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We investigate the dimensionally induced phase transition from the normal to the Bose-Einstein-condensed
phase for a weakly interacting Bose gas in an optical lattice. To this end we make use of the Hartree-Fock-
Bogoliubov-Popov theory, where we include numerically exact hopping energies and effective interaction
strengths. At first we determine the critical chemical potential, where we find a much better agreement with
recent experimental data than a pure Hartree-Fock treatment. This finding originates from an important correction
due to quantum fluctuations, which are enhanced in lower dimensions. Furthermore, we determine for the
one-dimensional to three-dimensional transition the power-law exponent of the critical temperature for two
different noninteracting Bose gas models yielding the same value of 1/2, which indicates that they belong to the
same universality class. For the weakly interacting Bose gas we find for both models that this exponent is robust

with respect to finite interaction strengths.
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I. INTRODUCTION

Low-dimensional systems play an important role in physics,
as they can exhibit tremendously different behavior than in
the three-dimensional (3D) case due to the lack of certain
degrees of freedom. Prominent examples are provided by the
Tonks-Girardeau gas in one dimension [ 1,2] or the Berezinskii-
Kosterlitz-Thouless transition in two dimensions [3,4], which
were experimentally observed in the realm of ultracold
quantum gases in Refs. [5,6] and [7], respectively. From the
Mermin-Wagner-Hohenberg theorem [8,9] it is known that
there cannot be a one- or two-dimensional homogeneous Bose-
Einstein condensate (BEC) at finite temperatures, see Ref. [10]
for a derivation in the context of ultracold atoms. However, as
a three-dimensional BEC does exist, it is expected that an
increment of the critical temperature should be observable
when going continuously from low to three dimensions. In
principle, there are two distinct approaches to induce such
a dimensional phase transition of ultracold atomic gases.
Low-dimensional systems are commonly achieved by using
anisotropic, confining traps [6,7,11-15]. Such a dimensional
transition concerning Bose gases was investigated theoretically
in Refs. [16—-18]. As an example of the dimensionally induced
phase transition, the 2D-3D transition was studied experimen-
tally in Ref. [14] using an anisotropic harmonic trap.

Here we follow another approach, which keeps the potential
energy unchanged and varies only the hopping energy of
a homogeneous Bose gas within an optical lattice. In the
following, we investigate at first a model that constitutes a di-
mensional phase transition. As depicted in Fig. 1, it consists of
a two-dimensional optical lattice in three-dimensional space,
such that there is no confinement in the longitudinal direction.
Therefore we call it the 2D lattice model. The study of the
dimensionally induced phase transition has been proposed by
Refs. [19,20] and has recently been investigated in an experi-
mental setup [21]. Therein the experimental data are compared
with two complementary approaches. On the one hand a
Luttinger theory is generalized within a chain-mean-field
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theory from one dimension to three dimensions and on the
other hand a Hartree-Fock theory is extended from three
dimensions to one dimension; whereas the former scenario
is further elaborated in detail in Ref. [22], in this article we
focus on the improvement of the latter scenario.

Although experiments are always performed in trapped
systems, one can relate them with a corresponding homo-
geneous case by making use of the local density approxima-
tion (LDA). Introducing a local effective chemical potential
Uest(r) = n — V(r) allows us to match local quantities of the
inhomogeneous setting with global quantities of the homoge-
neous theory. The LDA decomposes the actual inhomogeneous
problem into one homogeneous problem with the effective
chemical potential peg(r) for every value of r. In the harmon-
ically trapped Bose gas the BEC phase is located in the inner
part of the trap, where the overall density is higher. The pure
thermal phase stays in the outer region of the trap, where the
density is lower. Both phases are spatially separated at the coor-
dinate r., where the density n(r.) equals the critical density n,
for the BEC transition. Using LDA the critical density is thus
determined through the homogeneous problem with the corre-
sponding chemical potential pg(r.) [21]. This article obtains
the critical chemical potential of the inhomogeneous experi-
ment of Ref. [21] by using a homogeneous theory, which ex-
plicitly takes into account the impact of quantum fluctuations.

Within a homogeneous lattice the one-particle dispersion
relation consists of band energies. Since we treat ultracold
systems, we restrict ourselves to the lowest energy band and
nearest-neighbor hopping only. The most general form of the
dispersion relation of a three-dimensional, orthogonal optical
lattice in the tight-binding approximation reads

ex =y 2J;[1 — cos(kia;)], (1)

which has been shifted by an energy offset to avoid negative
energies. Here J; and a; represent the hopping energy
and the lattice constant of the spatial dimension i = x,y,z,
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FIG. 1. Schematic setup of 2D lattice model for two dimension-
less lattice depths s: bosonic clouds in longitudinal direction are
depicted in blue and optical lattice potential in xy plane is represented
by black lines.

respectively. For k;a; << 1 we can approximate Eq. (1) by a
quadratic expression in k; such that an effective mass M can
be assigned as

k2 v — 2 @
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With this notation the 2D lattice model is characterized from
the 3D lattice (1) by equal transverse (x,y) hopping energies
and the continuum limit of the longitudinal (z) direction:

h2
a, J.

Jo=J,=J, =—,
Y Y 2Ma?

ay =a, = a, —> 0. (3)
Here M stands for the atomic mass. A schematic setup for
the 2D lattice model is presented in Fig. 1 for different lattice
depths, where the dimensionless lattice depth is defined as
s = Vy/E,.Here, Vj is proportional to the intensity of the laser
pair building up the optical lattice and E, = nw2h*/(2Ma®?)
denotes the recoil energy. The dimensional transition is
performed by tuning the dimensionless lattice depth s. For
s = 0 the lattice is completely ramped down, which corre-
sponds to a pure three-dimensional, homogeneous system.
Ramping up the lattice depth causes an emergence of a tube
structure as depicted in Fig. 1. For deep lattices of abouts = 30
the hopping between the tubes is suppressed and the system
corresponds to an array of decoupled one-dimensional tubes.
Hence, just by varying the lattice depth the 1D-3D transition
can be induced.

This article is structured as follows. In Sec. II we briefly
review the Hartree-Fock-Bogoliubov-Popov theory, which
represents our main formalism, and as a special case the
Hartree-Fock theory. In Sec. III we explain how the hopping
energies as well as the effective interaction strengths behave
during the dimensional transition by discussing different
approximation methods. In Sec. IV we move on to the results
for the critical chemical potential and compare them with the
recent experimental data from Ref. [21]. In Sec. V we present
the corresponding findings for the critical temperature in the
1D-3D transition. Eventually, we conclude with an outlook for
further research topics in Sec. VI.

II. HARTREE-FOCK-BOGOLIUBOV-POPOV THEORY

The Hartree-Fock-Bogoliubov-Popov theory (HFBP)
[23-27] interpolates between the Bogoliubov theory at zero
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temperature and the Hartree-Fock theory (HF) at finite
temperatures. It treats the weakly interacting bosons approx-
imatively as a gas of noninteracting quasiparticles exhibiting
the dispersion relation Ej =,/€,% + 2gnoex with g = € —
u+ g(2n — np). Here p denotes the chemical potential in
the grand-canonical description, g = 4wfi’a;/M represents
the three-dimensional interaction strength with a; being the
s-wave scattering length, n stands for the total particle density,
and ng represents the condensate density. The particle density
in the HFBP formalism is given by

1 &k + gno 1 1 1
= J— — — =1, 4
! n°+VZk:[ Er (eﬂEk—1+2) 2} @

where V denotes the volume of the system and 8 = 1/(kgT).
Equation (4) contains contributions from both the thermal
fluctuations of the HF theory and the quantum fluctuations of
the Bogoliubov theory. Note that one important approximation
of the HFBP theory is that it neglects the anomalous density.
The chemical potential in the condensate phase is given by
solving the generalized Gross-Piteavskii equation [28], which
reads for the homogeneous case:

W =2gn — gny. (5)

For bosons interacting via a two-body contact potential the
Hartree and the Fock term coincide, which leads to the first
term of the right-hand side of Eq. (5). The second term
represents a contribution, which enters through the Bogoliubov
channel. Note that Eq. (5) is confirmed by the Hugenholtz-
Pines theorem [23,29], thus HFBP, since it is gapless, describes
a superfluid phase [30]. At constant total density, Eq. (4)
yields a first-order phase transition at the critical temperature
[23]. Thus, the critical point is determined by a finite critical
condensate density ng., where its derivative with respect to the
inverse critical temperature 8. = 1/(kpT,) diverges:

8n0
- =0
B 1.

In order to find the critical point both Egs. (6) have to be solved
simultaneously.

Now we briefly review a special case of a pure Hartree-
Fock formalism (HF), when the self-energy contribution gng
of the Bogoliubov channel is not considered. Therefore,
the quasiparticle energy reduces to Ey = € + 2gn —  and
Eq. (4) simplifies to

(6)

nO(ﬂc) = noc,

1 1
n=not v Zk: eBlext2gn—p) _ 1° @

Here the chemical potential coincides with 2gn at the critical
point, which is consistent with (5) if the Bogoliubov contri-
bution is neglected. Note that the HF theory coincides with
the noninteracting one since it differs only by a physically
irrelevant shift of the chemical potential, i.e., it is independent
of g. In the thermodynamic limit the sum in Eq. (7) goes over
into an integration, which can be performed exactly yielding
for the 2D lattice model

n=ny+ ; Z Lemﬂ(lt—%’n)e—‘lmﬂfIg(zmﬂ.])' (8)

aZ)\'T ml/2
m=1

043610-2



DIMENSIONALLY INDUCED ONE-DIMENSIONAL TO ...

Here A7 = +/2mBh? /M denotes the thermal de Broglie wave-
length and Iy(x) represents the modified Bessel function of
first kind [31, (9.6.16)].

We investigate the critical temperature by setting ny = 0
and p = 2gn. Numerical calculations show that 8J — 0 for
J — 0. Thus, the limit 8J — 0 describes the behavior of the
critical temperature deep in the one-dimensional regime. Using
the approximation [31, (9.7.1)] for small arguments of the
modified Bessel function, we find for the critical temperature
T. of the 2D lattice model as a function of the transverse
hopping energy J

kpT. J
Bl o [, )

In the following we investigate within the HFBP theory,
whether a finite two-particle interaction strength changes the
above power-law exponent of 1/2. To this end we have to
determine how the two energy scales of the Bose-Hubbard
Hamiltonian, i.e., the hopping energy and the effective inter-
action, depend on the dimensionless lattice depth s.

III. HOPPING ENERGY AND EFFECTIVE INTERACTION

Here we discuss three approximation methods to compute
the hopping energy J as a function of the dimensionless lattice
depth s. The first one is an analytic expression of Zwerger
[32], which is valid for deep optical lattices and follows from
approximately solving the one-dimensional Mathieu equation:

4
J= ﬁE,s3/4e_2ﬁ. (10)

The second one is the numerical solution of the one-
dimensional Schrodinger equation using the Bloch theorem. In
that case the hopping energy follows as the Fourier transform
of the band energy dispersion relation [33]. The third method
directly follows from the latter dispersion relation by approxi-
mating it with a parabolic fit. Thus, an effective mass (2) can be
assigned, which itself defines a corresponding hopping energy.
We present the respective results for these three methods
in Fig. 2. Therein, we see a good agreement of the three
methods for deep lattices. However, for shallow lattices the
top blue curve overestimates the hopping energy and becomes
nonmonotonic below s &~ 1. Remarkably, the middle green
curve and the bottom red curve differ exactly by a factor of 2
from the values at s = 0, i.e., the continuum values [33]. This
is due to the fact that the relation between J; and M in Eq. (2)
stems originally from the tight-binding dispersion (1).

Furthermore, besides the hopping energy, also the in-
teraction strength turns out to be a function of the lattice
depth. Following the reasoning of Ref. [21], we define a one-
dimensional, effective interaction strength gé}? ~ 2hasw, ()
[34], where w, (s) represents the transverse trapping frequency
of a single tube. Within the tight-binding approximation, g.?
is given by [35]

gD ~ da,E, /5. (11)

We read off that for a vanishing lattice depth the effective
interaction strength vanishes, which is not physical,
since there must be a finite interaction strength in the pure
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FIG. 2. Hopping energy J as function of dimensionless lattice
depth s: lines depict from the top to the bottom solutions of three
different approximation methods described in the text, respectively.
Since the top blue curve defined by Eq. (10) vanishes at s = 0, it is
plotted only up to its maximal value.

three-dimensional system. In order to redeem the tight-binding
approximation, we calculate the interaction strength also
with numerically determined Wannier functions. In the
Bose-Hubbard formalism the on-site interaction strength U is
given by

U= gfdr|w<r>|4, (12)

where w(r) denotes the Wannier function that factorizes for cu-
bic or quadratic lattices into their respective one-dimensional
counterparts. Due to higher coherence with neighboring lattice
sites for shallow lattices, the Wannier function delocalizes over
the lattice. Thus, the on-site interaction strength decreases with
decreasing lattice depth, an effect, which is enhanced through
the fourth power in Eq. (12). Since in the 2D lattice model
only two lattice dimensions contribute, the one-dimensional,
effective interaction strength is given there as

2
g = gU dxlw(x)l“} , (13)

where w(x) denotes now the one-dimensional Wannier
function. In Fig. 3 we show the one-dimensional effective
interaction strength as a function of the dimensionless lattice
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FIG. 3. One-dimensional effective interaction strength g!P as
function of dimensionless lattice depth s. Top curve corresponds to
tight-binding approximation (11), bottom curve stems from Eq. (13)
and numerically determined Wannier function, as used in Ref. [21].
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depth for the two different approaches defined by Egs. (11)
and (13). Using the methods of Ref. [33] the value for the
effective interaction strength in the pure 3D regime is found to
be lim,_, glRa* = 4g/9. For deep lattices the relative error
between the two methods decreases.

IV. CRITICAL CHEMICAL POTENTIAL

Now we determine within the HFBP theory the critical
chemical potential p. as a function of the lattice depth s as it
was measured experimentally via LDA, as well as calculated
within a HF treatment of Ref. [21].

In the thermodynamic limit the direct numerical integration
in Cartesian coordinates of Eq. (4) would lead to a divergence
at k = 0. However, in elliptical coordinates this divergence is
avoided due to a factor from the integration measure. There-
fore, we perform the integration by cutting a small ellipsoid
around the origin, which can then be calculated analytically,
whereas the remaining integration volume of the Brillouin
zone is computed numerically. For better convergence we use
a quadratically aligned sampling of integration points. Thus,
the sampling is quite dense around the origin, which makes
the result robust against the choice of the ellipsoid.

The critical chemical potential describes the phase bound-
ary between decoupled 1D tubes and the 3D condensate as de-
picted in Fig. 4. Therein, we present the HF treatment, as well
as the HFBP results and compare them with the experimental
data of Ref. [21]. The red bottom curve corresponds to the
HF result in the tight-binding approximation for the effective
interaction strength and the effective mass approximation for
the hopping energy as described above. It coincides with the
result presented in Ref. [21]. Note however, thatin Ref. [21] the
critical chemical potential is erroneously taken to be . = gn,
although a proper HF treatment yields u, = 2gn. Therefore,
the data of Ref. [21] have been multiplied ad hoc by a factor 2
for the sake of comparison. The remaining solid lines are HF
results computed with methods that do not rely on the effective
mass approximation for the hopping energy. Since the top solid
blue and green HF curves differ by much less than the size

o5|| - HFBPBloch/Wannier | = ¢ |
- - HFBP tight-binding/Zwerger _ -
— HF Bloch/Wannier _o=FT =T
20 | — HF tight-binding/Zwerger L R
15
%]
10 |-
51
e e [Experiment
0 j ; ; ; ; ;
-1 0 1 2 3 4 5 6

u/ (kgT)

FIG. 4. Phase diagram in s-u plane: red data points are repro-
duced from Ref. [21] and describe phase boundary between decoupled
1D tubes and 3D condensate, red bottom curve is HF result from
Ref. [21], solid lines represent HF, and dashed lines HFBP results.
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of the error bars, we conclude that the largest error source
for the underestimation of the red curve is the effective mass
approximation. However, since Eq. (10) is known to reproduce
imprecise values for shallow lattice depths, we understand this
rather good result, represented by the top solid blue curve,
as a canceling of errors of the hopping energy (10) and the
tight-binding approximation (11). In contrast to this the green
curves stem from hopping energies and interaction strengths,
which are computed by numerically exact Wannier functions.
The dashed curves represent the HFBP results which are
given by Eq. (5). We observe that they are in much better
agreement with the experimental data over the full range of
the dimensionless lattice depth s than the HF results. However,
note that all curves coincide in the regime of shallow lattices,
where the system is close to 3D. As a consequence, we ascribe
the better agreement of the HFBP theory with the experimental
data in the low-dimensional regime to the enhanced role of
quantum fluctuations, which are neglected in the HF treatment.

V. CRITICAL TEMPERATURE

We now study the power-law behavior of the critical
temperature of the 2D lattice model at the dimensional phase
transition, which has not yet been measured experimentally.
As we have for no interactions the result (9), we assume for
a finite two-particle interaction near the transition a general

power law
kpT. J\*
() 14

with « being the exponent of the power-law. In Fig. 5(a) we
present the numerical results of the HFBP theory for finite
interaction strengths. Here, we set the density ton = 13.3nm™>
and the lattice constant to a = 387nm, which are taken from
the experiment of Ref. [21]. The shaded areas in Fig. 5
represent error estimates due to fitting errors. They correspond
to the difference between the numerically determined value of
the noninteracting case and the value, which is already known
from Eq. (9), and amounts to approximately 5%. We observe
that within our precision the exponent does not change with fi-
nite interactions. Thus, we conclude that the exponent exhibits
a surprising robustness with respect to the interaction strength.
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FIG. 5. Power-law exponent « as functions of gas parameter
y13 = n'Bag for (a) 2D lattice model and (b) 3D lattice model.
Dashed lines represent corresponding value o = 1/2 for noninteract-
ing case.
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Due to this robustness the question arises how far the
exponent of 1/2 is universal. In order to analyze this at least
exemplarily, we apply the same study to a different model of
the same 1D-3D phase transition. This model is a 3D lattice
model and is investigated with high-precision quantum Monte
Carlo data from Ref. [22]. In contrast to the 2D lattice model
(3), it is characterized by

Jo=Jy=J#J, a=a,=a;=a. (15)

Here the dimensional transition is induced through the tunable
ratio of the hopping energies J/J,. If the transverse hopping
energy is much smaller than the longitudinal one, i.e., J, > J,
the atoms within the lattice are only allowed to hop in longitu-
dinal direction, which represents the 1D regime. However, for
similar hopping energies J, & J the system corresponds to an
isotropic 3D lattice.

In the noninteracting case the HF density (7) in the
thermodynamic limit can be integrated analytically and reads

l o0
— mp(u—2gn) ,—4mpJ r2
n=nyg+ — e e Iy2mpBJ)
@ ,;1 (16)
x e 2B [ omB ).

Correspondingly, the power law of the critical temperature
follows as [22]

kpT, J
Beo [ = (17)
E, E,

Hence, from Eqgs. (9) and (17) we read off that both models
turn out to have the same power-law exponent for the increase
of the critical temperature in the 1D-3D transition close to 1D
for the noninteracting case.

Based on these findings, we determine with the HFBP
theory also the power-law parameters for the weakly inter-
acting gas within the 3D lattice model. To this end we set the
longitudinal hopping energy J, = 0.1 E,, which corresponds
to a shallow lattice according to Fig. 2. As depicted in Fig. 5(b),
we find the same robustness of the exponent as in the 2D lattice
model with an error of 5% for the exponent «. This indicates
that both interacting Bose gas lattice models belong to the
same universality class of a dimensionally induced 1D-3D
phase transition.

VI. CONCLUSION AND OUTLOOK

We conclude that the HFBP theory turns out to be in
a very good agreement with the experimental data for the
critical chemical potential of the 2D lattice model. Since
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the HFBP theory includes quantum fluctuations, it represents
a crucial improvement to the HF theory when studying
quantum systems in low dimensions at finite temperature.
Furthermore, we investigated two different models, which
induce the dimensional phase transition between decoupled
1D tubes and the 3D BEC within the formalism of the
HFBP theory including numerically exact hopping energies
and interaction strengths. The 2D lattice model and the 3D
lattice model are found to exhibit within our accuracy the
same power-law exponent of 1/2 for the critical temperature
during the dimensional phase transition. This exponent is
robust against change of the finite interaction strength, which
seems to put both systems into the same universality class.

Dimensional phase transitions examine the behavior of
observables as function of a control parameter of the effective
dimension. In our case this is the transverse hopping energy.
The idea of dimensional phase transitions can straightfor-
wardly be generalized in order to study, e.g., the 2D-3D
transition, where the critical temperature increases instead
of Eq. (17) with a logarithmlike behavior. Furthermore
thermodynamic quantities such as the heat capacity or trapped
systems can be investigated as well. In the latter case the
Mermin-Wagner-Hohenberg theorem does not hold anymore
since they are not translationally invariant.

Also in the case of fermions the dimensional transition is
of significant interest. For instance, a gas of spin-imbalanced
fermions is a candidate for the Fulde-Ferrell-Larkin-
Ovchinnikov phase (FFLO) [36,37]. Fundamental work for
the exploration of this exotic phase has been done theoretically
for the 1D-3D transition in the framework of dynamical
mean-field theory [38] and static mean-field theory [39] by
investigating the stability of the FFLO phase. Furthermore, a
recent experiment [40], showed an interesting spatial ordering
of the polarized and nonpolarized phases and its inversion
during the 1D-3D transition.
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