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Transport and scattering in inhomogeneous quantum wires
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We consider scattering and transport in interacting quantum wires that are connected to leads. Such a setup can
be represented by a minimal model of interacting fermions with sudden changes in interaction strength and/or
velocity. The inhomogeneities generally cause relevant backscattering, so it is a priori unclear if perfect ballistic
transport is possible in the low-temperature limit. We demonstrate that a conducting fixed point surprisingly exists
even for large abrupt changes, which in the considered model corresponds to a velocity-matching condition. The
general position-dependent Green’s function is calculated in the presence of a sudden change, and is confirmed
numerically with high accuracy. The exact form of the interference pattern in the form of density oscillations
around inhomogeneities can be used to estimate the effective strength of local backscattering sources, offering a
route to design experiments where the effects of the contacts are minimized.
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The description of transport through quantum wires has
become a very well-studied research area, as it directly ties
together conductivity experiments'~ with central theoretical
models in one dimension, such as the Landauer formalism®
and Luttinger liquids.® Landauer showed that the conduc-
tance of a single spinless noninteracting quantum channel
is always finite and given by G = (1 — R?)e?/h, where R
is the backscattering amplitude.’ However, interaction effects
change this picture dramatically as R becomes temperature
dependent through renormalization. In the pioneering work
of Kane and Fisher it was found that a local perturbation
in a repulsive Luttinger liquid is relevant, which results in a
characteristic power-law dependence R oc T¢~! where g < 1
is the interaction parameter.’” A number of impurity models
in one dimension have since been analyzed in detail®*'®and
confirm that generically a local perturbation cuts the transport
at low temperatures, unless the relevant operator is forbidden
by symmetry.

Nearly perfect connections between leads and wires can
be achieved for different types of quantum wires,'™ which
show quantized conductance at moderate temperatures. At
lower temperatures, however, scattering in the connections
to the leads plays an increasingly important role. The higher-
dimensional contacts are effectively weakly interacting, so
there has been great interest in describing the transport
through a quantum wire attached to noninteracting leads.'®8
The minimal model for this setup is a single channel of
interacting spinless fermions, where the interaction parameter
changes along the wire. Under the assumption that it is
possible to use a hydrodynamic Luttinger liquid description
for this model,'” it would be expected that backscattering
follows a nontrivial renormalization behavior which is position
dependent.'® Even if the connections are effectively free from
imperfections with a homogeneous lattice structure,® there
have to be small regions of the wire, the junctions, where
the interaction changes, which does not necessarily occur
adiabatically and will induce intrinsic backscattering. This
immediately invites the question if it is ever possible to create
a perfect connection in the low-temperature limit. Indeed it
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is in general unclear how large such intrinsic backscattering
is for generic junctions, and if it is even justified to use an
inhomogeneous Luttinger-liquid description in the first place
for this setup, since the usual bosonization procedure assumes
a translational and scale-invariant theory.

In this Rapid Communication we consider the intrinsic
backscattering in an inhomogeneous wire and show that a
perfectly conducting fixed point can indeed be found by
adjusting parameters such as the velocities on both sides. At
half filling it is also possible to estimate the bare strength of the
backscattering from the change in the local velocity field. The
full correlation function of an inhomogeneous Luttinger liquid
is calculated and agrees with numerical simulations to high
accuracy. This confirms the validity of the inhomogeneous
theory and proves that a low-energy conducting fixed point
can exist even in the presence of large abrupt jumps.

A hydrodynamic description of interacting fermions with
a changing interaction parameter g, leads to a generalized
inhomogeneous Luttinger-liquid action!”-!8
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where ¢ is a canonical bosonic field. Here the effective velocity
u, generally also changes with the interaction strength. We will
derive the corresponding correlation function for an abrupt
jump below. Additionally, however, backscattering must be
considered. In particular, it is known that the Hamiltonian
density contains a leading relevant oscillating operator given
by’
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where ¥, are left- and right-moving fermion fields and kg
is the Fermi wavenumber. Normally this operator can be
neglected under the integral, but this is no longer the case
for inhomogeneous systems. In fact, it is exactly this operator
as a local perturbation which causes the renormalization of
defects in wires’ and spin chains.® The oscillating part of the
interaction results in the same bosonic operator,8 so that even
a change in interaction alone will induce backscattering.
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In principle, the conductance depends on the connections
of the wire to both of the leads. We will concentrate here on
the backscattering in the case where the length of the wire
is larger than the coherence length, which is proportional to
u/ T, so that it suffices to consider each junction separately.'8
A single junction can be characterized by changes taking place
in a small region around x = 0. The field ¢, is assumed to be
slowly varying on the scale of the Fermi wavelength so that it
is possible to use an expansion of ¢, in Eq. (2) and a partial
integration to derive an effectively local perturbation

H' ~ pe V490 L He., A3)

while the oscillating operator cancels everywhere in the
uniform regions. So far we have kept only the leading relevant
operator, but there are higher-order terms which will be
discussed later. In general X is complex, except for particle-
hole-symmetric situations. Even relatively smooth junctions
become effectively sharper and sharper under renormalization,
so that the relevant backscattering is nonzero unless the
amplitude A is adjusted to zero, which requires the fine tuning
of two parameters. As we will see later, it is indeed possible
to identify such conducting fixed points in a lattice model
by an appropriate choice of parameters on both sides of
the junction. The existence of a conducting fixed point is
also of relevance for the discussion about possible charge
fractionalization in Luttinger liquids.»*** If the Luttinger
liquid supports only charges e(1 + g,)/2 related to the chiral
eigenstates of the Hamiltonian on each side of the wire, then
it seems to be impossible that backscattering can be tuned
to zero. Our results thus support the analysis in Ref. 30 that
at such a junction an arbitrary charge can be injected into
a Luttinger liquid.

In order to perform a renormalization group analysis we
have to consider the full partition function

Z:/Dd)e—su—fnl/TdTH’ (4)

with the quadratic action in Eq. (1). For an abrupt change in
the interaction constant at x = 0 from g0 = g¢t0 gx>0 = &»»
and similarly for the velocity u, the general bosonic Green’s
function G(x,x’;7) = (Px.@x.0)0 1s found by matching the
left and right parts. In particular, it is possible to solve

G(x,x/; =T Zeiw,nrém(x,x/) (5)
with
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by allowing a discontinuity in the derivative of G, at x = x'."”

We determine the general Green’s function to be
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where we have defined a new effective interaction parameter
g= 2(? + glr)‘l. Here L[x,x'] is 1 when x and x’ are in the
same region, and 0 when they are not. The renormalization
of a local perturbation in Eq. (3) can be determined with the
help of the Green’s function by integrating out the Fourier
components above a cutoff A,%'® which gives

1 dr
AdlnA

We therefore expect that the effective backscattering renor-
malizes as a power law in the temperature, R oc T8~

As a concrete lattice model we can consider spinless
fermions at half filling,

1 1
H=Y" [_txwiwm T He)+U, <nx _ 5) (nm _ 5)}

C))

where n, = wj Y. The corresponding interaction parameter
g and the renormalized velocity u in Eq. (1) are functions
of U and ¢, which are known from the Bethe ansatz.® For
small jumps and interactions we have estimated the size
of )\ perturbatively; it turns out to be proportional to the
corresponding renormalized velocity field u,,
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with 2kr = 7, so to lowest order it does not matter if the
velocity change occurs due to inhomogeneous interactions
or hopping amplitudes, which may even compensate each
other. In particular, Eq. (10) suggests that a conducting fixed
point can be achieved for a sharp discontinuity by a velocity
matching u, = u,, but the derivation above is valid only for
small interactions. The numerical simulations show that this
condition holds even in a strongly interacting model. Equation
(10) also implies that backscattering can be made arbitrarily
small by very slow “adiabatic” changes.

In order to calculate the backscattering amplitude R
numerically, we use quantum Monte Carlo simulations®! on
systems with an abrupt junction at x = 0, i.e., U, .o = U, and
U.>o = U,, and analogously for the hopping amplitude z,.
For long system sizes L 2 40t /T the boundary condition
at =L /2 becomes irrelevant. The backscattering R induces a
2kr interference pattern in the density, the so-called Friedel
oscillations,'>1%3% which can be calculated directly in the
simulations and also give additional information about the
correlation functions. In particular, we consider the local
oscillating density in a half-filled lattice in response to
changing the chemical potential,

Xx = 7—(nx) , an
N

where the density is bosonized as

X

sin[v4n .1, (12)

1
ny =nyg— ——=90 + const x
X 0 ﬁ x¢x
analogously to the local magnetization and susceptibility in
spin chains %13-32-35
The results for the Friedel oscillations y = xo + (—1)" xa
near an abrupt junction at x = 0 are shown in Fig. 1 for
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FIG. 1. (Color online) The local response in the density x for a
jump in interaction from U, = 0to U, = 1.8¢, at T = 0.1¢,. Circles
(blue): No discontinuity in hopping, #, = t,. Squares (red): The
hopping on the left is adjusted to #, & 1.518t¢, in order to match the
velocities on both sides. Solid lines (black) are fits to the predicted
behavior in Eq. (14) for even and odd sites separately.

a change from U, =0 to U, = 1.8¢, at finite temperatures
T = 0.1t, for two cases: In the case that the interaction
strength changes but the hopping is equal #, = ¢,, we have
uy < u, and strong alternating 2kr = m oscillations are
observed (circles). In the second case, the hopping #, on the
left was also increased in order to exactly match the velocities
2ty = uy = u, ~ 3.036¢, (squares). Clearly, the backscattering
oscillation is strongly suppressed with a different position
dependence, but it is not zero. As the numerical data will show,
it turns out that the relevant backscattering term is exactly
zero in this case. The uniform parts of x, on the two sides
are constant and approximately given by the zero-temperature
result xo = -2, which are not equal in either case. We have
also tested other cases with more complicated changes in
hopping and interactions over three sites in order to tune
A =0 in Eq. (10), and in all cases backscattering is strongly
suppressed.

Let us first analyze the position dependence of the Friedel
amplitude in the case of unequal velocities, which shows a
characteristic maximum in Fig. 1 reminiscent of the local
susceptibility near ends in spin chains.*>3> However, we will
show that the behavior is not exactly of the same form as
for scattering from open ends as was conjectured before.'?
In order to calculate the alternating response in the presence
of the perturbation (3) with small |A| o< |u, — uy| we use the
bosonized form of the density (12),

YT g
X = A f dr - (sin VAT ¢ cosVETuolo. (1)
0 1%

where the dependence on p is given by a shift of the
field d,¢ by j‘f* which turns the sine dependence into a
cosine dependence with an additional factor of x. Using the
Green’s function in Eq. (7), we arrive at integrals of the form
fol dr|sinh(X —in7)|7%¢ = 28%(sinh2X)~%¢ P_;(coth2X)
where P;(z) is the Legendre function. Therefore we
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FIG. 2. (Color online) Effective backscattering amplitude R(T")
on a logarithmic scale extracted from the amplitude of the density
oscillations in Eq. (14) for a jump from (a) U, =0 to U, = 1.8¢
(Tx =3.4x 107*), and (b) U, = 1t to U, = 1.4t witht =1, = ¢,
(Tx = 6 x 107%¢). The amplitudes are extracted from fitting the local
response for x < 0 (“left side”) and x > 0 (“right side”) separately.
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where z = coth[27 T x /u,]. Compared to the scattering from
an open boundary'®*? there are two notable differences:
First of all there is an additional factor in the form of the
Legendre function, which changes the shape significantly
near the scatterer, but quickly approaches unity for x >
u,/mT. Second, there is an additional temperature-dependent
factor proportional to 78~ which is in agreement with the
renormalization behavior predicted in Eq. (8). As can be
seen by the fit in Fig. 1, the behavior (14) describes the
numerical data perfectly, where x is taken to be the position
from an effective scattering center. We have confirmed the
position dependence for many different temperatures and
discontinuities. This unambiguously shows that the action in
Eqg. (1) and the Green’s function (7) leading up to Eq. (14) are
areliable description of the problem.

An interesting detail in Fig. 1 is the maximum in the
noninteracting region where U, =0 and g, = 1, which is
absent for an open end but now arises due to the Legendre
function with g < 1. Physically this can be understood as
a proximity effect, where the behavior in a range on the
noninteracting side is influenced by the collective excitations
on the other side.

The temperature-dependent amplitudes of the fits to the
position-dependent part in Eq. (14) directly give the backscat-
tering R(T) in Fig. 2, where we have used the amplitude from
open ends corresponding to R = 1, which is known exactly, as
the normalization.*>*® The data confirm the predicted power-
law behavior at low temperatures. Note that the independent
fits on both sides give roughly the same R(7'). For the larger
jump in the interaction U = 1.8t¢, there are deviations at higher

121302-3



SEDLMAYR, OHST, AFFLECK, SIRKER, AND EGGERT

.
Xalt |

e up = 0.98u,
— =,
o~y = 1.02u,

0.011-|"

FIG. 3. (Color online) The alternating part of the density oscil-
lations at 7 = 0.1#, on the interacting side U = 1.8¢,, where the
hopping on the noninteracting side is adjusted so that u, = 0.98u,,
uy = u,, and uy = 1.02u,, respectively.

temperatures coming from higher-order operators (left panel).
Below a characteristic temperature Tx we expect the power law
to break down as the stable fixed point R(0) = 1 is approached,
but this energy scale could not be reached in the simulations.

In order to find a conducting scenario in the low-
temperature limit, it is interesting to analyze in more detail
the case of equal velocities u; = u, with strong discontinuities
in both hopping and interaction. As shown in Fig. 1 density
oscillations are still observed in this case, but we are interested
only in the contribution of the leading relevant operator in
Eq. (3), which will grow while the temperature is lowered and
must change sign as a function of velocity at the conducting
fixed point. In Fig. 3 we show the alternating part of the
oscillations for a jump from U, =0 to U, = 1.8¢t,, where
the hopping on the left has been adjusted to three different
cases: uy = 0.98u,, uy =u,, and uy = 1.02u,. It is quite
apparent that a sign change takes place exactly at u, = u,,
which means that the relevant backscattering vanishes. The
remaining oscillations visible in Fig. 1 for u, = u, are caused
by higher-order local operators in Eq. (3). In particular, the
next-leading terms are given by d,e/V4#™% and ¢!V167¢ with
scaling dimension g+ 1 and 4g, respectively, which are
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irrelevant unless 43 < 1. Away from half filling the marginal
operator d,¢,—o will also be present,12 but does not affect
the scattering to first order. The velocity-matching rule for
a conducting fixed point is surprisingly simple, considering
that it is not linked to any special symmetry in this scenario.
Perfect conduction in quantum wires with impurities has
been described before in cases where a renormalization to
the periodic boundary condition fixed point occurs.” This,
however, is not the case here. We find a conducting fixed point
described by Eq. (7) which does not correspond to a standard
boundary conformally invariant theory.

To conclude, we have studied the intrinsic backscattering
present when connecting a quantum wire to a lead. All inhomo-
geneities and impurities in the junction are in general relevant
for repulsive Luttinger liquids, leading to a conductance
which scales as G(T') eh_2[1 — (T/ Tx)*®~2], with an unusual
power-law exponent given by g = 2(% + g—lr)’1 in terms of the
interaction parameters on both sides of the junction g;,g,. We
have shown that it is possible to achieve a perfect connection,
i.e., an absence of relevant backscattering, in inhomogeneous
wires by tuning other parameters such as the velocity in the lead
and in the wire. The general Green’s function was calculated in
the presence of an abrupt jump along the wire based on an in-
homogeneous Luttinger-liquid action, which was in excellent
agreement with numerical simulations. The results suggest that
the observation of Friedel oscillations in the density along the
wire, which can be attempted by scanning probe microscopy,
can be used to analyze local scattering centers. A systematic
study of inhomogeneities and thus an experimental test of our
results seems feasible in semiconductor heterostructures. One
could start from a device where a quantum wire adiabatically
broadens into a two-dimensional electron gas.* By applying a
sharp potential barrier at the interface a local backscattering
center could then be realized, allowing it to continuously tune
the backscattering amplitude A.
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