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We investigate the low-temperature thermodynamics of the spin-1=2 Heisenberg chain with open
ends. On the basis of boundary conformal field theory arguments and numerical density matrix
renormalization group calculations, it is established that in the isotropic case the impurity susceptibility
exhibits a Curie-like divergent behavior as the temperature decreases, even in the absence of magnetic
impurities. A similar singular temperature dependence is also found in the boundary contributions of
the specific heat coefficient. In the anisotropic case, for 1=2< �< 1, these boundary quantities still
show a singular temperature dependence obeying a power law with an anomalous dimension.
Experimental consequences will be discussed.
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corrections. where w is the winding number of � , K is the Luttinger
Impurity doping in low dimensional antiferromagnetic
systems has been a topic of great interest in recent years
[1–11]. New interesting boundary phenomena give better
physical insight into the underlying structure of the
strongly correlated states in those systems. In one-
dimensional systems impurities typically cut the chains
and play the role of effective boundary conditions. The
open ends give rise to intriguing boundary phenomena,
which result in a characteristic temperature dependence
of the excess susceptibility and specific heat due to the
impurities. Famous examples include the spin-1 chain
where effective spin-1=2 degrees of freedom are created
near the open ends which show clear experimental sig-
natures [1]. Even in the two-dimensional Heisenberg
model it has been postulated that nonmagnetic impurities
may give rise to a divergent Curie-like impurity suscep-
tibility [2]. However, the temperature dependence of the
boundary susceptibility has been much less clear in the
case of the antiferromagnetic spin-1=2 chain, which is
possibly the oldest and most studied prototype of a
strongly correlated system. According to the Bethe ansatz
solutions for integrable systems with open boundaries, the
boundary part of the uniform spin susceptibility at zero
temperature behaves like �1=�hfln�h�g2� for a small mag-
netic field h in the case of SU(2) spin rotational symmetry
[3–6]. This divergent behavior implies that in the vicinity
of the open edges spin excitations are very sensitive to
small external fields. It seems therefore likely that the sus-
ceptibility should also show divergent behavior for small
temperatures at zero field. On the other hand, irrelevant
boundary operators are known to produce only a small
finite impurity susceptibility at low temperatures [7]. We
now show that an addition to the surface energy from the
marginally irrelevant bulk operator actually gives rise
to the leading singular temperature behavior of the im-
purity susceptibility and the specific heat coefficient cor-
responding to a Curie-like behavior with logarithmic
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We consider the antiferromagnetic spin-1=2 Heisen-
berg chain with open boundaries
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in the limit N 
 J=T, i.e., the thermodynamic limit.
Note that in the opposite limit T=J � 1=N the behavior
is trivially described by the ground state, which is a
singlet for even N with exponentially small susceptibility
as T ! 0 and a doublet for odd N with a Curie law
behavior. The crossover to the ground state behavior is
experimentally important and will be discussed later, but
for now we will consider the low-temperature behavior in
the thermodynamic limit 1=N � T=J � 1. In the mass-
less region, 0  �  1, the low-energy fixed point of the
Hamiltonian (1) is the Tomonaga-Luttinger liquid, which
belongs to the universality class of the Gaussian theory
with the central charge c � 1. The low-energy effective
Hamiltonian with leading irrelevant interactions has
been exactly obtained by Lukyanov [12]. Using this ef-
fective theory we can implement a perturbative expan-
sion of the free energy in terms of leading irrelevant
interactions and evaluate impurity corrections of order
1=N. Following the idea of Cardy and Lewellen [13], we
consider a semi-infinite cylinder on which the direction
tangent to the circumference is taken as an imaginary
time axis and the direction perpendicular to it as a space
axis. The circumference is equal to the inverse tempera-
ture 1=T. We define the boson phase field on this geome-
try, of which the mode expansion is given by
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liquid parameter, and the operators satisfy the com-
mutation relations ��n; �m� � � ���n; ���m� � n�n	m;0,
��n; ���m� � 0, and �Q;P� � i. Then, the low-energy ef-
fective Hamiltonian on the semi-infinite cylinder is writ-
ten as

Hc � Hc
0 	Hc
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Here the constantsK and a are parametrized asK � �1�
�1=��cos�1�����1, a � 2�K � 1�=�JK sin��=K��, and  
is given by Eq. (2.24) in Ref. [12]. For this choice of the
lattice parameter a, the velocity of spinons is unity in
the unit of 1=a. Thus the Hamiltonian (3) is obtained
by simply interchanging time and space coordinates
of the usual Hamiltonian defined on a circumference of
L � aN.

We express the partition function by using the transfer
matrix exp��LHc� and the boundary state for Hc

0, jBi.
The lowest order terms of the free energy for the
Hamiltonian (3) are given by
F � �
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where j0i is the ground state of Hc
0. The first term on the

right-hand side of Eq. (6) is the free energy of the c � 1
Gaussian model. The second term is the 1=L correction
that emerges as a result of boundary effects. For the
periodic boundary condition, this term vanishes. In the
case of an external magnetic field h, the free energy is
evaluated by shifting the boson field �c�x� to ~��c�x� �
�c�x� �

���������
K=2

p
hx. Using the Cardy-Lewellen method

[13], we compute the first order term as
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where j�i is the primary state that corresponds to the
conformal field exp�i

�������
8K

p
�c�. In the following, we evalu-

ate Eq. (7) exactly for the free open boundary condition.
To calculate the prefactor in Eq. (7), we utilize proper-

ties of the boundary state. A conformally invariant
boundary condition is imposed by demanding T�z� �
�TT��zz� at the boundary [14]. Here T�z� [ �TT��zz�] is the holo-
morophic (antiholomorophic) part of the stress energy
tensor. For the Gaussian model with c � 1, this condition
leads to the following constraint on the boundary state
[15–17]:

��n � ����n�jBi � 0; (8)

where the plus (minus) sign corresponds to the Neumann
(Dirichlet) boundary condition. Equation (8) is solved in
terms of the Ishibashi states, which, in our case, are
constructed from the highest weight states of the U(1)
Kac-Moody algebra jv;wi and their descendants [18].
Here v, w are integers specifying the U(1) highest weight
state. The leading irrelevant interaction (5) is expressed
by the primary field exp�i

�������
8K

p
�c� which corresponds to

the primary state j2; 0i. Therefore, h� j Bi is nonvanish-
ing, only if jBi contains j2; 0i. The Neumann boundary
state which consists of the highest weight state j0; wi and
its descendants does not satisfy this condition. On the
other hand, the Dirichlet boundary state,
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has a finite overlap with j�i. Then, we have

h2; 0 j Di
h0 j Di

� 1: (10)

Carrying out the integral in Eq. (7) and using Eq. (10), we
obtain corrections to the boundary part of the free energy,
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where B�x; y� � ��x���y�=��x	 y�.
The boundary contribution to the spin susceptibility is

derived from Eq. (11),

'B �
 aK2

2�N
B�K; 1� 2K���2 � 2 0�K���2�aT�2K�3;

(12)

with  0�x� � d �x�=dx. Note that for 1<K < 3=2
(1=2<�< 1), the boundary spin susceptibility 'B shows
a divergent behavior �1=T3�2K, as temperature decreases.
This anomalous temperature dependence is also observed
in the boundary part of the specific heat coefficient com-
puted as

CB
T

�
2�a 
N

�2K � 1��2K � 2�B�K; 1� 2K��2�aT�2K�3:

(13)

Boundary terms that are regular in h and T give higher
order corrections and have been neglected here. We would
like to stress that in the formulas (12) and (13) there is no
free parameter, and the prefactors are exact. The divergent
behaviors of Eqs. (12) and (13) for T ! 0 are physically
understood as follows. In contrast to the bulk Heisenberg
chains, the ground state degeneracy at the boundaries
gives rise to large spin fluctuations, which disturb the
spin singlet formation. It should be emphasized that the
singular behaviors are not due to the presence of bound-
ary operators, but interpreted as a consequence of
037206-2
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finite-temperature corrections of the surface energy and
the boundary entropy lnh0 j Bi caused by bulk irrelevant
interactions.

At zero temperature with a small magnetic field, a
similar singular behavior appears in the field dependence
of the boundary spin susceptibility given by

'B�T � 0� �
 �aK�2K�1

2�aN
sin��K���3� 2K�h2K�3: (14)

The zero temperature susceptibility is also derived from
the Bethe ansatz exact solution by using the Wiener-Hopf
method. We have checked that Eq. (14) coincides with the
result obtained by the Bethe ansatz method.

Now let us consider the isotropic case K � 1. The free
energy correction (11) possesses poles for K � 1. To deal
with these singularities, we follow the procedure consid-
ered by Lukyanov for bulk spin systems [12]. We rewrite
Hint in terms of the SU(2) current operators,
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2�
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The exact expressions for the running coupling constants
037206-3
are known as gk � 2�1� 1=K��1	 q�=�1� q�, g? �
4�1� 1=K�q1=2=�1� q� [12,19]. Here the parameter q is
the function of T and h, of which the expression is also
known exactly. On the other hand, for the value of K close
to 1, Eq. (11) can be expanded in a power series of 1�
1=K. Comparing the expansion of Eq. (11) with the ex-
pression for gk and g?, we can write the free energy
correction (11) as a power series expansion in terms of
gk and g?. Then, taking the limit K ! 1 and gk, g? ! g,
we end up with

�FB � �
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for h� T. The running coupling constant is determined
from the equation
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where  �x� is the di-gamma function. Using Eqs. (16) and
(17), we obtain the leading term of the boundary spin
susceptibility and the specific heat coefficient,
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where � �
���������
�=2

p
exp�1=4	 ,� with , the Euler constant. At zero temperature, the boundary spin susceptibility for a

small magnetic field is also derived from the opposite limit h
 T of Eq. (11),
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This result (20) coincides completely with that obtained
by the Bethe ansatz exact solutions [3–6].

The prefactor of the leading terms in Eqs. (18)–(20) are
exact for the isotropic Heisenberg chain, but not universal.
For example a frustrating nearest neighbor coupling J2
will change the prefactors and at the critical point J2 �
0:241167 [20] the singular behavior is absent. Special
logarithmic singularities at boundaries have also been
found in the NMR relaxation rate [8,9], which are also
directly related to the bulk marginal operator. However,
in Eqs. (18) and (19) it is even the leading T dependence
that is changed due to this irrelevant operator.

For comparison we have also used the numerical den-
sity matrix renormalization group for transfer matrices
(TMRG) applied to impurity problems [10]. This method
can calculate local expectation values and the impurity
free energy directly in the thermodynamic limit N ! 1.
When evaluating the impurity susceptibility we need to
take the second derivative of the impurity free energy and
therefore subtract two large numbers, which becomes
inaccurate for very low temperatures. For the lowest
temperatures (T < 0:1J) we have instead summed over
the excess local responses in a range around the open
ends, which gave more accurate results. This method
agrees with taking the second derivative for higher T
and should also be a good approximation for T < 0:1J.
Note, however, that taking the excess response only at the
site closest to the open end as was done in Ref. [10] gives a
weaker temperature dependence. The results are shown in
Fig. 1 without any adjustable parameters.

Finally, we would like to remark on the implications of
our findings for experimental observations. In experimen-
tal quasi-one-dimensional systems such as Sr2CuO3 a
small density - of impurities is always present in the
form of intrinsic defects of the crystal which effectively
cut the chains. A corresponding Curie contribution has
been observed that can be strongly reduced by careful
annealing [21,22], which implies that this Curie tail
cannot be due to magnetic impurities in the sample. For
extremely low temperatures T=J � 1=N such a Curie
behavior can be explained by finite chains with odd N
that have locked into their doublet ground state [11]. We
have now shown that a Curie-like behavior can even be
037206-3
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FIG. 1. The boundary susceptibility 'B as a function of T
according to the DMRG calculations (black points), compared
to the result of the field theory in Eq. (18). Inset: approximate
temperature dependence of the average Curie constant per
impurity for an impurity density of - � 0:1%
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expected for higher temperatures, albeit with a different
Curie constant in Eq. (18). The crossover between the
ground state and the thermodynamic behavior is well
understood, and in fact the partition function can be
written explicitly if irrelevant operators are ignored [7].
Roughly, the crossover occurs when the temperature be-
comes comparable to the finite size energy gap T �
�v=N. For a carefully annealed sample of Sr2CuO3
with -� 0:013% [21] this means that the ground state
contribution is significant only for T & 0:001J� 2 K. For
higher temperatures the impurity susceptibility is domi-
nated by the expression in Eq. (18). Experimentally this
means that the effective Curie constant first drops loga-
rithmically as the temperature is lowered. In previous
studies this slight change of the Curie constant has
been fitted to a Curie-Weiss correction [22] assuming a
phenomenological interaction between the impurity mo-
ments. The result in Eq. (18) now gives a clear prescrip-
tion for the expected form of the impurity susceptibility.
At the lowest temperatures T & 5-J, the Curie constant
increases again sharply to a limiting value of -=8J as
T ! 0 due to the ground state contributions of the chains
with odd N [11], leading to a characteristic minimum in
the average Curie constant T'avg. The approximate be-
havior of the averaged impurity susceptibility T'avg is
shown in the inset of Fig. 1 for - � 0:1% by averaging
over all chain lengths and assuming a sharp crossover
from ground state to thermodynamic behavior.

In summary, we have studied the boundary thermody-
namics for spin-1=2 Heisenberg chains with open ends by
using boundary conformal field theory and numerical
037206-4
TMRG calculations. It has been shown that the boundary
contributions of the spin susceptibility and the specific
heat coefficient exhibit divergent behaviors as the tem-
perature is lowered, which explains experimental obser-
vations in quasi-one-dimensional compounds.
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