprising because the heuristic approximation (62)
of Ref. [38] for the integral (13) is only exact up to order
1/H. But we read off from our results in Eq. (57) for the
dipole-mode frequency that the leading-order correction to
the Kohn theorem near Feshbach resonance is in fact of the

order 1/H2. Therefore, the corresponding predication of the
heuristic approximation of Ref. [38] is even incorrect far away
from the Feshbach resonance.

In addition, the similar situation for the breathing and
quadrupole frequencies shows that the leading order of our
results (28), with the abbreviations m1, m2, and m3 from
Eqs. (54)–(56), presented in Fig. 3, is 1/H2 and that the
frequencies depend strongly on the magnetic field B0 and
are divergent on top of the Feshbach resonance, while the
frequencies of the heuristic approximation of Ref. [38] fail to
determine the correct 1/H2 correction and depend only on the
trap anisotropy λ, i.e., they do not depend on the bias magnetic
field B0.

VI. CONCLUSIONS

We have studied in detail how the dipole-mode frequency
and the collective excitation modes of a harmonically trapped
Bose-Einstein condensate plus a bias potential change on the
right-hand side and on top of the Feshbach resonance. To
this end, we have derived equations of motion (16)–(18) for
the variational parameters which describe the radial and axial
condensate widths as well as the center-of-mass position and
have shown how to extract the frequencies of the low-lying
collective modes. At first we analyzed our own treatment which
is based on rewriting the integral in Eq. (20) with the help of
the Schwinger trick [46]. Then we studied the consequences of
this integral representation for the collective-mode frequencies
both on the right-hand side and on top of the Feshbach
resonance.

On the right-hand side of the Feshbach resonance we found
that the system is not stable beyond the critical magnetic
field Bcrit. Furthermore, we have shown how the frequencies
of the collective modes change when one approaches the
Feshbach resonance. As expected initially, the dipole-mode
frequency for the exact result and the TF approximation on
the right-hand side of the Feshbach resonance turn out to be
smaller than the dipole-mode far away from the Feshbach
resonance. Furthermore, we discussed the TF approximation
for the condensate widths and the frequencies of collective
modes in two limits. At first we considered the limit on
top of the Feshbach resonance, i.e., H → 0 or ε1 → 0 and,
afterwards, we discussed the limit far away from the Feshbach
resonance, i.e., H → ∞ or ε1 → ∞.

Our results and the approximate solution of Ref. [38]
disagree for only about 0.05 G above the Feshbach resonance
for the experimental parameters of Refs. [40,41], but this is
still large enough to be experimentally accessible because
the magnetic field can be tuned up to 1 mG [51]. Thus, the
presented results for the violation of the Kohn theorem could,
in principle, be detected in future experiments.

Furthermore, our improvement of the variational calcula-
tion of Ref. [38] suggests the principle question to which
extent and with which accuracy the Gaussian ansatz (11) is
really valid. To this end it would be necessary to solve the
underlying Gross-Pitaevskii equation numerically with the
same parameters and to compare the results in detail with
the variational calculation. Such an initial comparison has
already been performed in Ref. [38] by following Ref. [53]
(see also Ref. [54]), yielding a preliminary validation of the
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variational approach even in the immediate vicinity of the
Feshbach resonance.

Finally, we remind the reader that the Gross-Pitaevskii
equation is only valid within a mean-field description for a
dilute Bose gas with a weak two-particle interaction. Once
strong interactions occur near a Feshbach resonance, this
mean-field picture breaks down and quantum fluctuations have
to be taken into account. Following Refs. [55,56] this yields
additional terms in the variational equations of motion whose
impact upon the violation of the Kohn theorem would be
interesting to study. For very strong interaction strengths there
are even indications that the condensate wave function follows

from a generalization of the Gross-Pitaevskii equation where
both time and space derivatives turn out to be fractional [57].
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