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Abstract.  We study a three-dimensional Bose–Einstein condensate in an 
isotropic harmonic trapping potential with an additional delta-correlated 
disorder potential and investigate the emergence of a Bose-glass phase for 
increasing disorder strength. At zero temperature a first-order quantum phase 
transition from the superfluid phase to the Bose-glass phase is detected at 
a critical disorder strength, which agrees with the findings in the literature. 
Afterwards, we study the interplay between temperature and disorder 
fluctuations on the respective components of the particle density. In particular, 
we find for smaller disorder strengths that a superfluid region, a Bose-glass 
region, and a thermal region coexist. Furthermore, depending on the respective 
system parameters, three phase transitions are detected, namely, one from 
the superfluid to the Bose-glass phase, another one from the Bose-glass to the 
thermal phase, and finally one from the superfluid to the thermal phase. All 
these results are obtained by extending a quite recent Hartree–Fock mean-field 
theory for the dirty boson problem, which is based on the replica method, from 
the homogeneous case to a harmonic confinement.
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The combined eect of disorder and two-particle interactions in the dirty boson prob-
lem yields a competition between localization and superfluidity [1]. Experimentally, 
the dirty boson problem was first studied with superfluid helium in porous media like 
aerosol glasses (Vycor), where the pores are modeled by statistically distributed local 
scatterers [2–5]. Disorder in Bose gases appears either naturally as, e.g. in magnetic 
wire traps [6–10], where imperfections of the wire itself can induce local disorder, or it 
may be created artificially and controllably as, e.g. by using laser speckle fields [11–15]. 
A set-up more in the spirit of condensed matter physics relies on a Bose gas with impu-
rity atoms of another species trapped in a deep optical lattice, so the latter represent 
randomly distributed scatterers [16, 17]. Furthermore, an incommensurate optical lat-
tice can provide a pseudo-random potential for an ultracold Bose gas [18–20].
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The homogeneous dirty boson model is important as it provides a good description 

at the center of a harmonic trap and, thus, serves as a starting point for treating a har-
monic confinement within the Thomas–Fermi approximation. Furthermore, recently it 
has even become possible to experimentally realize box-like traps [21], which approximate 
the homogeneous case in the thermodynamic limit. The first important theoretical result 
for the homogeneous dirty boson was obtained by Huang and Meng, who found, within 
the Bogoliubov theory [22], that a weak disorder potential with delta correlation leads to 
a depletion of both the condensate and the superfluid density due to the localization of 
bosons in the respective minima of the random potential [23]. Later on their theory was 
extended in dierent research directions. Results for the shift of the velocity of sound as 
well as for its damping due to collisions with the external field are worked out in [24]. 
Furthermore, the delta-correlated random potential was generalized to experimentally 
more realistic disorder correlations with a finite correlation length, e.g. a Gaussian correla-
tion was discussed in [25] and laser speckles are treated at zero [26] and finite temperature 
[27]. Also the disorder-induced shift of the critical temperature was analyzed in [28, 29]. 
Furthermore, it was shown that dirty dipolar Bose gases yield characteristic directional 
dependences for thermodynamic quantities due to the emerging anisotropy of superfluidity 
at zero [31, 32] and finite temperature [33–35]. The location of superfluid, Bose-glass, and 
normal phase in the phase diagram spanned by disorder strength and temperature was 
qualitatively analyzed for the first time in [30] on the basis of a Hartree–Fock mean-field 
theory with the replica method. In addition, increasing the disorder strength at small 
temperatures yields a first-order quantum phase transition from a superfluid to a Bose-
glass phase, where in the latter case all particles reside in the respective minima of the 
random potential. This prediction is achieved at zero temperature by solving the underly-
ing Gross–Pitaevskii equation with a random phase approximation [36], as well as at finite 
temperature by a stochastic self-consistent mean-field approach using two chemical poten-
tials, one for the condensate and one for the excited particles [37]. Numerically, Monte-
Carlo (MC) simulations have been applied to study the homogeneous dirty boson problem. 
For instance, diusion MC in [38] obtained the surprising result that at zero temperature 
a strong enough disorder yields a superfluid density, which is larger than the condensate 
density. Furthermore, worm-algorithm MC was able to determine the dynamic critical 
exponent of the quantum phase transition from the Bose-glass to the superfluid in two 
dimensions at zero [39] and finite temperature [40].

Adding a harmonic trap to the dirty Bose gas problem makes it realistic but more 
complicated to treat than the homogeneous one. Since the collective excitation frequen-
cies of harmonically trapped bosons can be measured very accurately, their change due 
to disorder was investigated in [41] at zero temperature. As the collective excitation 
frequencies turn out to decrease rapidly with the correlation length of disorder, one 
would have to reduce the correlation length of the laser speckles in [12] from 10µm by 
a factor of 10 in order to be able to detect any shift due to the disorder. The expan-
sion of a Bose–Einstein condensate (BEC) at zero temperature in the presence of a 
random potential was studied in [42]. Depending on the strength of disorder and the two-
particle interaction, a crossover from localization to diusion was observed. The shape 
and size of the local minicondensates in the disorder landscape were investigated ener-
getically at zero temperature in [43, 44], where it was deduced that, for decreasing dis
order strength, the Bose-glass phase becomes unstable and goes over into the superfluid.  
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At finite temperature the disorder-induced shift of the critical temperature was ana-
lyzed for a harmonic confinement in [45]. The impact of the random potential upon the 
quantum fluctuations at finite temperature was also studied in [46, 47]. Furthermore, 
based on [30], reference [48] worked out in detail a non-perturbative approach to the dirty 
boson problem, which relies on the Hartree–Fock theory and the Parisi replica method, 
for a weakly interacting Bose-gas within a harmonic confinement and a delta-correlated 
disorder potential at finite temperature. Its application to a quasi one-dimensional BEC 
at zero temperature [49] reveals a redistribution of the minicondensates from the edge 
of the atomic cloud to the trap center for increasing disorder strengths. Despite all these 
many theoretical predictions, so far no experiment has tested them quantitatively.

In the present paper we treat analytically the problem of a three-dimensional trapped 
BEC in a disorder potential on the basis of [48]. To this end, we start by describing the 
underlying dirty boson model and developing a Hartree–Fock mean-field theory in sec-
tion 2. Then we treat, as a first step, the zero-temperature case in section 3, which allows 
us to study the impact of the disorder on the distribution of the condensate density and 
the Bose-glass order parameter, which quantifies the density of the bosons in the local 
minima of the disorder potential. We deal first with the simpler homogeneous case, and 
then we analyze the isotropic harmonically trapped one. Using the corresponding self-
consistency equations obtained via the Hartree–Fock mean-field theory, we investigate 
within the Thomas–Fermi approximation the existence of the Bose-glass phase. We addi-
tionally use a variational ansatz, whose results turn out to coincide qualitatively with the 
ones obtained via the Thomas–Fermi approximation. In section 4 we consider the three-
dimensional dirty BEC system to be at finite temperature. We restrict ourselves first to 
the homogeneous dirty case, after that to the trapped clean case. Afterwards we treat the 
trapped disordered case at finite temperature using the Thomas–Fermi approximation. 
This allows us to study the impact of both temperature and disorder fluctuations on the 
respective components of the density as well as their Thomas–Fermi radii. In particular, 
we find that generically three regions coexist in form of concentric shells, namely, a 
superfluid region, a Bose-glass region, and a thermal region. But note in this context that 
all these regions are finite, so none of them represents a true thermodynamic phase. Thus, 
they should be called more precisely quasi-superfluid, quasi-Bose-glass, and quasi-thermal 
regions, but for brevity reasons we refrain from using the prefix ‘quasi-’ in the following. 
Furthermore, we observe that one of these regions can get lost at a critical value of a 
control parameter as, for instance, the temperature or the disorder, which we consider to 
be phase transition. Depending on the respective system parameters, in total three phase 
transitions are detected, one from the superfluid to the Bose-glass phase, another one 
from the Bose-glass to the thermal phase, where all bosons are in the excited states, and 
a third one from the superfluid to the thermal phase.

2. Hartree–Fock mean-field theory in 3D

The model of a three-dimensional weakly interacting homogeneous Bose gas in a delta-
correlated disorder potential was studied within the Hartree–Fock mean-field theory 
in [30] by applying the Parisi replica method [50–52]. This Hartree–Fock theory is 
extended in [48] to a harmonic confinement. Let us briefly summarize the main result 
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of [48], which relies on deriving a semiclassical approximation for the underlying free 
energy.

We consider a three-dimensional Bose gas, which is described by the following 
Hamiltonian

Ĥ =

∫
d3r

{
ψ̂†(r)

[
− �2

2M
∆+ V (r) + U(r)

]
ψ̂(r) +

g

2
ψ̂†2(r)ψ̂2(r)

}� (1)

with the field operators ψ̂(r), ψ̂†(r) obeying standard bosonic commutator relations. Here 
V (r) = MΩ2r2/2 denotes an isotropic harmonic potential with the trap frequency Ω and 
the particle mass M, whereas the interaction coupling strength g = 4π�2a/M depends on 
the s-wave scattering length a, which has to be positive in order to obtain a stable BEC. 
We assume for the disorder potential U(r) that it is homogeneous after performing the 
disorder ensemble average, denoted by •, over all possible realizations. Thus, the expec-
tation value of the disorder potential can be set to vanish without loss of generality,

U(r) = 0,� (2)
and its correlation function is assumed to be proportional to a delta-function,

U(r1)U(r2) = D δ(r1 − r2),� (3)
where D denotes the disorder strength.

By working out the Hartree–Fock mean-field theory within the replica method, [48] 
obtains self-consistency equations, which determine the particle density n(r) as well as 
the order parameter of the superfluid n0(r), representing the condensate density, the 
order parameter of the Bose-glass phase q(r) defined in [30], that stands for the density 
of the particles being condensed in the respective minima of the disorder potential, 
and nth (r), which represents the density of the particles in the excited states. The 
Hartree–Fock mean-field theory with the help of the replica method and a semiclassical 
approximation leads to the free energy [48]:

F = 4π

∫ ∞

0

drr2

{
−g [q(r) + n0(r) + nth(r)]

2 − g

2
n2
0(r)

+
D

�
Q0(r) [q(r) + n0(r) + nth(r)]−

√
n0(r)

×
{
µ+

�2

2M

1

r2
∂

∂r

(
r2

∂

∂r

)
− 2g [q(r) + n0(r) + nth(r)]

− V (r) +
D

�
Q0(r)

}
√
n0(r)− 2D

√
π

(
M

2π�2

)3/2

× [q(r) + n0(r) + nth(r)]−
1

β

(
M

2π�2β

)3/2

ζ5/2
(
eβµr(r)

)

×
√
−µ+ 2g [q(r) + n0(r) + nth(r)] + V (r)− D

�
Q0(r)

}
.

�

(4)
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Here all functions only depend on the radial coordinate r = |r| due to the 
assumed spatial isotropy. Furthermore, μ denotes the chemical potential, 

µr(r) = µ− V (r)− 2g [q(r) + n0(r) + nth(r)]− πD2
(

M
2π�2

)
3 represents the renormalized 

chemical potential, and Q0(r) stands for an auxiliary function, which appears within 
the Hartree–Fock theory:

Q0(r) = −2
√
π�

(
M

2π�2

)3/2
[
√
πD

(
M

2π�2

)3/2

+
√

−µr(r)

]
.

�
(5)

From the thermodynamic relation N = −∂F
∂µ  we obtain

N = 4π

∫ ∞

0

r2n(r)dr,� (6)
which defines the particle density n(r).

Extremising the free energy (4) with respect to the functions n0(r), q(r), nth(r), 

and Q0(r), i.e. 
δF

δn0(r′)
= 0, δF

δq(r′) = 0, δF
δnth(r′)

= 0, and δF
δQ0(r′)

= 0, respectively, yields, 

together with equation  (6), four coupled self-consistency equations  between the 

respective density contributions: a nonlinear dierential equation for the condensate 
density n0(r),
{
−gn0(r) +

[√
−µ+ d2 + 2gn(r) + V (r) + d

]2
− �2

2M

1

r2
∂

∂r

(
r2

∂

∂r

)}√
n0(r) = 0,

�

(7)

an algebraic equation for the Bose-glass order parameter q(r),

q(r) =
dn0(r)√

−µ+ d2 + 2gn(r) + V (r)
,� (8)

the thermal density nth(r),

nth(r) =

(
M

2πβ�2

)3/2

ς 3/2

(
eβ [µ−d2−2gn(r)−V (r)]

)
,� (9)

with the polylogarithmic function ζν(z) =
∑∞

n=1
zn

nν
, and the sum of the above three 

densities, which turns out to be the total density n(r),

n(r) = n0(r) + q(r) + nth(r),� (10)
where d =

√
πD (M/2π�2) 3/2 characterizes the disorder strength.

In the following we deal first with the zero-temperature Bose gas, then we treat the 
finite-temperature case via the Thomas–Fermi approximation.

3. 3D dirty bosons at zero temperature

In this section we consider the three-dimensional dirty BEC system at zero temperature, 
where the thermal density vanishes, i.e. nth(r) = 0. At first we start with reviewing 
the homogeneous case in section 3.1. Then we deal with the trapped case by invoking 
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the Thomas–Fermi approximation in section 3.2 and by outlining the corresponding 
results in section 3.3. Afterwards, we introduce a complementary variational method in 
section 3.4, whereas section 3.5 is devoted to compare its results with the ones of the 
Thonmas-Fermi approximation.

3.1. Homogeneous case

We start with the homogeneous case since it is the simplest one, where in the absence 
of the trap we have V (r) = 0. At zero temperature we only need equations (7), (8), and 
(10), which reduce in the superfluid phase to:

gn0 =
(√

−µ+ d2 + 2gn+ d
)2

,� (11)

q =
dn0√

−µ+ d2 + 2gn
,� (12)

n = n0 + q.� (13)
Note that we dropped here the spatial dependency of all densities due to the homoge-
neity. From equations (11)–(13) we get the following algebraic third-order equation for 
determining the condensate fraction n0/n:

(n0

n

)3/2

−
√

n0

n
+ d = 0.� (14)

Here d = ξ
L denotes the dimensionless disorder strength, where ξ = �√

2Mgn
 stands for 

the coherence length, and L = 2π�4
M2D

 represents the Larkin length, which characterizes 

the strength of disorder [43, 53]. Figure 1 predicts that the equation for condensate 

density does not have a solution after the critical value dc =
√

1
3
−
(
1
3

)
3/2 � 0.384. We 

interpret this as a sign that a first-order quantum phase transition occurs in the homo-
geneous case from the superfluid phase, where the particles are either condensed or in 
the local minima of the disorder, to the Bose-glass phase, where there is no condensate 
at all and all bosons are localized in the minima of the disorder potential. This suggests 
that a quantum phase transition will also appear in the trapped case, which is studied 
later on in section 3.3.

Now we check whether our results are compatible with the Huang-Meng theory 
[23–25, 28, 29], where the Bose-glass order parameter of a homogeneous dilute Bose 
gas at zero temperature in case of weak disorder regime is deduced within the semi-
nal Bogoliubov theory. The Bose-glass order parameter in three dimensions via the 
Huang-Meng theory is proportional to the disorder strength and yields in dimension-
less form:

qHM√
n/g

=
d√
2
.� (15)

In our Hartree–Fock mean-field theory the Bose-glass order parameter in case of 
weak disorder strength turns out to be
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qw√
n/g

= d.� (16)
Thus, our theory agrees with the Huang-Meng theory at least qualitatively. But 

quantitatively the comparison of equations (15) and (16) reveals that a factor of 
√
2 is 

missing in our result (16). This is due to the fact that the Hartree–Fock theory does not 
contain the Bogoliubov channel, which is included in the Huang-Meng theory.

According to [36], the disorder strength value corresponding to the quantum phase 
transition is dc = 0.53. Thus, our quantum phase transition disorder value dc = 0.384 
is of the same order as the one in [36], but again we miss a factor of 

√
2 in our result. 

In the one-dimensional case, as discussed in [49], a factor 23/2 is missing, while in the 
three-dimensional case the discrepancy only amounts to a factor of 

√
2, so we conclude 

that our Hartree–Fock theory is more compatible with the literature in higher dimen-
sions than in lower ones.

Furthermore, we compare the critical value of the disorder strength dc with the 
non-perturbative approach of [43, 44], which starts from the Bose-glass phase and 
goes towards the superfluid phase for decreasing disorder strength. By investigating 
energetically shape and size of the local minicondensates in the disorder landscape, 
the quantum phase transition is predicted to occur at the disorder strength value 

d̃ =
√

3
8π

� 0.345, which is again of the same order as our d̃c.

Note that our findings within the Hartree–Fock mean-field theory for homogeneous 
dirty bosons partially dier from quantum Monte-Carlo results for the corresponding 
homogeneous lattice problems. The complete phase diagram of the disordered three-
dimensional Bose-Hubbard model at unity filling was mapped out in [54]. It agrees 
qualitatively with early mean-field predictions [1] and with the theorem of inclusions 
that the Bose-glass phase always intervenes between the Mott insulating and superfluid 
phases [55]. However, whereas we get a first-order superfluid to Bose-glass transition 
for a critical disorder strength, in the 3D lattice it was shown numerically that this 
transition is continuous [56]. Concerning 2D lattice models, numerical studies showed 

Figure 1. Condensate fraction n0/n as function of dimensionless disorder strength d.
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that the Bose-glass phase is dominated by islands of superfluid clusters [57], which cor-
respond to the minicondensates discussed in our context, but a percolation picture for 
the superfluid to Bose-glass transition seems to be ruled out [58]. Furthermore, we do 
not find anomalous glass phases, for which numerical evidence was found in 2D lattices 
[59].

3.2. Thomas–Fermi approximation

We deal now with the trapped case. The exact analytical solution of the dierential 
equation  (7) is impossible to obtain even in the absence of disorder. Therefore, we 
approximate its solution via the Thomas–Fermi (TF) approximation, which is based on 
neglecting the kinetic energy.

It turns out that we have to distinguish between two dierent spatial regions: the 
superfluid region, where the bosons are distributed in the condensate as well as in the 
minima of the disorder potential, and the Bose-glass region, where there are no bosons 
in the global condensate and all bosons contribute only to the local Bose–Einstein con-
densates. In the following the radius of the superfluid region, i.e. the condensate radius, 
is denoted by RTF1, while the radius of the whole bosonic cloud RTF2 is called the cloud 
radius.

Within the TF approximation the algebraic equations (8) and (10) remain the same, 
but the dierential equation (7) reduces to an algebraic relation in the superfluid region:

gn0(r) =
[√

−µ+ d2 + 2gn(r) + V (r) + d
]2

.� (17)
Outside the superfluid region, i.e. in the Bose-glass region, equation (7) reduces simply 
to n0(r) = 0. The advantage of the TF approximation is that now we have only three 
coupled algebraic equations.

At first we consider the superfluid region. Equations (8), (10), and (17) reduce in the 
superfluid region to:

ñ0 (r̃) =
[√

−µ̃+ 2ñ(r̃) + r̃2 + d̃
]2

,� (18)

q̃ (r̃) =
d̃
[√

−µ̃+ 2ñ(r̃) + r̃2 + d̃
]2

√
−µ̃+ 2ñ(r̃) + r̃2

,� (19)

ñ (r̃) =

[√
−µ̃+ 2ñ(r̃) + r̃2 + d̃

]3
√
−µ̃+ 2ñ(r̃) + r̃2

,� (20)

where ñ0(r̃) = n0(r)/n, q̃(r̃) = q(r)/n, and ñ(r̃) = n(r)/n denote the dimension-
less condensate density, Bose-glass order parameter, and total density, respectively. 
Furthermore, we have introduced the dimensionless radial coordinate r̃ = r/RTF, the 

dimensionless chemical potential µ̃ = (µ− d2)/µ̄, the dimensionless disorder strength 
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d̃ = ξ
L, the coherence length in the center of the trap ξ = l2

RTF
, the oscillator length 

l =
√

�
MΩ

, the maximal total density in the clean case n = µ̄/g, and the TF cloud 

radius RTF = l
√
2µ̄/�Ω. The chemical potential in the absence of the disorder 

µ̄ = 152/5

2

(
aN
l

)
2/5�Ω serves here as the underlying energy scale and is deduced from the 

normalization condition (6) in the clean case, i.e. for d = 0.

Equation (20) is of the third order with respect to the expression √
−µ̃+ 2ñ(r̃) + r̃2 , therefore, we use the Cardan method to solve it analytically [60]. 

We determine the condensate radius R̃TF1 at the coordinate where the solution of (20) 
for the total density stops to exist, then select the smallest solution, which corresponds 

to R̃TF1 =
√
µ̃− 3d̃2 − 6

√
3d̃2 cos

(
π
18

)
. Now we have just to insert the obtained particle 

density ñ(r̃) into the two other equations (18) and (19) in order to get both the conden-
sate density ñ0(r̃) and the Bose-glass order parameter q̃(r̃), respectively.

In the Bose-glass region the condensate vanishes, i.e. ñ0(r̃) = 0 and ñ(r̃) = q̃(r̃), and 
the self-consistency equation (8) reduces to:

q̃(r̃) =
µ̃− r̃2

2
.� (21)

This Bose-glass region ends at the cloud radius R̃TF2 =
√
µ̃. We also need to write 

down the dimensionless equivalent of the normalization condition (6), which reads:
∫ R̃TF2

0

ñ(r̃)r̃2dr̃ =
2

15
,� (22)

where the total density ñ(r̃) in equation (22) is the combination of the total densities 
from both the superfluid region and the Bose-glass region. The purpose of equation (22) 
is to determine the dimensionless chemical potential µ̃ from the respective system 
parameters.

3.3. Thomas–Fermi results

Before choosing any parameters for the BEC system, we have to justify using the TF 
approximation and determine its range of validity. To this end we rewrite equation (7) 
in the clean case, where the total density coincides with the condensate one:

[
−1 + ñ(r̃) + r̃2 −

(
ξ

RTF

)2
1

r̃2
∂

∂r̃

(
r̃2

∂

∂r̃

)] √
ñ (r̃) = 0.

� (23)

We read o from equation  (23) that the TF approximation is only justified when 
ξ � RTF.

In this section we perform our study for 87Rb atoms and for the following exper
imentally realistic parameters: N = 106, Ω = 2π × 100Hz, and a = 5.29 nm. For those 
parameters the oscillator length reads l = 1.08µm, the coherence length turns out to 
be ξ = 115 nm, and the Thomas–Fermi radius is given by RTF = 10.21µm. Thus the 
assumption ξ � RTF for the TF approximation is, indeed, fulfilled.
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Using those parameter values we solve in the superfluid region equation (20) for the 

total density and insert the result into equations (18) and (19) to get the condensate 
density and the Bose-glass order parameter, respectively. This has to be combined with 
equation (21) for the Bose-glass region. After that we fix the chemical potential µ̃ using 
the normalization condition (22). The resulting densities are combined and plotted in 
figure 2(a) for the disorder strength d̃ = 0.175.

Figure 2(a) reveals that, at the condensate radius R̃TF1, a downward jump of the 
condensate density ñ0(r̃), and an upward jump of the Bose-glass order parameter q̃(r̃) 
occur in such a way that the total density ñ(r̃) remains continuous but reveals a dis-
continuity of the first derivative. In the Bose-glass region both the total density and the 
Bose-glass parameter coincide and decrease until vanishing at the cloud radius R̃TF2. 
The TF approximation captures the properties of the system in both the superfluid and 
the Bose-glass region but not in the transition region. This is an artifact of the applied 
TF approximation.

The ratio of the condensate density at the condensate radius ñ0(R̃TF1) with respect 
to the condensate density at the center of the BEC ñ0(0) in figure 2(b) reveals for which 
range of the disorder strength the TF approximation is valid. As only a moderate den-
sity jump of about 50% should be reasonable, our approach is restricted to a disorder 
strength of about d̃ � 0.3. For a larger disorder strength d̃  one would have to go beyond 
the TF approximation and take the influence of the kinetic energy in equation (7) into 
account.

The resulting Thomas–Fermi radii are plotted in figure 3(a). When the disorder 
strength increases, the condensate radius at first increases slightly, then decreases until it 

vanishes, which corresponds to a quantum phase transition at d̃c =
21/5√

3+6
√
3 cos π

18

� 0.315. 

This critical value of the disorder strength is obtained by setting the cloud radius R̃TF1 
to zero. Thus, superfluidity is destroyed in our model at a critical disorder strength 
d̃c, where approximately our TF approximation breaks down. Now we compare this 
critical value of the disorder strength with the one obtained in [43, 44], where a non-
perturbative approach is used, which investigates energetically shape and size of the 
local minicondensates in the disorder landscape. Thus, it is determined for a decreas-
ing disorder strength once the Bose-glass phase becomes unstable and goes over in 
the superfluid phase. In those references the quantum phase transition for our system 
parameters is predicted to occur at the disorder strength value d̃ = 0.115, which is of 
the same order as our d̃c.

Contrary to the condensate radius, the cloud radius increases monotonously with 
the disorder strength and eventually saturates, so that in the strong disorder regime 

the bosonic cloud reaches its maximal radius of limd̃→∞ R̃TF2 = 21/5 � 1.148, which is 

obtained by inserting the Bose-glass region density (21) into the normalization condi-

tion (22).
The same conclusion can be read o from figure 3(b), where the fractional number of 

the condensate defined via N0/N = 15
2

∫ R̃TF1

0
r̃2ñ0 (r̃) dr̃ is plotted. We note that N0/N 

is equal to one in the clean case, i.e. all particles are in the condensate, then it decreases 
with the disorder strength until it vanishes at d̃c, marking the end of the superfluid 
phase and the beginning of the Bose-glass phase. Conversely, the fraction of atoms in 

the disconnected minicondensates Q/N = 15
2

∫ RTF2

0
r̃2q̃ (r̃) dr̃ increases with the disorder 
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strength until it reaches its maximum at d̃c. Then it remains constant and equals to 
one in the Bose-glass phase, since all particles are localized in the respective minima of 
the disorder potential.

From figure 2(b) we conclude that the TF approximation is valid only in the weak 
disorder regime, but it is not a good approximation for intermediate or strong dis
order. The TF approximation has a larger range of validity with respect to the disorder 
strength in three dimensions than in one dimension treated in [49] due to the fact that 
the fluctuations are more violent in lower dimensions. In order to have a global picture, 
not only in the presence of weak disorder but also in the presence of intermediate and 
strong one, we use in the following section another approximation method to treat the 
dirty boson problem: the variational approach.

3.4. Variational method

Since the three self-consistency equations (7), (8), and (10), as well as equation (5) are 
obtained by extremising the free energy (4), we can apply the variational method in 

Figure 2.  (a) Total density ñ(r̃) (solid, black), condensate density ñ0(r̃) (dotted, 
blue), Bose-glass order parameter q̃(r̃) (dotted-dashed, red) as a function of 
radial coordinate r̃ for the disorder strength d̃ = 0.175 both for superfluid region  

and Bose-glass region. (b) Ratio of ñ0(R̃TF1) and ñ0(0) as a function of disorder 

strength d̃ .

Figure 3.  (a) Condensate radius (dashed, blue) and cloud radius (solid, red) and 
(b) fractional number of condensed particles N0/N (dashed, blue) and in the 
disconnected local minicondensates Q/N  (solid, red), as a function of disorder 
strength d̃ .
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the spirit of [61–64] to obtain approximate results. In order to be able to compare the 
variational results with the analytical ones obtained in the previous section, we use the 
same rescaling parameters already introduced below equation (20) for all functions and 
parameters. To this end, we have to multiply equation (4) with the factor 1/ (µ̄nR3

TF) 
to obtain:

F̃ = 4π

∫ ∞

0

dr̃r̃2
{
− [q̃ (r̃) + ñ0 (r̃)]

2 − 1

2
ñ2
0 (r̃) + d̃Q̃0(r̃) [q̃ (r̃) + ñ0 (r̃)]

−
√

ñ0 (r̃)

{
˜̃µ+ d̃Q̃0(r̃)− 2 [q̃ (r̃) + ñ0 (r̃)]− r̃2 +

(
ξ

RTF

)2
1

r̃2
∂

∂r̃

(
r̃2

∂

∂r̃

)}

×
√

ñ0 (r̃)− 2d̃ [q̃ (r̃) + ñ0 (r̃)]

√
−µ̃′ + 2 [q̃ (r̃) + ñ0 (r̃)] + r̃2 − 2d̃Q̃0(r̃)

}
,

�

(24)
where we have introduced the dimensionless free energy F̃ = F/ (µ̄nR3

TF), the 
dimensionless chemical potential µ̃′ = µ/µ̄, and the dimensionless auxiliary function 

Q̃0(r̃) =
1

�
√
πµ̄

(
2π�2
M

)
3/2Q0(r).

Motivated by the analytical results presented in figure 2(a), we use the following 
three ansatz expressions for the condensate density ñ0 (r̃), the Bose-glass order param

eter q̃ (r̃), and the auxiliary function Q̃0(r̃):

ñ0 (r̃) = αe−σr̃2 ,� (25)
q̃ (r̃) + ñ0 (r̃) = γe−θr̃2 ,� (26)

Q̃0(r̃) = 2
q̃ (r̃) + ñ0 (r̃)

d̃
−
(
ζ + ηr̃2

)
,� (27)

where α, σ, γ, θ, ζ, and η denote the respective variational parameters. The parameters 
α and γ are proportional to the number of particles in the condensate and the total 
number of particles, while the parameters σ and θ represent the width of the conden-
sate density and the total density, respectively. Inserting the ansatz (25)–(27) into the 
free energy (24) and performing the integral yields:

F̃ = π3/2

{√
2γ2

4θ3/2
+ 3

α

2σ5/2
− α

8σ3/2

(
8µ̃′ +

√
2α

)
+

(
ξ

RTF

)2
3α

2
√
σ
+d̃

(
αζ

σ3/2
+

3αη

2σ5/2
− γ (3η + 2ζθ)

2θ5/2

)}

+
2πd̃γ

(
d̃ζ − µ̃′

)

θ

√
1 + d̃η

e
d̃ζ−µ̃′
2+2d̃η

θ
K1

(
d̃ζ − µ̃′

2 + 2d̃η
θ

)
,

�

(28)

where K1(s) represents the modified Bessel function of second kind.
The free energy (28) has now to be extremised with respect to the variational 

parameters α, σ, γ, θ, ζ, and η. Together with the thermodynamic condition − ∂F̃
∂µ̃′ =

4
3, 

we have seven coupled algebraic equations for seven variables α, σ, γ, θ, ζ, η, and µ̃′ 

that we solve numerically.
From all possible solutions we select the physical one with the smallest free energy, 

then we insert the resulting variational parameters α, σ, γ, and θ into the variational 
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ansatz (25) and (26) in order to get the variational total density ñ(r̃), the variational 
condensate density ñ0(r̃), and the variational Bose-glass order parameter q̃(r̃).

In figure  4(a) the total density ñ(r̃) has a Gaussian shape and vanishes at the 
cloud radius R̃TF2. The maximal value of the total density decreases with the disorder 
strength. The condensate density ñ0(r̃) in figure 4(b) has a similar qualitative behavior 
as the total density and vanishes at the condensate radius R̃TF1. The maximal value of 
the condensate density decreases also with the disorder strength. The response of the 
condensate density to disorder can be clearly seen in figure 5(b), where the fractional 
number of condensed particles N0/N is plotted as a function of the disorder strength. 
In the clean case all particles are in the condensate, but, when we increase the disorder 
strength, more and more particles leave the condensate until the condensate vanishes 
at the critical disorder strength d̃c = 0.5183.

The Bose-glass order parameter q̃(r̃) in figure 4(c) has a similar shape as the two 
previous densities ñ(r̃) and ñ0(r̃). However, when we increase the disorder strength, 
the maximal value of the Bose-glass order parameter also increases. A better under-
standing of the eect of the disorder on the local minicondensates can be deduced from 
figure 5(b), where the fractional number of particles Q/N  in the disconnected local 
minicondensates is zero in the clean case and then increases with the disorder strength 
until reaching the maximal value of one. This means that more and more bosons go 
into the local minima of the disorder potential when we increase the disorder strength. 
At the critical disorder strength d̃c = 0.518 all particles are in the minicondensates.

In order to know whether the bosonic cloud contains beside the superfluid region 
also a Bose-glass region, we plot the total density ñ(r̃), the condensate density ñ0(r̃), 
and the Bose-glass order parameter q̃(r̃) together in figure 6(a) for the disorder strength 
value d̃ = 0.35. The blow-up of the border region in figure 6(b) shows clearly that the 
condensate density vanishes, while the Bose-glass order parameter still persists, which 
is the definition of the Bose-glass region. The cloud radius R̃TF2 and the condensate 
radius R̃TF1 are conveniently defined by the length, where the total density and the 
condensate density are equal to 10−4, respectively. Both radii are increasing with 
the disorder strength in the weak disorder regime in figure 5(a). In the intermediate 
disorder regime, the cloud radius keeps increasing monotonously with the disorder 
strength, while the condensate radius vanishes at the critical disorder value d̃c = 0.518, 
which marks the location of a quantum phase transition. For higher disorder strengths 
d̃ > d̃c the variational treatment breaks down as it turns out to have negative solutions 
for the condensate density. So with this method it is not possible to determine if, for 
stronger disorder, the cloud radius keeps increasing or remains constant.

3.5. Comparison between TF approximation and variational results

Now we compare the physical quantities obtained via the two dierent methods, the 
TF approximation and the variational approach. We start with the densities: the total 
density ñ(r̃), the condensate density ñ0(r̃), and the Bose-glass order parameter q̃(r̃) are 
plotted for the disorder strength value d̃ = 0.2 in figure 7. We know already from treat-
ing the one-dimensional dirty boson problem in [49], where we also performed extensive 
numerical simulations, that the TF approximation describes well the weak disorder 
regime, while the variational method is more accurate to describe the intermediate 
disorder regime. Based on this conclusion our comparison is here more a qualitative 
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than a quantitative one. The total densities ñ(r̃) in figure 7(a) agree qualitatively well. 
The same can be said for the condensate density ñ0(r̃) in figure 7(b), except from the 
jump in the TF-approximated condensate density. For the Bose-glass order parameter 
q̃(r̃) in figure 7(c) we read o that the TF approximation for the density of the bosons 
in the local minima of the disorder potential is maximal at the border of the trap, but 
according to the variational result this density is maximal in the center of the trap.

The TF-approximated and the variational Thomas–Fermi radii are compared in 
figure  8. In figure  8(a) the variational and the TF-approximated condensate radius 
R̃TF1 have the same qualitative behavior, both increase first barely with the disorder 
strength d̃  in the weak disorder regime, then decrease with it in the intermediate dis
order regime until they vanish at the quantum phase transition. Thus, both analytically 
and variationaly obtained condensate radii R̃TF1 indicate the existence of a quantum 
phase transition, but at two dierent values of the disorder strength, namely d̃c = 0.315 
and d̃c = 0.5183, respectively. The variational quantum phase transition happens at a 
larger disorder strength than the TF-approximated one. Figure 8(b) shows that in the 
weak disorder regime, both the variational and the analytical cloud radii R̃TF2 increase 
with the disorder strength. In the intermediate disorder regime the analytical cloud 
radius remains constant, while the variational one keeps increasing with the disorder 
strength. Due to the lack of information about determine higher disorder strengths 
d̃ , we can not know if the variational cloud radius keeps increasing even further or 
remains constant.

Figure 4.  Spatial distribution of: (a) particle density ñ(r̃), (b) condensate density 
ñ0(r̃), and (c) Bose-glass order parameter q̃(r̃) for increasing disorder strength d̃ , 
from the top to the bottom in the center in (a) and (b), and from the bottom to 
the top in (c).

Figure 5.  (a) Cloud radius R̃TF2 (triangle, blue) and condensate radius R̃TF1 
(square, red) and (b) fractional number of condensed particles N0/N (square, red) 
and fractional number of particles Q/N  in the disconnected local mini-condensates 
(triangle, blue) as function of disorder strength d̃ .
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From the discussion above we conclude that the TF approximation and the varia-
tional method are producing similar qualitative results, contrarily to the one-dimen-
sional case in [49], where the TF-approximated and the variational results disagree 
completely. From studying the one-dimensional dirty boson problem in [49], we can 
say that the TF approximation produces satisfying results in the weak disorder regime, 
while the variational method within the ansatz (25)–(27) is a good approximation to 
describe the BEC system in the intermediate disorder regime and has the advantage 
of being able to describe the border of the cloud, where the Bose-glass region is situ-
ated and where the TF approximation fails. Although the variational method does not 
provide physical results for larger disorder strengths, its combination together with the 
TF approximation for the weak disorder regime covers a significant range of disorder 
strengths.

Note that quantum Monte-Carlo results for dirty bosons in harmonically trapped 
optical lattices are essentially dominated by Mott physics. For instance, large-scale 
simulations for the momentum distributions in 1D, 2D, and 3D analyzed the validity 
of the local density approximation and found an excellent data collapse of local quanti-
ties on single curves which, however, dier from the homogeneous bulk system in the 
interesting transition layer between the Mott insulators and superfluids [65]. Here it 
was also found that a flat confinement allows quantum critical behaviour, which should 
be observable already for moderately sized optical lattices. Furthermore, in 1D it was 
found for a Mott plateau at the trap center in the clean limit that phase coherence 
increases with the disorder strength [66].

4. 3D dirty bosons at finite temperature

In this section we consider the three-dimensional dirty BEC system to be at finite 
temperature, so that also the thermal density nth(r) has to be taken into account. 
After starting with a discussion of the homogeneous dirty boson problem in section 4.1, 
we outline the Thomas–Fermi approximation for dealing with a harmonic trap in sec-
tion 4.2. Whereas section 4.3 is then restricted to the trapped clean case, we treat the 
trapped disordered one in section 4.4. Afterwards, we determine the dierent densities 

Figure 6.  Spatial distribution of: (a) particle density ñ(r̃) (dotted-dashed, black), 
condensate density ñ0(r̃) (dotted, blue), Bose-glass order parameter q̃(r̃) (solid, red) 
and (b) blow-up of border region for d̃ = 0.35.
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as well as their Thomas–Fermi radii in section 4.5. Finally, we study in more detail 
how they are aected by temperature in section 4.6 and by disorder in section 4.7, 
respectively.

4.1. Homogeneous case

We start with revisiting the homogeneous case, which was already studied in [30], 
since it is the simplest one. Here we have V (r) = 0 and equations (7)–(10) reduce in the 
superfluid phase to:

gn0 =
[√

−µ+ d2 + 2gn+ d
]2

,� (29)

q =
dn0√

−µ+ d2 + 2gn
,� (30)

nth =

(
M

2πβ�2

)3/2

ς 3/2

(
eβ (µ−d2−2gn)

)
,� (31)

n = n0 + q + nth.� (32)
Note that we drop in this section again the spatial dependence of all densities due to 

the homogeneity. From equations (29)–(32) we get the following algebraic equation for 
the condensate fraction n0/n:

Figure 7.  Spatial distribution of (a) total particle density ñ(r̃), (b) condensate 
density ñ0(r̃), and (c) Bose-glass order parameter q̃(r̃): variational (solid, red), and 
analytical (dotted, blue) for d̃ = 0.2.

Figure 8.  Analytical (solid, blue) and variational (dotted, red) results for  
(a) condensate radius R̃TF1 and (b) cloud radius R̃TF2, as functions of disorder 
strength d̃ .
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√
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(
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(
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)2/3
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)3/2 (√
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)
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(
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−2
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[√
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n
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]2)
= 0.

� (33)

Here d = ξ
L denotes the dimensionless disorder strength, γ = na3 the gas parameter, 

and T 0
c = 2π�2

MkB

(
n

ς( 3
2)

)
2/3 the critical temperature of the ideal Bose gas, where again 

ξ = �√
2Mgn

 stands for the coherence length and L = 2π�4
M2D

 represents the Larkin length 

[43, 53]. Note that at zero temperature equation (33) reduces to equation (14). Figure 9 
shows that the condensate fraction generically decreases with increasing disorder 
strength d. Furthermore, our Hartree–Fock mean-field theory predicts that the conden-
sate density stops to exist at a critical value dc. We interpret this as a sign that a phase 
transition occurs in the homogeneous BEC from the superfluid to the Bose-glass phase. 
If we compare in figure 9 the dotted blue line, which corresponds to a finite temperature, 
with the solid red line, which corresponds to the zero-temperature case of section 3.1, 
we observe that dc1 � 0.30 < dc3 � 0.384 and conclude that the critical disorder strength 
dc decreases with increasing temperature T. Comparing at fixed temperature the dot-
ted blue line for a weakly interacting 87Rb gas, which corresponds to the gas parameter 
of about γ = 0.0007 according to [67], with the dotted-dashed green line for a strongly 
interacting 4He, which corresponds to the gas parameter of about γ = 0.2366 according 
to [68], yields that dc1 � 0.30 < dc2 � 0.331. But in order to draw a conclusion how the 
gas parameter γ aects the critical disorder strength, one has to take into account that 

it is included in the definition of the dimensionless disorder strength d = d√
gn

. With this, 

we conclude dc1 > dc2, i.e. the critical disorder strength dc decreases with increasing the 

gas parameter γ. These findings suggest that a corresponding phase transition will also 
appear in the trapped case, which is studied later on in section 4.7.

To illustrate our results further, we determine where the superfluid, the Bose-glass, 
and the thermal phase exist within the phase diagram, which is spanned by the temper
ature and the disorder strength. Whereas this phase diagram was sketched qualita-
tively in [30], we determine it here quantitatively in figure 10. This phase diagram 
follows from solving equation (33) together with setting its derivative with respect to 
n0/n to zero, i.e.

3

2

√
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2
√
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2
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√
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(34)

The phase diagram in figure 10(a) corresponds to a weakly interacting 87Rb gas, while 
the phase diagram in figure 10(b) corresponds to a strongly interacting 4He gas. The 
critical disorder strength dc decreases with the temperature T. In the clean case d = 0 
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there is a critical temperature Tc at which the superfluid, which is stable for T < Tc, 
goes over into the thermal Bose-gas, which is stable for T > Tc. Note that, due to the 
weak repulsive interaction, this critical temperature Tc turns out to be larger than the 
critical temperature of the ideal Bose gas T 0

c  by about

∆Tc = Tc − T 0
c � 1.3 γ1/3T 0

c .� (35)
Note that the result (35) is non-trivial as it involves a resummation of an infrared 

divergent perturbation series, which has been worked out on the basis of variational 
perturbation theory in [69, 70], and has been confirmed by extensive MC simulations 
[71]. For the weakly interacting Bose gas in figure 10(a) Tc/T

0
c = 1.103, which agrees 

well with the result obtained by using formula (35), where we get Tc/T
0
c � 1.115. The 

same can be remarked for the strongly interacting Bose gas in figure  10(b), where 
Tc/T

0
c = 1.65, which agrees well with the result obtained by using formula (35) 

Tc/T
0
c � 1.796. Furthermore, there is a triple point dT, where the three phases coex-

ist and at which T = T 0
c  and µc = 2gn = 2g

(
MkBT

0
c

2π�2

)
3/2ς

(
3
2

)
. So T 0

c  of the ideal Bose 

gas turns out to be in our context the critical temperature for the appearance of the 
Bose-glass phase. For γ = 0.0007 we have dT = 0.111, while for γ = 0.2366 we obtain 
dT = 0.234. Below the triple-point temperature we have a first-order phase transition 
from the superfluid to the Bose-glass phase, while above the triple point temperature 
we have a first-order phase transition from the superfluid to the thermal phase for 
increasing disorder strength. Below the triple-point disorder we have for increasing 
temperature a first-order phase transition from the superfluid to the thermal phase, 
while above the triple point disorder we have a first-order phase transition from the 
superfluid to the Bose-glass phase, which is followed by a second-order phase transition 

Figure 9.  Condensate fraction n0/n as function of dimensionless disorder strength 
d for γ = 0.0007 and T/T 0

c = 0.6 (dotted, blue), γ = 0.2366 and T/T 0
c = 0.6 (dotted-

dashed, green), and T = 0 (solid, red).
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from the Bose-glass to the thermal phase. At T = 0 we recover the zero-temperature 
case, which was already treated in section 3.1.

4.2. Thomas–Fermi approximation

After treating the homogeneous case we deal now with the trapped one. First we trans-
form equations (7)–(10) into dimensionless ones:
{
−ñ0 (r̃) +

[√
−µ̃+ 2ñ(r̃) + r̃2 + d̃

]2
−
(

ξ

RTF

)2
1

r̃2
∂

∂r̃

(
r̃2

∂

∂r̃

)}√
ñ0 (r̃) = 0,

�

(36)

q̃ (r̃) =
d̃ñ0 (r̃)√

−µ̃+ 2ñ(r̃) + r̃2
,

�

(37)

ñth (r̃) =
1

n̄

(
M

2πβ�2

)3/2

ς 3/2

(
eβµ̄ [µ̃−2ñ(r̃)−r̃2]

)
,

�

(38)

ñ (r̃) = ñ0 (r̃) + q̃ (r̃) + ñth (r̃) .
�

(39)
The dimensionless quantities are defined as follows: ñ0(r̃) = n0(r)/n̄ denotes the 

condensate density, q̃(r̃) = q(r)/n̄ the Bose-glass order parameter, ñth(r̃) = nth(r)/n̄ 
the thermal density, ñ(r̃) = n(r)/n̄ the total density, r̃ = r/RTF the radial coordinate, 

µ̃ = (µ− d2)/µ̄ the chemical potential, d̃ = ξ
L the disorder strength, while l =

√
�

MΩ
 is 

the oscillator length, RTF =
√
2µ̄/MΩ2 the TF cloud radius at zero temperature, and 

ξ = l2

RTF
 the coherence length in the center of the trap at zero temperature. The chemi-

cal potential in the absence of the disorder at zero temperature µ̄ = 152/5

2

(
aN
l

)
2/5�Ω is 

deduced from the normalization condition (6) in the clean case. We also need to write 
down the dimensionless equivalent of the normalization condition (6):

Figure 10.  Phase diagram in the disorder strength-temperature plane for (a) 
weakly interacting 87Rb gas with γ = 0.0007 and (b) strongly interacting 4He gas 
with γ = 0.2366. Thick and thin lines represent first order and continuous phase 
transitions, respectively.
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∫ ∞

0

ñ(r̃)r̃2dr̃ =
2

15
.� (40)

For the total density ñ(r̃), the condensate density ñ0(r̃), the Bose-glass parameter 
q̃(r̃), and the thermal density ñth(r̃) we have three algebraic equations (37)–(39) and 
one nonlinear partial dierential equation  (36), which is impossible to solve analyti-
cally. Thus we use here again the TF approximation, and neglect the kinetic term in 
the self-consistency equation (36), which becomes in the superfluid region:

ñ0 (r̃) =
[√

−µ̃+ 2ñ(r̃) + r̃2 + d̃
]2

,� (41)
where equations (37)–(39) remain the same. Outside the superfluid region equation (36) 
is solved by ñ0 (r̃) = 0.

In the following, we treat first the clean case, where we have no disorder, so as to 
study only the impact of thermal fluctuations on the BEC system, and then we treat 
the general case, where disorder and temperature occur simultaneously.

4.3. Clean case

Even the simpler clean case represents a challenge and has to be treated in the lit-
erature either perturbatively with respect to the interaction [72] or fully numerically 
[73]. In the clean case we have no Bose-glass contribution, as we can deduce q̃ (r̃) = 0 
from equation (37), but only a thermal contribution ñth (r̃) to the total density ñ (r̃). 
Therefore, in this section, two dierent cases have to be distinguished: in the first one 
the bosons can be in the condensate or in the excited states, which corresponds to the 
superfluid region, while in the second one all bosons are in the excited states and there 
is no condensate any more, so this represents the thermal region.

Using the Robinson approximation [64, 74],
ς ν (e

x) = Γ (1− ν) (−x)ν−1 +
∞∑

k=0

xk

k!
ς (ν − k) , x < 0,� (42)

for ν = 3/2 the TF-approximated equations (38), (39), and (41) reduce in the superfluid 
region to:

ñ0 (r̃) ≈ µ̃− r̃2 − 2g

µ̄

(
M

2πβ�2

)3/2
[
Γ

(
−1

2

)√
βµ̄ ñ0 (r̃) + ς

(
3

2

)
− βµ̄ ñ0 (r̃) ς

(
1

2

)]
,

�

(43)
ñth (r̃) =

µ̃− ñ0 (r̃)− r̃2

2
,� (44)

ñ(r̃) = ñ0 (r̃) + ñth (r̃) .� (45)
Equation (43) represents a quadratic equation with respect to 

√
ñ0 (r̃) and has, thus, 

two solutions:
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ñ0 (r̃) =

[
−1 + 2gβ

(
M

2πβ�2

)3/2

ς

(
1

2

)]−2 {
−2g

µ̄

(
M

2πβ�2

)3/2 √
πβµ̄ ±

{
4πβg2

µ̄

(
M

2πβ�2

)3

− 4

[
−µ̃+ r̃2

2
+

g

µ̄

(
M

2πβ�2

)3/2

ς

(
3

2

)] [
1

2
− βg

(
M

2πβ�2

)3/2

ς

(
1

2

)]} 1
2





2

.

�

(46)
We choose the one with the positive sign, which corresponds to the numerical solution 
without Robinson approximation. We insert this solution for the condensate density 
ñ0 (r̃) into equation (44) in order to get the thermal density ñth (r̃), and the sum of them 
then represents the particle density ñ(r̃) according to equation (45). The condensate 
radius R̃TF1, which separates the superfluid from the thermal region, is obtained by set-

ting the derivative of equation (43) with respect to ñ0 (r̃) to zero, i.e. ∂r̃
∂ñ0(r̃)

∣∣∣∣∣
r̃=R̃TF1

= 0. 

The resulting condensate density ñ0

(
R̃TF1

)
 is inserted again into equation (43) in order 

to get the following analytical expression for the condensate radius:

R̃TF1 =

[
µ̃− 2g

µ̄

(
M

2πβ�2

)3/2

ς

(
3

2

)
+

1

µ̄

(
M

2πβ�2

)3
4πβg2

1− 2gβ
(

M
2πβ�2

)3/2

ς
(
1
2

)

] 1
2

.

�

(47)

In the thermal region the condensate vanishes, i.e. ñ0(r̃) = 0 and ñth (r̃) = ñ(r̃). In 
that case the self-consistency equation (38) reduces to:

ñ (r̃) =
g

µ̄

(
M

2πβ�2

)3/2

ς 3/2

(
eβµ̄ [µ̃−2ñ(r̃)−r̃2]

)
.� (48)

Transcendent equation (48) contains the polylogarithmic function ς 3/2 and, thus, can-
not be solved analytically for ñ (r̃). Furthermore, the Robinson formula (42) cannot be 
applied in the thermal region, since it would yield a diverging density, which is not 
physical. Thus, the density of the thermal region (48) can be treated only numerically. 
The cloud radius R̃TF2, where the thermal density, and also as a consequence the total 
density, vanishes is defined here conveniently by the length where the thermal density 
is equal to 10−5.

In this section  we perform our study again for 87Rb atoms with the following 
experimentally realistic parameters: N = 106, Ω = 100Hz, and a = 5.29 nm. For those 
parameters the oscillator length is given by l = 2.72µm, the coherence length in the 
center of the trap turns out to be ξ = 348.89 nm and the Thomas–Fermi radius reads 
RTF = 21.29µm, so the assumption ξ � RTF for the TF approximation is, indeed, 
fulfilled.

Using those parameter values, we determine the densities of both the superfluid and 
thermal region. After that the chemical potential µ̃ has to be fixed using the normaliza-
tion condition (40), where the total density ñ (r̃) is the combination of the total densi-
ties from both the superfluid region and the thermal region. The resulting densities are 
combined and plotted in figure 11 for the temperature T = 60 nK.
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Figure 11 shows that the condensate density ñ0(r̃) is maximal at the center of 

the cloud and decreases when we move away from the center until the condensate 
radius R̃TF1, where it jumps to zero. For the chosen parameters the jump is too small 
to be visible but it exists as it is shown in the blow-up. The thermal density ñth (r̃) 
is increasing until reaching its maximum at the condensate radius R̃TF1, and then it 
decreases exponentially to zero. The total density ñ(r̃) is maximal in the trap center 
and decreases when one moves away from it, until it vanishes. Note that in the ther-
mal region the total density ñ(r̃) and the thermal density ñth (r̃) coincide. Although 
both the condensate density ñ0(r̃) and the thermal density ñth (r̃) are discontinuous at 
the condensate radius R̃TF1, the total density ñ (r̃) remains continuous but reveals a 
discontinuity of the first derivative. We conclude from Figure 11 that the condensate 
is situated in the trap center, while the bosons in the excited states are located at the 
border of the trap.

In order to study how the temperature changes the respective Thomas–Fermi radii, 
we plot them in figure 12(a) as functions of the temperature T. This figure reveals 
the existence of two phases: a superfluid phase, where the bosons are either in the 
condensate or in the excited states, and a thermal phase, where all particles are in 
the excited states. The condensate radius R̃TF1 decreases with the temperature until 
it vanishes at the critical temperature Tc marking the location of the phase transition. 
The critical temperature Tc is the solution of the equality R̃TF1 = 0, i.e. we get from 
equation (47)
4πg2T 2

c

µ̄kB

(
MkB
2π�2

)3

+

[
µ̃c −

2g

µ̄

(
MkBTc

2π�2

)3/2

ς

(
3

2

)][
1− 2g

√
Tc

kB

(
MkB
2π�2

)3/2

ς

(
1

2

)]
= 0,

� (49)
where µ̃c is the critical chemical potential at the phase transition, whose first-order cor-
rection follows from equation (48)

µ̃c = 2ñ(0) =
2g

µ̄

(
MkBTc

2π�2

)3/2

ς

(
3

2

)
.� (50)

For the chosen parameters we obtain by solving the system (49) and (50) the 
values Tc = 65.71 nK and µ̃c = 0.08, the former agreeing well with figure 12(a). The 
critical temperature can be compared with the one given via the first-order correction 
[72, 75]

Tc − T 0
c

T 0
c

= −1.33
a

l
N1/6,� (51)

where T 0
c = �Ω

kB

(
N
ς(3)

)
1/3 denotes the critical temperature for the non-interacting BEC. 

Equation (51) is obtained by inserting equations (48) and (50) into the normalization 
condition (40) and by expanding the result to first order with respect to the contact 
interaction strength g. We read o from equation (51) that the repulsive interaction 
reduces the critical temperature. For the chosen parameters the critical temperature 
of the ideal Bose gas reads T 0

c = 71.87 nK. According to formula (51) the critical 
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temperature for the interacting case has the value Tc = 70.01 nK, which is nearly the 
one obtained above and in figure 12(a). On the other hand, the cloud radius R̃TF2 turns 
out to increase with the temperature.

In figure 12(b) the fractional number of the condensate N0/N = 15
2

∫ R̃TF1

0
r̃2ñ0 (r̃) dr̃ 

is plotted as a function of the temperature T. We note that N0/N is equal to one at 
zero temperature, i.e. all particles are in the condensate, then it decreases with the 
temperature until it vanishes at Tc, marking the end of the superfluid phase and the 
beginning of the thermal phase. Conversely, the fractional number of the particles in 

the thermal states Nth/N = 15
2

∫ R̃TF2

0
r̃2ñth (r̃) dr̃, where Nth is the number of particles 

in the excited states, increases with the temperature until being maximal at Tc, and 
then it remains constant and equals to one in the thermal phase since all particles are 
in the excited states.

In order to study for which temperature range the TF approximation is valid, we 

plot the ratio of the condensate density at the condensate radius ñ0(R̃TF1) with respect 
to the condensate density at the center of the BEC ñ0(0) as a function of the temper
ature in figure 13. We read o that this ratio is negligible for T < Tc and has a sudden 
jump for T ≈ Tc. This means that the TF approximation is valid in the superfluid phase 
but not in the transition region, where one would have to go beyond the TF approx
imation and take the influence of the kinetic energy in equation (36) into account.

4.4. Disordered case

In this section we consider the BEC system to be in a disordered landscape as well 
as at finite temperature. Thus, we investigate now the eect of both temperature and 
disorder on the properties of the system, in particular on the respective densities and 
Thomas–Fermi radii. Generically, we have to distinguish three dierent regions as 
illustrated in figure 14: the superfluid region, where the bosons are distributed in the 
condensate as well as in the minima of the disorder potential and in the excited states, 

Figure 11.  Total density ñ(r̃) (dotted, black), condensate density ñ0(r̃) (solid, 
blue), and thermal density ñth (r̃) (dashed, red) with the blow-up of transition 
region as a function of radial coordinate r̃ for T = 60 nK yielding µ̃ = 0.566.
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the Bose-glass region, where there are no bosons in the condensate so that all bosons 
contribute to the local Bose–Einstein condensates or to the excited states, and the ther-
mal region, where all bosons are in the excited states. In the following we analyze the 
properties of each region separately. To this end, we have to solve the dimensionless 
algebraic equations (37)–(39), (41) and the normalization condition (40). We start first 
with the thermal region and the Bose-glass region, since they are easier to treat, and 
then we focus on the superfluid region.

4.4.1. Thermal region.  In the thermal region only the thermal component contributes 
to the total density, so we have ñ0(r̃) = q̃ (r̃) = 0 and ñth (r̃) = ñ(r̃). In this case we just 
need equation (38), which reduces to

ñth (r̃) =
g

µ̄

(
M

2πβ�2

)3/2

ς 3/2

(
eβµ̄ [µ̃−2ñth(r̃)−r̃2]

)
,� (52)

and can only be solved numerically. The cloud radius R̃TF3, which characterizes the end 

of the thermal region, is determined here by setting ñth

(
R̃TF3

)
= 10−5.

4.4.2. Bose-glass region.  In the Bose-glass region the condensate vanishes, i.e. 
ñ0(r̃) = 0, and we only need the self-consistency equations (37)–(39), which reduce to:

q̃ (r̃) =
µ̃− r̃2

2
− g

µ̄

(
M

2πβ�2

)3/2

ς

(
3

2

)
,� (53)

ñth (r̃) =
g

µ̄

(
M

2πβ�2

)3/2

ς

(
3

2

)
,� (54)

ñ(r̃) =
µ̃− r̃2

2
.� (55)

Note that equation (54) reveals that the thermal density in the Bose-glass region remains 
constant, which we consider to be an artifact of the TF approximation. The Bose-glass 
radius R̃TF2, which characterizes the end of the Bose-glass region and the beginning of 

Figure 12.  (a) Condensate radius R̃TF1 (square, blue) and cloud radius R̃TF2 
(triangle, red) and (b) fractional number of condensed particles N0/N (square, blue) 
and in the excited states Nth/N (triangle, red) as a function of temperature T.
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the thermal region, is determined by setting q̃
(
R̃TF2

)
= 0 in equation (53), so we get 

R̃TF2 =

√
µ̃− 2 g

µ̄

(
M

2πβ�2

)
3/2ς

(
3
2

)
.

4.4.3.  Superfluid region.  In the superfluid region all densities contribute to the total 
density and the four algebraic coupled equations (37)–(39) and (41) have to be taken 
into account. We solve them according to the following strategy. At first we get from 
equations (37)–(39) one self-consistency equation for the condensate density ñ0(r̃):

[√
ñ0(r̃)− d̃

]2
+ µ̃− r̃2 − 2ñ

3/2
0 (r̃)√

ñ0(r̃)− d̃

−2g

µ̄

(
M

2πβ�2

)3/2

ς 3/2

(
e
−βµ̄

[√
ñ0(r̃)−d̃

]2)
= 0.

�
(56)

In the superfluid region we can apply the Robinson formula (42) for ν = 3/2 to approxi-
mate equation (56) as

0 =
[√

ñ0(r̃)− d̃
]3

[
1− 2gβ

(
M

2πβ�2

)3/2

ς

(
1

2

)]
+ 2

[
g

(
M

2πβ�2

)3/2

Γ

(
−1

2

)√
β/µ̄+ 3d̃

]

×
[√

ñ0(r̃)− d̃
]2

+ 2d̃3 +
[√

ñ0(r̃)− d̃
] [

2
g

µ̄

(
M

2πβ�2

)3/2

ς

(
3

2

)
+ 6d̃2 − µ̃+ r̃2

]
,

�

(57)
After having solved equation (57), we insert the result into the other algebraic equa-
tions. To this end we have to rewrite the other densities as functions of the condensate 
density ñ0(r̃). From equations (37) and (41) we get

q̃ (r̃) =
d̃ñ0 (r̃)√
ñ0(r̃)− d̃

,� (58)

and from equations (38) and (41) after applying the Robinson formula (42) for ν = 3/2, 
we obtain:

Figure 13.  Ratio of ñ0(R̃TF1) and ñ0(0) as a function of temperature T.
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Thus, we have to solve the cubic self-consistency equation for the condensate den-

sity (57) via the Cardan method and insert the solution into equations (58), (59), and 
(39) in order to get directly q̃ (r̃), ñth (r̃), and ñ(r̃), respectively. The cubic equation (57) 
has only one physical solution. To determine the border of the superfluid region, i.e. 
the condensate radius R̃TF1, where the solution of equation (57) vanishes and which 
characterizes the edge of the superfluid region as well as the beginning of the Bose-glass 
region, we determine the first derivative of equation (57) with respect to ñ0 (r̃), and 

then we set ∂r̃
∂ñ0(r̃)

∣∣∣∣∣
r̃=R̃TF1

= 0, which yields:

3
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− d̃
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+ 4
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− d̃
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+
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2
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(
3
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+ 6d̃2 − µ̃+ R̃2

TF1

]
= 0.

�

(60)

This result we insert back into equation (57) in order to get the analytical expres-
sion of the condensate radius R̃TF1. As the result is too involved, it is not explicitly 
displayed here.

Figure 14.  Illustration for the distribution of bosons in the superfluid (SF) region, 
where the condensate density ñ0(r̃), the Bose-glass order parameter q̃ (r̃) , and the 
thermal density ñth (r̃) contribute to the total density ñ(r̃) = ñ0(r̃) + q̃ (r̃) + ñth (r̃). 
In the Bose-glass region the condensate vanishes and in the thermal region all 
particles are in the excited states.
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4.5. Thomas–Fermi densities

Now we perform our study for 87Rb atoms and the same experimentally realistic param
eters as in section 4.3 and choose the temperature to be T = 60 nK. To this end, we first 
calculate the densities in the thermal region, the Bose-glass region, and the superfluid 
region. After that we fix the chemical potential µ̃ using the normalization condition 
(40), where the total density ñ(r̃) is the sum of the densities from all regions. The 
resulting densities are plotted in figure 15.

Figure 15 shows that the condensate density ñ0(r̃) is maximal at the center of 
the cloud, then it decreases until reaching its minimum at the condensate radius 
R̃TF1 = 0.506. The Bose-glass order parameter q̃(r̃) is also maximal at the center of 
the cloud, decreases until the condensate radius R̃TF1 where it jumps upward, then 
decreases until reaching its minimum at the Bose-glass radius R̃TF2 = 0.588. The ther-
mal density ñth (r̃) is behaving dierently: it increases until reaching its maximum at 
the condensate radius R̃TF1, it stays constant until the Bose-glass radius R̃TF2, then it 
decreases exponentially to zero. Note that in the thermal region the thermal density 
coincides with the total density. The fact that the thermal density remains constant 
in the Bose-glass region is considered to be an artifact of the TF approximation. The 
total density ñ(r̃) is maximal in the center of the trap and decreases when we move 
away from the center until it vanishes at the cloud radius R̃TF3 = 4.642. We note also 
that, at the condensate radius R̃TF1, a downward jump of the condensate density 
ñ0(r̃), an upward jump of the Bose-glass order parameter q̃(r̃), and an upward jump 
of the thermal density ñth (r̃) occur in such a way that the total density ñ(r̃) remains 
continuous but reveals a discontinuity of the first derivative. The TF approximation 
captures the properties of the system within the superfluid region, the Bose-glass region 
and the thermal region but not at the transition point between two regions, namely, 
between the superfluid region and the Bose-glass region as well as between the Bose-
glass region and the thermal region. This represents another artifact of the applied TF 
approximation.

In the following we investigate separately the impact of increasing the temperature 
T and the disorder strength d̃  on the properties of the dirty boson system, namely, the 
Thomas–Fermi radii and the fractional number of condensed particles N0/N, in the 
disconnected local minicondensates Q/N , and in the excited states Nth/N .

4.6. Temperature eects

We start by studying the influence of the temperature on the dirty boson system. To 
this end, we fix the disorder strength at d̃ = 0.088 and increase the temperature T. 
The Thomas–Fermi radii are plotted as functions of the temperature T in figure 16. 
Figure 16(a) shows that both the condensate radius R̃TF1 and the Bose-glass radius R̃TF2 
decrease with the temperature T until they vanish. The blow-up in figure 16(b) reveals 
that the condensate radius R̃TF1 vanishes at Tc1 = 64.625 nK, which corresponds to a 
phase transition from the superfluid to the Bose-glass. This critical value of the temper
ature is obtained by setting the condensate radius R̃TF1 to zero. Thus, superfluidity is 
destroyed in our model at a critical temperature, where approximately our TF approx
imation breaks down. The Bose-glass radius R̃TF2 vanishes at Tc2 = 65.625 nK, which 
corresponds to a phase transition from the Bose-glass to the thermal. This critical value 
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of the temperature is obtained by setting the Bose-glass radius R̃TF2 to zero. The exis-
tence of those two phase transitions means that we are qualitatively above the triple 
point introduced for the homogeneous case in figure 10. Note that the dierence of 
both critical temperatures �Tc = Tc2 − Tc1 is quite small, which is expected, since one 
can deduce from equation (52) that the shift �T  goes quadratically with the disorder 
strength d̃ , which means that the linear temperature shift vanishes in agreement with 
the finding of [45]. Contrary to that, the cloud radius R̃TF3 increases monotonously 
with the temperature T in figure 16(c).

The occupancy fraction of the condensate N0/N = 15
2

∫ R̃TF1

0
r̃2ñ0 (r̃) dr̃, of the 

disconnected minicondensates Q/N = 15
2

∫ R̃TF2

0
r̃2q̃ (r̃) dr̃, and of the excited states 

Nth/N = 15
2

∫ R̃TF3

0
r̃2ñth (r̃) dr̃ are plotted in figure 17(a) as functions of the temperature 

T . We remark that in the superfluid phase N0/N decreases with the temperature T  
until vanishing at Tc1 marking the end of the superfluid phase and the beginning of 
the Bose-glass phase as it is illustrated in the blow-up in figure 17(c). Conversely, in 
figure 17(b) we see that Q/N  increases with the temperature T until reaching maxi-
mum at about T = 50 nK, then decreases until vanishing at Tc2 marking the end of the 
Bose-glass phase and the beginning of the thermal phase as shown in the blow-up in 
figure 17(c). In figure 17(a) Nth/N  increases starting from zero with the temperature T 
until being equal to one at Tc2, then it remains constant. We conclude that, by increas-
ing the temperature until T = 50 nK, more and more particles are leaving the con-
densate towards the local minicondensates or the excited states. For the temperature 
values 50 nK < T < Tc1 the particles are leaving both the condensate and the local 
minicondensates towards the excited states. When the condensate vanishes at the criti-
cal temperature Tc1, the particles keep leaving the local minicondensates towards the 
excited states until the critical temperature Tc2, where all particles are in the excited 
states.

In order to study for which temperature range the TF approximation is valid, we 
plot the ratio of the jump of the condensate density at the Thomas–Fermi condensate 

radius ñ0(R̃TF1) with respect to the condensate density at the center of the BEC ñ0(0) 
as a function of the temperature T in figure 18. We note that this ratio is negligible for 
T < Tc1 and has a sudden jump for T ≈ Tc. This means that the TF approximation is 
valid in the superfluid phase but not in the transition region from the superfluid to the 
Bose-glass, where one would have to go beyond the TF approximation and take the 
eect of the kinetic energy in equation (36) into account.

4.7. Disorder eects

Now we study the influence of the disorder on the dirty boson system. To this end, 
we choose the temperature to be T = 60 nK and consider an increase of the disorder 
strength d̃ .

In order to determine for which range of the disorder strength d̃  the TF approx
imation is valid, we plot the ratio of the condensate density at the Thomas–Fermi 

condensate radius ñ0(R̃TF1) with respect to the condensate density at the center of 
the BEC ñ0(0) as a function of the disorder strength d̃  in figure 19. As only a moder-
ate density jump of about 50% should be reasonable, our approach is restricted to a 
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Figure 15.  Spatial distribution of total density ñ(r̃) (solid, black), condensate 
density ñ0(r̃) (dashed, blue), Bose-glass order parameter q̃(r̃) (dotted-dashed, green), 
and thermal density ñth (r̃) (dotted, red) as functions of the radial coordinate r̃ for 
d̃ = 0.088. Since N is fixed, µ̃ can be determined and results in µ̃ = 0.535.

Figure 16.  (a) Condensate radius R̃TF1 (square, blue) and Bose-glass radius R̃TF2 
(triangle, red) and (b) blow-up of Bose-glass region (c) cloud radius R̃TF3 (dotted, 
black) as functions of temperature T.

Figure 17.  (a) Fractional number of condensed particles N0/N (square, blue), 
in disconnected local minicondensates Q/N  (triangle, red), and in excited states 
Nth/N  (dotted, green) , (b) blow-up of disconnected local minicondensates Q/N , 
and (c) blow-up of Bose-glass phase as functions of temperature T .
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dimensionless disorder strength of about d̃ � 0.11. For a larger disorder strength d̃  one 
would have to go beyond the TF approximation and take the influence of the kinetic 
energy in (36) into account.

The Thomas–Fermi radii are plotted as functions of the disorder strength d̃  in 
figure 20. According to the behavior of the Thomas–Fermi radii, we distinguish between 
two dierent disorder regimes: the weak disorder regime and the intermediate one. 
Figure 20(a) shows that, when the disorder strength d̃  increases, the condensate radius 
R̃TF1 increases slightly, then decreases until zero, which corresponds to a phase trans
ition at about d̃c = 0.181. This critical value of the disorder strength is obtained by 
setting the cloud radius R̃TF1 to zero. Thus, superfluidity is destroyed in our model at 
a critical disorder strength, where approximately our TF approximation breaks down. 
Contrarily, the Bose-glass radius R̃TF2 decreases when the disorder strength d̃  increases 
in the weak disorder regime, then increases in the intermediate disorder regime until 
the phase transition, then it becomes constant, so that the bosonic cloud has a maximal 
Bose-glass radius of limd̃→∞ R̃TF2 = 0.647. Figure 20(a) shows also that in the weak 
disorder regime the condensate radius R̃TF1 and the Bose-glass radius R̃TF2 coincide, 
i.e. there is no Bose-glass region, only the superfluid and the thermal regions exist. 
Furthermore, comparing the condensate radius R̃TF1 and the Bose-glass radius R̃TF2 

Figure 18.  Ratio ñ0(R̃TF1)/ñ0(0) as a function of temperature T.

Figure 19.  Ratio ñ0(R̃TF1)/ñ0(0) as a function of disorder strength d̃ .
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at finite temperature with the corresponding ones at zero temperature reveals that 
increasing the temperature decreases the critical disorder strength value d̃c, where the 
phase transition is taking place. In figure 20(b) the cloud radius R̃TF3 decreases with the 
disorder strength d̃  in the weak disorder regime, then increases with it in the intermedi-

ate disorder regime until becoming constant at the phase transition, so that the bosonic 

cloud has a maximal size of limd̃→∞ R̃TF3 = 4.649.
In figure 21 the fractional number of the condensate N0/N, in the disconnected 

minicondensates Q/N , and in the excited states Nth/N  are plotted as functions of the 
disorder strength d̃ . We remark that in the superfluid phase N0/N decreases with the 

disorder strength d̃  until vanishing at d̃c, marking the end of the superfluid phase and 
the beginning of the Bose-glass phase. Conversely, Q/N  and Nth/N  increase with the 
disorder strength d̃ , i.e. more and more particles are leaving the condensate towards 
the local minicondensates or the excited states. In the Bose-glass phase, both fractions 
Q/N  and Nth/N  remain constant.

Figure 20.  (a) Condensate radius R̃TF1 at T = 60 nK (solid, blue) and at T = 0 
(dotted, blue), Bose-glass radius R̃TF2 at T = 60 nK (dashed, red) and at T = 0 
(dotted-dashed, red) and (b) cloud radius R̃TF3 at T = 60 nK (solid, black) as 
functions of disorder strength d̃ .

Figure 21.  Fractional number of condensed particles N0/N (solid, blue), in 
disconnected local minicondensates Q/N  (dotted, red), and in excited states Nth/N  
(dashed, green), as functions of disorder strength d̃ .
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5. Conclusions

From the presented results we see that for an isotropically trapped dirty Bose gas the 
TF approximation provides better description in three dimensions than in one dimen-
sion [49] due to the fact that the fluctuations are more pronounced in lower dimensions. 
Additionally, at zero temperature the respective densities and the Thomas–Fermi radii 
obtained via the TF approximation and the variational method turn out to agree quali-
tatively well. In particular, a first-order quantum phase transition from the superfluid 
phase to the Bose-glass phase is detected at a critical disorder strength, whose value is 
of the same order as the one determined in [43, 44].

At finite temperature three regions coexist, namely, the superfluid region, the Bose-
glass region, and the thermal region. Depending on the parameters of the system, three 
phase transitions were detected, namely, from the superfluid to the Bose-glass phase, 
from the Bose-glass to the thermal phase, and from the superfluid to the thermal phase. 
We have also studied in detail the properties of phase transitions. The obtained results 
could be particularly useful for a quantitative analysis of on going experiments with 
dirty bosons in three-dimensional harmonic traps.

Note that these results dier quanitatively from the finite-temperature mean-field 
phase diagram of disordered bosons in a lattice, where even a tiny temperature leads to 
a significant shift of the boundary between the Bose glass and superfluid [76].
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