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Abstract Recent renormalization group studies of impurities in spin-It2 chains appear to be 
inconsistent wilh Bethe ansatz results for a special intemable model. We study his system in . 
more derail around the integrable point in parameter space and argue hat  hats integrable impurity 
model coms~onds  to a non-~oer ic  multi-critical point. Using previous results on impurities in . - - 
half-integer spin chains. a consistent renormalimion group flow and phase diagram is proposed. 

1. Introduction 

Recently there has been considerable interest in v e o u s  quantum impurity problems [I- 
51. These can generally be formulated as one-dimensional Luttinger liquids interacting 
with local defects of various kinds. In general it is expected that such quantum impurity 
models renormalize to critical points which correspond to conformally invariant boundary 
conditions. The quantum impurity is screened andlor decouples; it does not appear in 
the fixed point Hamiltonian although a remnant effective impurity, &coupled from the 
continuum degrees of freedom, may be left behind. 

A particularly simple example is a single impurity in a spin S = 112 Heisenberg 
antifemmagnetic chain. Two of the present authors analysed a large class of models of 
this type using analytic renormalization group (RG) arguments and numerical finite-size 
analysis [6]. We concluded that the only stable critical points correspond to a completely 
unperturbed~chain or else a chain with a break at the impurity location. Taking'the initial 
boundary conditions to be periodic, we refer to these two critical points as the periodic and 
open chain, respectively. In the open case, but not the periodic, a remnant impurity spin 
may also be present, as we shall review in section 2. It was recently drawn to our attention 
that a Bethe ansatz integrable impurity model of this type was solved several years ago. Its 
low-energy behaviour corresponds to a conformally invariant boundary condition, but not 
to one of the stable critical points mentioned above. The purpose of the present article is 
to resolve this apparent contradiction. 

The integrable impurity model involves a single spin4 impurity which is coupled 
symmetrically to two neighbouring sites on the chain. The Hamiltonian, found by Andrei 
and Johannesson [7] is 
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where the q ' s  are Pauli matrices and { , 1 denotes the anticommutator. In the following 
we shall refer to (1.1) as the integrable impurity model. The equivalent problem of a 
spin-l chain coupled to a spin-S impurity was solved by Lee and Schlottmann [S], and 
l a m  generalized to a spin-St chain coupled to a spin3 impurity [9]. For S 2 S' it was 
found that in the thermodynamic limit the system' behaves like a spin-d chain with one 
extra site and a decoupled spin Sea of size S - Sf. The S' > 1 models already exhibit 
non-generic behaviour before adding the impurity. In particular these integrable periodic 
models [lo, 111, without impurities, do not exhibit the Haldane gap for integer S'. For a 
discussion see [12]. We shall not consider them further. 

A peculiar feature of the integrable impurity model with Sf = 112 and S 2 1 is that 
the effective, partially screened impwhy at the critical point has spin Sea = S - 112 191, 
despite the fact that the impurity couples with equal strength to two spin-112's. This 
seems contradictory since, if we assume that the critical point comporids to an infinite 
antiferromagnetic coupling then we would obtain Sea = S - 1. Furthermore, our RG 
analysis indicates that in any event if Sea j4 0 a stable critical point must correspond 
to the open chain. Our furthm analysis of the integrable impurity model with S = 1, 
discussed in section 3, indicates that the critical point corresponds to the periodic chain 
with Sea = S - l/2 = 1/2. It is as if the impurity spin 'splits in half, donating an extra 
S = 112 spin to the periodic chain and leaving behind a decoupled s = 1/2 impurity (see 
figure 1). 

Figure 1. The S = 1 impurity effectively 'splils in hale, donating an e x w  S = 112 impurity 
to the chain. 

We argue below that this corresponds to an unstable critical point which is peculiar to this 
Hamiltouian. Generic Hamiltonians renormalize to the stable fixed points mentioned above. 
Thus it appears that the conditions for integrability somehow 'fine-tune' the impurity-model 
Hamiltonian so that it corresponds to an unstable fixed point. The same phenomenon was 
found earlier for integrable periodic chains of spin Sf 2 1 [12]. 

In the next section we briefly review our RG analysis which shows that the integrable 
impurity model cannot correspond to any of the known stable fixed points. We then 
conjecture that it corresponds to the particular unstable fixed point mentioned above. In 
section 3 we analyse this unstable fixed point. In particular, we find that the RG flow to 
this fixed point is governed by two marginally irrelevant operators which lead to finite-size 
corrections which only go away with the inverse logarithm of the chain length. Fortunately, 
we are able to calculate energy eigenvalues for chain lengths up to 5000 using the Bethe 
ansatz. This enables us to analyse in detail the logarithmic behaviour and show convincingly 
that our conjecture is correct. In section 4 we analyse the effect of perturbing the couplings 
to the impurity. We conjecture a general RG flow and phase diagram and attempt to test it 
numerically. The non-integrability limits the maximum chain length to about 20. Because 
of the presence of two marginal operators it is difficult to draw definitive conclusions from 
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these calculations but they seem to be consistent with our conjecture that the integrable 
impurity model corresponds to an unstable fixed point. 

2. Review 

The continuum limit of the S = 112 Heisenberg antifemmagnet. S; = (1/2)oi, can be 
written in terms of a free boson, with a particular value of the 'compactification radius' 
(or Lagrangian normalization) which enforces the SU(2) symmetly. (For a review see 
[61.) This model is equivalent to the SU(2) Wess-Zumino-Witten model (WZW) with Kao 
Moody central charge, k = 1. The uniform and staggered magnetizakon correspond to two 
different operators. Thus the spin operators, St = (1/2)o;, becomes: 

Si % (JL + JR) + (-1)'constant. trhcr. (2.1) 

Here JL and JR are the left and right-moving spin densities or currents Bnd h is an SU(2) 
matrix field. The current operators have scaling dimension x = 1 while h has x = 112. 
Using the operator product expansion, it can be shown that, 

We now review the effect of local perturbations upon the open and periodic chain fixed 
points. 

The various types of local perturbations of the periodic chain corresponding to quantum 
impurities c& all be expressed in terms of J = JL + JR and h, the former operator being 
marginal and the latter relevant. In fact, most perturbations generate relevant operators, the 
only exception being perturbations symmetric under site-parity Ps, i.e. reflection about a 
site, which do not involve an external spin. In this case the parity symmetry ensures that 
all terms involving trh cancel. A perturbation which is not invariant under Ps will generate 
tr h under a renormalization group transfonpation. Let us now consider perturbations that do 
involve an extemal spin. A Ps invariant coupling, i.e. oi .S, to an extemal spin S generates 
the relevant operator t rhu  - S ,  as can be seen from (2.1). (Note that t rho  . S is a relevant 

- operator since a decoupled impurity has zero scaling dimension.) For equal Heisenberg 
coupling of two neighbouring chain-spins to the impurity, symmetric under link-parity, i.e. 
UI S + UL . S, the t r h o  . S terms cancel. However, tr h is generated since in this case 

- 
the site-parity, Ps, is broken.Hence we arrive at the important conclusion that a periodic 
chain with a decoupled impurity is not a stable fixed point, since relevant operators always 
will be present 

The situation isdifferent' for the open chain. In this case the boundary operator 
formalism identifies left and right-moving operators and the chain-end spins become: 

s* cc J*. 

Here + and - refer to the two sides of the break in the chain and J = JL = JR. 

Since h doesn't appear as a boundary operator, -all perturbations of the open chain are, 
at most, marginal. A weak coupling of the two sides of the break is irrelevant A weak 
coupling to an external spin generates ( J+  + J-) . S ,  which is analogous to a Kondo 
coupling. It is marginally relevant for antiferromagnetic coupling and marginally irrelevant 
for ferromagnetic coupling. Hence the open chain with no decoupled impurity or with an 
impurity whose coupling flows to zero from the ferromagnetic side are stable fixed points. 



Let us now consider the stable fixed points for open spin-chains with link-parity 
symmetric couplings to an external S = 1 impurity, a class of models which includes 
the integrable one. The case of a simple Heisenberg coupling: 

Himp = J(u1 + UL) ' S (2.6 

was discussed earlier [6]. If J c 0, it renormalizes to zero leaving the open chain with 
a decoupled S = 1 impurity. If J > 0 it is marginally relevant and we assume that it 
renormalizes to w. This produces an open chain with two sites removed and no leftover 
impurity in the low-energy theory. 

The excitation spectrum of a long chain of length L contains towers of states with 
spacings of 0(1/L) up to higher-order corrections. This low-energy spectrum, which is a 
universal property of the fixed point, is reviewed in [6] ,  for periodic and open chains. Some 
of the first few states are given in table 1 of the present paper. Note that spin chains of even 
length, L, with periodic or open boundary conditions, have parity even (odd) ground-states 
for L/2 even (odd). To 0(1/L), the spectra are identical for L/2 even or odd apart from 
a parity flip for all states. Thus we see that in specifying the various fixed points we must 
be careful to specify the ground-state parity. The infinite antifemmagnetic J fixed point 
referred to in the previous paragraph corresponds to a ground-state with reversed parity 
compared to J = 0, since two spins have been effectively removed from the chain to 
screen the impurity. We will take the original chain length to have L/2 even. Thus this 
screened fixed point has a ground-state with SF = 0-, where ST is the spin of the state 
and P its parity. We label the renormalization group fixed point corresponding to an open 
chain with no parity Kip as open+; we label the fixed point with the p ~ t y  flip as open-. 
The open chain with no parity flip and a leftover decoupled S = 1 impurity is labelled 
open+ x (S = I). Thus a negative J renormalizes to the open+ x (S = 1) fixed point and 
a positive J renormalizes to the open- fixed point. 

Table 1. The low temperature specwa showing only the four states O+. 0-. I+. 1- for the 
various fixed points. L is divisible by 4, x = L(En - Eo)/&v. 

Inlegable model: Open chain 
periodic chain Open chain Open chain of L sites with 
of L + l sites with of L - 2 sites of L or L - 4 sites decoupled spin-l 
decaupled spin-li2 impurity with singlet with singlet impurity 

x PI open- OW+ open' x (S  = 1) 

Let us now consider the integrable impurity model of (1.1). The Bethe ansatz results of 
[9] indicate that the magnetization has Curie form as T + 0 with magnitude corresponding 
to a decoupled S = 112 impurity. It is quite easy to see that such a fixed point will not arise 
in a link-parity invariant model from the type of analysis used above, where it is assumed 
that all couplings renormalize to rn or 0. If a single chain-spin coupled most strongly to the 
impurity it could partially screen it, leaving an effective S = 112 impurity. However, with 
link-parity, this type of analysis always produces changes in the effective spin by integer 
units. The other possibility is that the S = 1 impurity effectively 'splits in half, donating 
an extra S = 112 to the chain and leaving behind a decoupled effective S = 112 impurity 
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(see figure 1). The coupling of the rest of the chain to the 'donated' S = 1/2 must 'heal', 
i.e. renormalize to the same value as in the rest of the chain. Such a healing phenomena 
was shown to occur for an S = 112 impurity wupled symmetrically to two neighbouring 
sites in a chain 161. However, this does not correspond to a stable fixed point in the present 
case because of the dewupled S = 1/2 impurity. A residual coupling of this to the healed 
chain is relevant, as discussed above. It generates the operator, -A1trho Sfi, where Sea 
is the effective S = 1/2 impurity. 

We now propose a resolution of this dilemma. Due to the very particular nature of 
the integrable Hamiltonian (1.1) the relevant coupling, A', referred to above, vanishes. Of 
course, if we were to make an infinitesimal change in any of the lattice coupling const+ts 
near the impurity, we should expect that this relevant coupling inihe fixed point Hamiltonian 
would generally become non-zero. In the next section we explore, using both RG and finite- 
size Bethe ansatz analysis, this hypothesis about the integrable impurity model itself. In 
section 4 we use RG and the modified ~ a n c i o s  met&& to study perturbations of the integrable 
impurity model. 

3. The integrable impurity model 

We now want to study the integrable impurity model in more detail. As stated above, we 
hypothesize that it renormalizes to the unstable fixed point corresponding to the S = 1 
impurity breaking up into two S = 112 spins, one of which is adsorbed into the chain and 
the other of which decouples (see figure 1). We assume that the chain originally had length 
L; hence, after adsorbing the extra S = 112 variable, it has the effective length i = L + 1. 
For this decoupling to occur, the relevant coupling of the extra spin to the chain, discussed 
in the previous section, must be 'fine-tuned' to zero. The next most important coupling to 
consider is then the marginal coupling of the impurity to the periodic chain. This can be 
written: 

where JL,R(x) is the spin-density of left (right)-movers and See is the effective impurity 
spin assumed to have size 1/2. v,  the spin-wave velocity, plays the role of the velocity 
of light in the conformal field theory. Its value, v = n/2, is known exactly from the 
Bethe ansatz. A positive A corresponds to a ferromagnetic coupling. The total spin of the 
left-movers is given by: . . 

and similarly for the right-movers. The total spin of the periodic chain (not including Sea) 
is 

The b-function for A is calculated in appendix B of [I]. (See equation (B10.) There a 
positive A is antifenomagnetic.) The calculation is identical to that for the Kondo problem 
and the result is: 



Although. in that appendix we only have the left-moving part of J ,  the two parts of the 
interaction renormalize separately so we get the same b-function. Note that a ferromagnetic 
coupling is marginally irrelevant. Solving, we obtain the effective coupling, constant at scale 
l in terms of the effective coupling constant at scale lo as: 

Thus, if the integrable impurity model is to renormalize to the proposed fixed poinf the 
marginal coupling, A must be ferromagnetic (i.e A > 0) in addition to the relevant coupling 
vanishing. There is no particular reason for the marginally irrelevant coupling, A to be 
strictly zero, and indeed we shall see that it is not. Such a marginally irrelevant coupling 
leads to corrections to the asymptotic behaviour which only vanish as I/ Inl. Consequently, 
it becomes difficult to conclude very much about the critical behaviour from finite-size 
calculations unless exponentially long chains can be studied. Fortunately, this is possible 
using the Bethe ansatz. 

A similar difficulty was already encountered for the periodic S = 112 chain, without 
any impurity. In that system there is a 'bulk' marginal operator: 

(Recall that dimension rwo bulk operators are marginal, but dimension one boundary 
operators are marginal; the difference arises from the integral over dx in the former case.) 
In this case, the renormalized coupling is given by [13]: 

As first pointed out by Cardy [14], and applied to the study of periodic Heisenberg chains 
in 1131, the effect of such marginally irrelevant couplings on the finite-size spectrum can be 
calculated in perturbation theory in the effective coupling constant. 

At a conformally invariant fixed point, excitation energies, take the form [15]: 

where Eo is the ground-state energy and the scaling dimensions, x., are universal. The x.'s 
for the lowest energy state of given SL, SR can be written: 

xn = (sd2 + (SR)'. (3.9) 

(see for example [If). The total spin multiplets are determined by the usual angular 
momentum addition rules, ISL - SRI G &bin G SL + SR. For an even length chain SL 
and SR are either both integer or both half-integer, for an odd length chain one of them is 
integer and one is half-integer. 

The ground-state energy takes the form: 

where €0 = ln2, the ground-state energy density, is non-universal and the universal 1/1 
correction is proportional to c, the conformal anomaly parameter; c = I for the S = 112 
chain. 
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The excitation energies receive corrections in first order perturbation theory in the bulk 
marginal coupling constant, g 14,131: 

4n 
8% = --g(l)S, - s,. 

43 (3.11) 

Note that this dot product can be determined from SL, SR and Shin: 

The ground-state energy only obtains a correction of third order in g(1) [14,13]: 

The integrable impurity model has two marginal coupling constants, g(1) and A(& 
producing two sources of logarithmically slow finite-size behaviour. The corrections due to 
g will be the same as for the periodic chain, given above. We now calculate the corrections 
due to the marginal boundary coupling constant, A. 

There is a first-order correction to the excitation energies. Since, for A = 0, the chain 
is translationally invariant, for any eigenstate, 

The marginal coupling of the impurity to the periodic chain, (3.1), will then give rise to a 
finite size correction of the scaling dimension of the following form 

This can be expressed in terns of the observable total spin of the state, ST where 
ST = Sfhain +Sew. the spin of the periodic chain, S&,, and the impurity spin, S,i = 112, 
giving: 

Combining the various terms we obtain 

where the effective length, I, for the integrable impurity model is 1 = L + 1. 
The correction to the energy of the ground state, which has SL = SR = Schain = 0, 

ST = 112, vanishes to first order in A, so let us consider next order. We can express the 
second-order correction in terms of the expansion of the partition function in powers of h 
in the zero-temperature limit This gives: 



Thus the correction to the ground-state energy is: 

We also need: 

(01 J t ( r )  ~:(0)10) = ~ ' ~ / 2 ( v r ) ~  

and the same for JR. (Left and right are uncorrelated. See [I] for the normalization.) This 
is just the free fermion current Green's function. This is the result for an infinite system. 
To get the result for a finite system we make a conformal transformation to map the infinite 
plane onto the cylinder of circumference I ,  or else just work out explicitly the free fermion 
current Green's function with appropriate boundary conditions. The result is: 

Note that the r integral in (3.18) diverges as s -+ 0. This is an ultraviolet divergence 
which would be cut off by the lattice spacing of the spin chain. It is simplest just to put 
in a cut off on the r integral, Irl > LO. To evaluate the integral we change variables to 
u = tanh(nvr/l), giving: 

where uo FS rvrO/ l .  (We assume 1 >> ro.) Thus 

Note that the first, cut-off dependent term, is a non-universal contribution to the 1- 
independent part of Eo. The second is a correction to c: 

The universal ground-state energy correction is second order in A but third order in g; we 
find that the A correction is much larger. Assembling the various terms the ground-state 
energy takes the form: 

where we should use 1 = L + 1 for the integrable impurity model. Here EO = In2, and 
from the work of Schlomnann [9] 61 = ;(*(3/4) - *(5/4)) 2 -0.4292036733, where + is the digamma function. 
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The ground state, with ST = 112, occurs for L odd corresponding to the effective 
length, 1 = L + 1, being even. All states occumng for even L are regarded as excited 
states. In applying (3.17). the values of g(1) and A(1) are expected to interpolate smoothly 
between even aqd odd I. In table 4, we give all the relevant quantum numbers for the first 
few lowest energy states. Note that the states with half-integer S,j,& all come in pairs of 
opposite parity, obtained by interchanging the quantum numbers SL i d  SR. These pairs 
are degenerate including O(A) corrections. Presumably they are, for more general models, 
split by corrections of higher order in irrelevant operators. However, as we shall see, for 
the integrable impurity model they remain exactly degenerate. 

In what follows, we test these formulae in two different ways. One way is to confirm 
that all energy levels that we consider are given by these formulae with the same values for 
g(1) and A(1) for a given length 1 = L+1. We expect small discrepancies to occur because of 
corrections in higher orders of perturbation theory; however, these should become smaller 
at larger I. Secondly, the functions g(1) and A(/) should be given by the lowest-order 
,&function results, (3.5) and (3.7) for sufficiently large 1. 

Following Andrei and Johannesson [7] the Bethe ansatz equations, for the integrable 
Hamiltonian of (1.1). are 

where L is the number of S = 112's. The number of roots, M determines the total Sz 
component through the relation Si = $ L  + 1 - M. In termsof the solutions, Ar., to the 
Bethe ansatz equations (3.27) the energy is given by 

One should note that the energy, EH,  of the Hamiltonian (1.1) is related to E by 
2 E ~ = E + + L + $ .  

The Bethe ansatz equations are solved numerically by first making the assumption that 
the solutions occur in strings of length n. 

and then solving (3.27) for the centres of the strings, A;.,?. If v, is the number of strings o'f 
length n then we must have 

The string assumption is then relaxed and the full Bethe ansatz equations are solved by a 
Newton-Raphson method using the string solution as the starting point. 

For chains of even length, L + 1, corresponding to an odd number, L,  of sites with 
S = 1/2 and one spin S = 1, we determine the three lowest-lying levels, Elp ,  Ej12 
and ETI,. Here the index refers to the total spin, ST, of the state. The ground-state Ell2 
corresponds to a solution with ( L  + 1)/2 real roots and no strings, E3/2 is a solution with 
( L  - 1112 real roots and ETIz has ( L  - 3)/2 real roots plus a 2-string at x f  i(n/2+6) where 
6 is a small positive number quickly approaching zero for long chains, and x is non-zero. 



Table 2. Spectrum of the integrable impurity model for even chains, wmponding ta an odd 
number, L, of sites with S = 112 ~ l u s  one svin S = 1. The levels shown are the mound scare, 
E112. which has S = I/Z, thi  f i i t  excitedilate. E3p ,  which has S = 31% and the second 
excited state. E;,. which has S = 112. 

L - E m  - E m  -Err, 

Table 3. SpeeVvm of the integrable impurity model for odd chains, corresponding to an even 
number, L, of sites with S = 112 plus one spin S = 1. The levels shown are the p u n d  state. 
E l ,  which has S = 1, and the secmd excited state, E2, which has S = 2. 

The results for these three levels are given in table 2. For chains of odd length, L + I ,  
corresponding to an even number, L, of sites with S = 112 plus one site with spin S = 1, 
we determine the two levels El and Ez. E l ,  the lowest lying state, is a solution of the 
Bethe ansatz equations with L/2 real roots. We were not able to obtain the first excited 
state, Eo, by the Bethe ansatz scheme. The next excited level, Ez, has L / 2  - 1 real roots. 
The results for El and EZ are summarized in table 3. 
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Table 4. The quantum numben SL, SR. Shin. SL . SR. Slhain . Sa.  and x for the five levels, 
describing the integrable impurity model. 

SF SL SF. SEhain SL' SR &hin 's& X 

L + l  Odd 
2+,2- 1 112 312 112 . 314 514 
o+. 0- 112 o 112 o -314 114 
I+, I -  112 o 112 o 114 114 

L + l even 
112-+ 112 112 0 -314 0 112 
112- 112 112 1 114 -1 112 
312- 112 112 1 114 112 112 
1/2+ 0 0 0 0 0 0 

These states exhibit some remarkable degeneracies, for finite L. Equation (3.27) is 
invariant under the operation, ( A k ]  + ( -Ak} .  Thus, in cases where the set of roots is 
not symmetric about 0, a pair of degenerate solutions is obtained, if we assume that the 
corresponding wavefunctions are linearly independent as can be verified for short chains. 
This is the case for all solutions discussed above with even L and also for (112)'. The even 
L degeneracies can be understood from the picture of the RG fixed point corresponding to a 
periodic chain of ( L  + I) S = 112 and a decoupled S = 112. The periodic odd-length chain 
has a large exact degeneracy for finite L. This follows from the fact that the ground-state 
does not have zero momentum. Instead it consists of two degenerate doublets, (1/2)* with 
momentum fko. As L -+ co, we expect ko + n/2.  By forming linear combinations of 
these states we can form positive and negative parity eigenstates. All low-lying states have 
momentum close to i n / 2  and consequently also wme in parity doublets. In the conformal 
field theory picture, the parity doubling arises from the fact that the periodic chain of odd 
length, L + 1 has SL integer and SR half-integer or vice versa. The corrections to the 
excitation energies of first order in g and A (3.17) do not lift the degeneracy. This must be 
true to all orders in g and all other irrelevant bulk operam for the periodic chain. On the 
other hand, we expect that higher-order corrections in irrelevant boundary operators will, 
in general, lift the degeneracy since momentum is not, in general. a well defined quantum 
number for the impurity system. Remarkably, this does not happen for the integrable 
impurity model and the degeneracy remains exact Even more surprising is the degeneracy 
for odd L. In this case the corresponding periodic chain has even length, L + 1 and does 
not exhibit any exact finite-length degeneracies. Nonetheless, such a degeneracy occurs for 
the (1/2)** states. We see from table 4 that thii occurs via a cancellation of the O(g) 
and 0 ( A )  marginal corrections. At large I ,  using A(1) -+ l / ln(l) ,  g(1) + ln(1) the 
correction to x,, becomes: 

[SL. SR + Schain - SeffJ &as the value -3/4 for both the (1/2)*+ and (112)'- state. The 
splitting of these levels by the marginal bulk operator is cancelled by the splitting due to the 
marginal boundary operator! Furthermore, this cancellation must be exact to all orders in 
irrelevant bulkand boundary operators. This suggests the existence of some sort of hidden 
symmetry in the integrable impurity model reminiscent of the Yangian symmetry discussed 
recently for the l / r 2  periodic Heisenberg chain [16]. 

We can now try to extract the coupling constant, A(1) defined in (3.1), as determined 
from the five levels, E1/2, E 3 p  E&, E l  and Ez. The bulk marginal coupling constant, 



g(l), has already been determined from finite-size analysis of long periodic chains without 
the impurity [13]. We shall use this as input and determine the boundary marginal coupling, 
A(1) from our data on the integrable impurity model. Thus the only free parameter is h(1). 
Note that (ID) is the ground state so we fit its energy to (3.26). The other four are excited 
states so we fit their excitation energies by (3.17). The different estimates of A([) obtained 
from the different energy levels are shown in figure 2. Notice, first of all that A is positive, 
corresponding to a ferromagnetic, marginally irrelevant coupling of Sea to the chain. As 
expected the different estimates of A([) are all approximately the same. As 1 increases, the 
estimated couplings approach each other and get smaller. This is shown in the inset in 
figure 2 where (hi - A,,)/A, is plotted as a function of l/log(l). Here ;I, is the average 
of the five couplings. The Ais should only differ by amounts of 0(A2) when h is small and 
we therefore expect (hi -Aav)/Aav to converge to zero linearly in l/ log([) for large enough 
I. This appears consistent with the results shown in the inset in figure 2. 

10 l o o  1000 ioooo 
l=L+ 1 

Figure 2. The coupling mnstant, 4. for the five levels E l p  E s , ~ .  E&. El  and Ez. as a 
function of the effective chain length, I = L + 1. The inset shows (1; - A,)/A,,, where h, 
is the average of the five couplings. We expect Ulis quantiw to converge to ?em linearly in 
If logo). 

We compare A(1) to the one-loop j3-function result (3.5), A,, in figure 3. It is seen 
that the first-order j3-function result is valid for chains longer than 1 - 100, indicating 
that our perturbative results should be meaningful for chains of this length or longer. A 
similar plot for the other coupling g is shown in figure 4. Again we see that the one-loop 
,9 function gives good results for chains longer than a few hundred. As shown in table 4 
the excited state (1/2)'+ does not receive a correction to its excitation ene'rgy of first order 
in A. We can therefore use it to extract an estimate of g(1) independent of the results from 
[13]. This estimate, gllz(l), is also shown in figure 4. It compares nicely to the j3-function 
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Figure 3. The average of the five coupling consfants, Figure 4. The coupling g z  and the average of the 
A,, A = (A112 + A312 + A;; + A I  + A2)/5, as a coupling, g,, from 1131, as a function of the effective 
function of the effective length, 1 = L + 1, compared chain length. I = L + 1, compared to the one-lwp 
to the one-loop renormalization group prediction. Aw = renormalization group prediction, gw = ga,(lo)/(l + 
A,(lo)/(l +Aau(lo) ln(l/lo)). In this plot we have used 4zg,(lo)ln(l/lo)/fi). In this plot we have used 
lo = 1000. 10 = 1000. 

results as well as to the results obtained for the pure periodic S = 1/2 chain in [131. (The 
corresponding plot in [13] contained a numerical error in the calculation of g,.) 

From the above results we conclude that the spectrum of the integrable impurity model 
indeed asymptotically becomes that of a periodic chain with L+l spin-112's and a decoupled 
$# = 112. The impurity spin S = 1 has effectively split in half. The spectrum corresponds 
to column 1 in table 1. 

4. General Hamiltonians 

In this section, we consider the effects of .perturbing the integrable impurity Hamiltonie 
- HI, (1.1) away from its integrable form. A general phase diagram is hypothesized and is 
- 

tested using the modified Lanczos method for general Hamiltonians on chains with L < 20. 
To be concrete, we consider the following two-parameter set of Hamiltonians: 

Here S is the S = 1 impurity. Jl = 1, Jz = 0 is the integrable impurity model, and JI = 0 
corresponds to the models discussed in [6]. J1 = J2 = 0 is the simple open chain with 
a decoupled S = 1 impurity. By combining our understanding of the phase diagram near 
l Jil = 0, IJiI -t cc and the integrable impurity model, we hypothesize a general phase 
diagram. 



The vicinity of 141 = 0 can be readily analysed. Near the open chain fixed point 
the terns {a1 . S, UL - S] and a1 . UL in (4.1) contain a product of both chain-end spins 
a1 and UL. In the continuum limit they correspond to a dimension 2 irrelevant operator 
containing the product of J+ and J- .  Thus for small Ji we may approximate the impurity 
part of the Hamiltonian, HI, by (2J1/9+ J2/2)(uo + u ~ )  S. This is marginally irrelevant 
for (J2 + 451/9) < 0. Thus, for (J2 + 4J1/9) c 0. the system renormalizes to the fixed 
point consisting of the open chain with a decoupled S = 1 impurity which we denote by 
openi x ( S  = 1). For (h + 45119) > 0 the coupling is antiferromagnetic and therefore 
marginally relevant We expect it to renormalize to w ,  screening the impurity and effectively 
removing two sites from the chain. This produces a parity flip, giving the open- fixed point. 
(Recall from section 2 that the removal of two spins from the open chain by the screening 
process reverses the parity.) This transition is w-order since it is driven by a marginal 
operator, i.e. the cross-over length scale diverges exponentially as (2Jl/9 + 5212) -+ 0 
from positive values. 

Figure 5. Schematic drawing of Ule pund-stale wavefunctions for the three-spin system 
depending on 4. '0' denotes ihe S' = 0 sIate of the S = 1 impurity. 

Let us next consider what happens in the limit 1 Jil+ co. In this limit we must find the 
ground state of the three-spin system, S, ul, UL, of HI. Depending on the A's, the ground 
state has spin and parity Of, lf or 2+. These wavefunctions are depicted schematically in 
figure 5, as are the regions of stability of the three states. The O+ case leads directly to a 
stable fixed point when we include the relatively weak coupling of these three spins to the 
rest of the chain. These couplings are irrelevant, leaving the open chain fixed point open-. 
The 2+ impurity state, however, is unstable because the effective S = 2 impurity is coupled 
antiferromagnetically to the chain. Assuming this coupling flows to w ,  the impurity is 
partially screened, ieaving an effective S = 1 impurity with aferromagnetic coupling to 
the rest of the chain. ~ e n c e ;  it will renormalize to 0. Since four sites are involved in 
producing the effective S = 1 decoupled impurity, there is no parity flip. Thus we obtain 
the opent x (S = 1) phase. Of special interest is the lt ground state for the three-spin 
complex. U I  and or. form an S = 1 spin, symmetric under interchanging these two spins. 
This then couples to the S = 1 impurity to form a state of total spin 1. Note that neither the 
minimal spin (0) nor the maximal spin (2) occurs. The biquadratic term in HI, involving 
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the anticommutator, is necessq to assure that this happens. Thus we begin to see how 
the integrable impurity model can have different behaviour than the simpler one discussed 
above, with J, = 0. The 1' state of the three-spin cluster does not correspond to a stable 
fixed point since the rest of the chain is coupled antiferromagnetically to the effective S = 1 
impurity, and such a coupling is marginally relevanr We expect this coupling to the next 
two spins in the chain, crz and UL-, to also renormalize to w, screening the effective 
impurityand leading to an open chain fixed point with no leftover impurity spin. In this 
case, four chain-spins are involved in screening the impurity in a parity-symmetric way, so 
that the stable fixed point is open+. 

For large I Ji 1, we expect the above three different stable phases to occur, with the phase 
boundaries asymptotically approaching those of the three-spin system, as drawn in figure 6. 
Note that the open+ x (S = 1) phase is equivalent to Ji = 0, an open chain with a dewupled 
S = 1 impurity; we may think of this entire phase as renormalizing to the origin. The open+ 
and open- phases, however, are characterized by impurity couplings renormalizing to m. 

I fist order phjse transition line - second Omer phase transition lhne 

- - 1n8nile ode,  phase transiilon line 

@ critical point 

Figure 6. The conjectured phase diagram for the general Hamiltmian (4.1) in the parameter 
space 31. 32. The couplings A, A' are &lined in the vicinity of the multi-critid paint PI in 
(4.2). The couplings e. e i  are defined in the vicinity of the multi-critical fixed point, &, in (4.3). 

We have established, in the previous section, that the integrable impurity model 
renormalies to a fixed point in which the S = 1 impurity effectively splits in half, one 
extra S = 112 being absorbed by the chain and the other decoupling. This can only occur 
if no relevait operator connects the periodic chain to the decoupled S = 112 spin. We 
now analyse the effect of small perturbations around the integrable impurity model by 
considering the periodic chain with both marginal and relevant couplings to the effective 



S = 112 impurity, i.e. we consider the continuum limit Hamiltonian consisting of the k = I 
wzw model with two local perturbations: 

The integrable impurity model has A' = 0, A > 0; i.e. the relevant coupling vanishes and the 
marginal one has the irrelevant sign. An infinitesimal perturbation of the integrable impurity 
model will, in general, produce a non-zero A'. The resulting behaviour was discussed in 
[6], in the context of a simple coupling of an S = 112 impurity to a single site in a periodic 
chain. We expect that A' will renormalize to f m beginning from an infinitesimal positive 
(or negative) value. The negative case, corresponding to an antiferromagnetic coupling, 
leads to screening of Sea by a single site in the chain. The stable fixed point is an open 
chain with one site removed, openc. For A' > 0, the ferromagnetic case, Sfi and the site 
to which it is coupled form an effective S = 1 impurity. However, this is not a stable fixed 
point. The S = 1 effective impurity is coupled antiferromagnetically to two neighbouring 
spins. We expect this coupling to renormalize to m, screening the effective impurity. Once 
again the stable fixed point is an open chain. However, in this case, three chain spins are 
involved in the screening process and get removed from the effective open chain at the 
stable fixed point. As discussed in section 2, the parity of all low-energy states is flipped 
relative to the case where a single chain-spin is removed. Thus the stable fixed point in 
this case is the open-. We see that the unstable critical point, A' = A = 0, to which the 
integrable impurity model renormalizes separates the stable open' and open- phases. 

We now turn to a discussion of the order of the phase transition separating the open' 
and open- phases. We expect that a second-order critical line will exist for a finite range 
of positive A with A' = 0 governed by the A = A' = 0 critical point. On the other hand, if 
the marginal coupling A < 0, then it is relevant and renormalizes to large values. In this 
case, the simplest assumption is that A + -m; otherwise we would be forced to postulate 
another non-trivial critical point. In general, when impurity couplings renormalize to m we 
expect a first-order phase transition. The reason is that we can then ignore any couplings 
of the impurity complex to the rest of the chain. In this particular case we can consider 
only the S = 112 impurity and three chain spins. This cluster of four S = 112's has a Ot 
or 0- ground state depending on the various couplings. The phase bansition in this limit 
is a simple level-crossing in the four-spin system and is therefore first order. The critical 
point, PI, at A = A' = 0 is on the phase boundary between open' and open- phases and 
separates the second- from first-order transition lies. The integrable impurity model, which 
was shown in the last section to have a non-zero positive A, lies on the second-order part 
of the phase boundary. 

Now we attempt to combine our information about the small Ji, large Ji regions and 
the vicinity of the integrable point. Our large Ji analysis .tells us that there are three 
stable phases, open-, openi and open+ x (S = 1). Our analysis of the vicinity of the 
integrable impurity model tells us that it should be on the open-+pen+ phase boundary. 
It renormalizes to a critical point, PI in figure 6 where this transition changes from first to 
second order. 

The open- phase occurs when we increase JZ fmm PI. This is to be expected because Jz 
corresponds to a coupling of See to the two nearest neighbours, ul, UL, not to theadjacent 
spin no, as shown in figure 7. Antiferromagnetic Jz, i.e. A' > 0, leads to a screening of Sea 
by uo, uj and UL. The removal of UO, u1 and U L  from the open chain leaves a chain with 
L - 2 sites and thereby implies a parity flip. L? figure 8 we show a Lanczos calculation 
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Figure 7. SCft couples with smngth h to the two Figure 8. Scaled energy gaps, L(E - E , + ) / ~ R v .  as a 
nearest-neighbour spins, ol and UL. Antiferromagnetic function of Jz (JI  = 1, L = 20). 
h leads to screening of S.s by three chain spins and 
hence to the Open- phase. 

of some low-lying states for length 20, as a function of J2. The open- specaum shown in 
table 1 occurs for positive Jz. The Lanczos results are discussed in more detail below. 

We see that there must be another multi-critical point in the phase diagram where all 
three stable phases meet, PZ in figure 6. This point is presumably not at the origin since 
there is only one marginal operator in the vicinity of the origin, (ZJ1/9+ Jz/2)(uo+fa~) . S ,  
as discussed above, so we only expect two phases to meet at that point. We hypothesize 
that this higher multi-critical point corresponds to an open chain with fwo S = 112 effective 
impurities, S1 and S2, decoupled from the chain and from each other. i.e. the original S = 1 
impurity effectively breaks up into two S = 112 impurities, with everything decoupled at 
the multi-critical point. There is one relevant coupling and two marginal ones at this critical 
point. We write these, in the lattice model as: 

(see figure 9.) We now analyse the phase diagram for this model. Since the impurity spins 
have zero scaling dimension, the coupling e is highly relevant. Assuming that a non-zero 
e renormalizes to f oo, the two impurities lock into a singlet leaving the open chain fixed 
point, open', for e > 0. For e c 0 they lock into an effective S = 1 impurity. If both 
couplings e; c 0 (ferromagnetic), this S = 1 impurity decouples, giving the open+ x (S = 1) 
phase. On the other hand if at least one of the couplings ei is antifemmagnetic, then the 
effective S = 1 impurity is screened, giving the open- phase. The open+ x (S = 1) -open- 
phase transition is equivalent to the one discussed in the second paragraph of this section. 
It is therefore of w-order. Note that the open+ x (S = 1) to open+ phase transition is 
controlled by the multi-critical point, Pz at e = el = 0. This transition is governed by the 
relevant coupling constant e ,  which only involves the two impurities and not the rest of 
the chain. Thus it corresponds to a simple level-crossing in this two-spin system and so 
should be first order. We hypothesize that, as we move along the critical line, where e = 0, 
one of the marginal couplings, say el, changes sign at the multi-critical point, while the 
other remains ferromagnetic. The transition between open- and open+ phases, for el > 0, 
is governed by the behaviour at el of O(1). We know that a single S = 112 impurity 
with such a coupling to an open chain will get absorbed by the chain, i.e. the defect heals 
and the fixed point is the periodic chain with an extra spin. Thus it is plausible that this 
phase boundary is second-order and renormalizes to a periodic chain with a single decoupled 



S = 112 impurity. Note that the continuation of the openix (S = l)-open+ phase boundary 
is the open--openf phase boundary, but the order of the transition changes from first to 
second, as drawn in figure 6. This follows from the fact that both phase boundaries are 
governed by the vanishing of the relevant coupling constant, e. The system renormalizes 
to PI by one of the impurities being absorbed into the chain. It renormalies to the origin 
by the two impurities locking into a decoupled S = 1 impurity. 

IGgure 9. The unstable fixed point 5 occulring in the Figure 10. Scaled energy gaps, L(E - E l + ) ; 2 ~ v .  as a 
phase diagram. figure 6. function of JI (h = 0, L = 8.20). 

Altogether there are five different critical points; three occurring at finite coupling, 
PI ,  P2, open+ x ( S  = 1) and two at infinity, open+, open-, as shown in figure 6. Various 
sections of the transition lines are first, second or infinite order. The detailed shape of the 
phase boundaries depicted schematically in figure 6 is not known. What is known is (i) 
the asymptotic slope of the three phase boundaries at 1 Jil -+ w, (ii) the slope of the phase 
boundary at the origin and (iii) the fact that the integrable impurity model at JI = 1, Jz = 0 
lies on the open--open+ phase boundary. 

We now discuss our numerical results on chains of length L $ 20. We emphasize at 
the outset that we are fighting finite-size corrections that vanish logarithmically slowly from 
two sources: the bulk marginal coupling, g of section 3 which is present everywhere in the 
phase diagram and the marginal boundary operator h which is present in some parts of the 
phase diagram. Thus we can only expect ow results to be of qualitative value. 

In figure 10 we present the scaled energy gaps, L(E - E l + ) / k v ,  for the four states 
with quantum number 0+ and 1+ as a function of JI with J2 fixed at Jz = 0. In figure 10 
the integrable impurity model thus corresponds to JI = 1. 

First, let us consider what happens as we increase JI away from its value, J1 = 1 at 
the integrable impurity model. We see that the 0+-1- gap drops rapidly with increasing 
J1. This is to be expected since, according to figure 6 the system is in the open+ phase. 
Note however, that the Ot state is not the ground-state, even for JI  % 4, for L $ 20. We 
do expect that it would become the ground-stale for sufficiently large L, for any J I  1. 
In figure 10 we show results for two different chain lengths L = 8 and L = 20. As can be 
seen there is some evidence that the 1--O+ gap indeed is closing with increasing L. The 
scaled gaps between the @ - l* states become asymptotically degenerate at JI = 1, the 
integrable impurity model. As seen in figure 10 the 0+ level has the most negative slope as 
a function of JI. It is then plausible that as the gap closes at JI = 1, the Of state crosses the 
1- state for J I  > 1. Even for large J,  this levelcrossing only takes place at large L. The 
reason is that as JI  -+ ca for fixed L, we obtain the ground state of the threespin cluster, 
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1+, times the ground state for the rest of the (open) chain with two sites removed resulting 
in the 1- ground state. Eventually, if JI is kept fixed, the effective S = 1 impurity is 
screened for long enough chains, producing the 0+ ground state, but this process proceeds 
logarithmically slowly. Finite-size scaling analysis, although not very reliable due to the 
marginal operators, seems to indicate that J2 is relevant, as expected. 

Now consider what happens as we decrease J I .  At Jl  = 0 we obtain, approximately 
the open+ x (S = 1) spectrum, shown in table 1, as expected. Note also, the minimum in 
the 1+4- gap which occurs for J I  % 0.7. W~th increasing L we expect a crossing of these 
two levels to occur. Asymptotically the 0- state should lie below the 1+ state for all J I  
such that 0 < J I  < 1, since this region should be in the open- phase. 

Figure 11. The five fixed points and the RG flows occurring in figure 6. '0' denotes the Sz = 0 
state of the S = 1 impurity. 

We now consider the effect of varying JZ away from 0 with J,  held fixed at its integrable 
value, J,  = I (see figure 8). The open- spectrum of table 1 is obtained for large positive 
Jz, as expected. Although we expect to be in the open+ x (S = 1) phase for sufficiently 
large J2 < 0, this is not obvious from figure 8. The problem is that, for Jz + -w for fixed 
L the three-spin complex has an S = 2 ground state giving a 2- ground state including the 
decoupled open chain. The screening of this S = 2 effective impurity down to S = 1 is 
logarithmically slow. Indeed, the open+ x (S = 1) spectrum is best approximated in this 
region for Jz % -0.3. This may correspond to crossing the open--open+ x (S = 1) phase 
boundary, in figure 6 where the marginal boundary coupling vanishes. 



According to the 'g-theorem' the 'ground-state degeneracy', g, decreases under 
renormalization from less stable to more stable fixed points [2]. The value of g for a 
periodic chain [6] is 1 and for an open chain is I/& These values must be multiplied b 
the degeneracy of the decoupled impurity at each critical point. Thus, at Pz, g = 4/ 2 2; 
at PI, g = 2, at the origin, g = 3 1 4  and at the open+ and open- critical points 'at oo, 
g = I/.& We see that, in all cases, the g-theorem is obeyed. A pictorial summary of the 
five fixed points and the co~~esponding values of g are given in figure 11. 

5. Conclusions 

The apparent contradiction between the integrable model and our RG analysis is explained by 
the fact that this model renormalizes to an unstable critical point corresponding to a periodic 
chain with a decoupled S = 112 impurity. Our numerical analysis of the integrable impurity 
model, for L $ 5000, establishes rather convincingly that it renormalizes, logarithmically 
slowly, to this unstable fixed point. Piecing together various bits of information using 
the renormalization group, we have hypothesized a general phase diagram. As discussed 
in the previous section, certain aspects of this phase diagram have been quite well 
established independently of the numerical work reported in that section. Others, such 
as the detailed shape of the open++pen- and open+-open+ x (S = 1) phase boundaries 
at small values of the Ji's have not. These details must be investigated numerically. This 
numerical investigation is made difficult by the logarithmically slow finite-size convergence. 
Nevertheless, all the results obtained are consistent with our phase diagram; indeed using 
them we were able to make an approximate determination of a point on a phase boundary. 
Importantly, we were able to understand in detail why certain features of the thermodynamic 
limit are already evident for L = 20 and others are not. 
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