Dynamic structure factor in impurity-doped spin chains

Annabelle Bohrdt,1,2 Kevin Jägering,1 Sebastian Eggert,1 and Imke Schneider1

1Physics Department and Research Center OPTIMAS, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
2Department of Physics and Institute for Advanced Study, Technical University of Munich, D-85748 Garching, Germany

(Rceived 1 November 2017; revised manuscript received 12 April 2018; published 2 July 2018)

The effects of impurities in spin-1/2 Heisenberg chains have recently experienced a renewed interest due to experimental realizations in solid state systems and ultracold gases. Nonmagnetic impurities lead to effectively isolated finite chain segments with a discrete spectrum and characteristic correlations, which have a distinct effect on the dynamic structure factor. Using bosonization and the numerical density matrix renormalization group, we provide detailed quantitative predictions for the momentum- and energy-resolved structure factor in doped systems. Due to the impurities, spectral weight is shifted away from the antiferromagnetic wave vector \(k = \pi \) into regions which normally have no spectral weight in the thermodynamic limit. The effect can be quantitatively described in terms of scaling functions, which are derived from a recurrence relation based on bosonization.

DOI: 10.1103/PhysRevB.98.020402

Spin chains have been the center of attention as prototypical quantum many-body systems ever since the early days of quantum mechanics [1] and up to this day significant advances have been made, e.g., in describing exact form factors [2–7], exact correlations [8], nonequilibrium states [9,10], and dynamic correlations in the regime of a nonlinear spectrum [11–19]. Recently, there has been renewed experimental interest in doped spin chain systems [20,21] with new results on the Knight shift [22,23], magnetic ordering [24], and the dynamic structure factor [25–28]. The impurities effectively act as missing sites or couplings, which lead to isolated finite chain segments, that are known to acquire characteristic boundary correlation functions [29]. This gives rise to impurity-induced changes in the Knight shift [30–33], the susceptibility [34–37], the static structure factor [31], and the ordering temperature [38,39]. However, surprisingly, a systematic theoretical analysis of the doping effects on the energy- and momentum-resolved dynamic structure factor is still missing. Previous research has taken into account the discrete spectrum of finite chains [25,26,40], which leads to an exponential suppression at low energies. The understanding of the momentum dependence is more involved, however, since characteristic correlations near the impurities play an important role and lead to a strong redistribution of spectral weight to higher momenta outside the two-spinon continuum, as shown in this Rapid Communication.

The underlying model is the well-known \(xxz \)-spin chain

\[
H = J \sum_{i=1}^{L-1} \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z \right),
\]

which represents a one-dimensional array of \(L \) interacting spin-1/2 operators with open boundary conditions. The longitudinal dynamic structure factor is

\[
S(\omega,k) = \frac{1}{L} \sum_{j,j'} e^{-ik(j-j')} \int_{-\infty}^{\infty} dt e^{i\omega t} \langle S_j^x(t) S_{j'}^x(0) \rangle,
\]

which can be measured by angle-resolved neutron scattering experiments [41–43] and gives deep insight into the spatiotemporal correlations. In recent years it was possible to calculate \(S(\omega,k) \) from exact methods in the thermodynamic limit [4,5], which is nonzero only within the two-spinon continuum [44], as shown schematically in Fig. 1(b) where the lower threshold is given by \(\omega(k) = v|\sin k| \) in terms of the spinon velocity \(v \). Indicated in red are the dominant correlations near the antiferromagnetic wave vector \(k = \pi \) at low frequencies, which will be the topic of this Rapid Communication. The low-energy behavior of \(S(\omega,k) \) in infinite chains \(L \to \infty \) was already predicted in the 1980’s using bosonization [45], but it is unclear if this method can be used for finite chains and close to the threshold where the spectral weight is expected to diverge [46]. Such divergences were of great interest in the literature [11–19], where it was shown that a nonlinear dispersion generally leads to qualitative changes of bosonization predictions for dynamical response functions near thresholds. Moreover, even without nonlinear effects, the results become explicitly dependent on the cutoff procedure near those divergent points in quantum wires [47,48].

In this Rapid Communication, a finite-size formulation of bosonization is used, which gives surprisingly accurate results compared to density matrix renormalization group (DMRG) simulations even directly at the thresholds, without the need for any fitting parameters, cutoff procedures, or nonlinear corrections. We explicitly estimate the range of the low-energy region where the results are valid. Our finite-size method leads to a recursion, which gives a closed analytic expression of the \(k \)-dependent structure factor for any energy, length, and anisotropy \(\Delta \). We observe a distinct broadening at the threshold, which is not due to nonlinear effects, but is a direct result of the open boundary conditions. Accordingly, in doped systems, a characteristic transfer of spectral weight occurs from the two-spinon continuum into regions where no signal would be expected for undoped chains. It is possible to extrapolate our results to the thermodynamic limit [49],

\[
S_\infty(\omega,k) = (2v)\left|2-K \right|^2 \pi^2 A \Gamma^{-2}(K) [\omega^2 - \omega^2(k)]^{K-1},
\]
is well described by equally spaced energy levels \(k \) as a function of \(v \). We find that the spectrum is well-separated levels with our DMRG results, by demanding that all many-body energy approximations. Using a finite-size approach, we are shown where vertical lines mark \(v|k - \pi| \approx \omega_m \). (b) Schematic two-spinon continuum. (c) Bosonization error over finite-size deviation \(\Delta S \) in Eq. (14) for \(m = 4 \) and different \(K \) using \(K = 0.8 \) as a function of \(1/L \).
and the coefficients
\[\gamma_\ell(x,y) = 4K \sin \frac{\ell \pi x}{L} \sin \frac{\ell \pi y}{L}. \] (11)

It is then straightforward to evaluate the spatial Fourier transform
\[S_m^\pm(k) = \frac{1}{L^2} \int_0^L dx \int_0^L dy e^{i(k-x)(x-y)} S_m^\pm(x,y), \] (12)
to obtain the spectral weights \(S_L \) in Eq. (5),
\[S_L(\omega_m,k) = \frac{A_L}{2\nu} \left[S_m^+(k) - S_m^-(k) \right]. \] (13)

In the case of odd \(L \) the integrands \(S_m^\pm(x,y) \) acquire an additional factor of \(\cos \pi(x \pm y)/L \) from zero modes, which reflects the parity symmetries of the wave functions [49]. Note that the spatial Fourier transform in Eq. (12) dominates for antiferromagnetic wave vectors \(k \approx \pi \), i.e., small \(q = k - \pi \).

The expression for \(S_m^\pm(x,y) \) from Eq. (9) contains products of different \(\gamma_\ell \) with the starting value \(S_0^0 \), so the spatial integral in Eq. (12) can be evaluated exactly [49]. For any level \(m \) and length \(L \), we therefore quickly arrive at a finite sum of terms for \(S_L(\omega_m,k) \) which provides the dependence on \(k \) analytically.

A direct comparison between bosonization \(S_L \) and numerics \(S_{\text{DMRG}} \) is shown in Fig. 1(a) for energy levels \(m = 8 \) and \(m = 9 \) in a finite system of \(L = 100 \) with \(K = 0.8 \). Without any fit, the agreement is surprisingly accurate and even captures details such as an alternating signal at \(k/\pi \) with even and odd \(m \) due to parity symmetry, which leads to overall oscillations. Due to the zero-mode prefactor [49] the same alternation is observed between even and odd lengths \(L \). For a quantitative analysis we further compare the small error between DMRG \(S_{\text{DMRG}} \) and bosonization \(S_L \) with the finite-size correction relative to the bulk behavior \(S_\infty \) in Eq. (3) by defining
\[\Delta S = S_L - S_{\text{DMRG}}. \] (14)

Both the numerator and the denominator go to zero as \(L \to \infty \), but the error to the numerics vanishes more quickly with \(1/L \) as shown in Fig. 1(c) for \(m = 4 \), \(K = 0.8 \), and selected \(k \) values, for which the denominator tends to be small.

We are now in the position to efficiently calculate \(S_L \) for a large range of \(L \), \(k \), and \(\omega_m \) to average the signal in a randomly doped system. An impurity density \(p \) of nonmagnetic sites gives a distribution of chain lengths [39,40,64] \(P(L) = p^L(1-p)^L \) normalized so that \(\sum L P(L) = 1 - p \). The averaged signal \(\hat{S}_p \) for typical experimental doping values in Fig. 1(a) shows that the signal at the divergence is strongly reduced relative to the undoped case \(L \to \infty \) while significant spectral weight is observed just outside the two-spinon continuum \(o(\omega) \approx |\omega Q| > \omega \) for \(q = k - \pi \).

It must be emphasized that the finite-size bosonization is completely divergence free. For any finite or impurity-doped system we obtain a well-behaved finite signal even at \(o(\omega) = \omega \), in agreement with DMRG. Nonetheless, it is interesting to start from the thermodynamic limit in Eq. (3) and consider a finite-size expansion in \(1/L \),
\[S_L(\omega,k) = S_\infty(\omega,k) + L^{-1} S_{\text{imp}}(\omega,k) + O(L^{-2}), \] (15)
which defines an impurity correction \(S_{\text{imp}} \) [31]. Based on the efficient calculation of spectral weights from Eqs. (9)–(13), we can make a comprehensive finite-size scaling to determine \(S_\infty \) and \(S_{\text{imp}} \) for different \(\omega \) and \(k \). Due to the scale invariance of the underlying bosonization the resulting contributions in Eq. (15) show perfect data collapse, so that \(\omega^{2-2K} S_\infty \) and \(\omega^{3-2K} S_{\text{imp}} \) are only functions of the scaling variable \(v\omega/\omega \), as shown in Fig. 2 for \(K = 0.7 \) and \(K = 0.9 \). While \(S_\infty \) is given by Eq. (3), we find that \(S_{\text{imp}} \propto \omega^{-k+3} \) increases even faster with decreasing \(\omega \). This is reminiscent of quantum wires, which also show boundary-dominated spectral functions at low energies [61]. Even more interesting is the strong divergence of the impurity part in Fig. 2, which goes as \(|v\omega - \omega|^{-k+2} \) and implies a breakdown of the \(1/L \) expansion in Eq. (15) as \(|v\omega| \to \omega \). This breakdown is not due to nonlinear effects or higher-order operators, but implies a cancellation of larger and larger contributions in the expansion Eq. (15) as \(|v\omega| \to \omega \), which is counterproductive to obtain a finite result at finite \(L \). Therefore, bosonization for finite systems actually works better in this case than in the thermodynamic limit.

Nonetheless, the expansion in Eq. (15) is useful away from the divergences in order to estimate the length-averaged signal to lowest order in \(p \),
\[\hat{S}_p(\omega,k) \approx E_1 \left(\frac{p\pi v}{\omega} \right) S_\infty(\omega,k) + p E_2 \left(\frac{p\pi v}{\omega} \right) S_{\text{imp}}(\omega,k), \] (16)
in terms of the Einstein functions \(E_1 \) and \(E_2 \),
\[E_1(x) = \frac{x^2 e^x}{(e^x - 1)^2} \text{ and } E_2(x) = \frac{x}{e^x - 1}, \] (17)
that are derived in the Supplemental Material [49]. The rescaled average \(\omega^{2-2K} \hat{S}_p \) in Eq. (16) is now a function of two scaling variables \(v\omega/\omega \) and \(v/p\omega \). The corresponding data collapse holds approximately also for the averages over all lengths shown in Fig. 1(a) above, so that the signal for a given \(\omega \) can easily be generalized to other energies. Both \(E_1 \) and \(E_2 \) become exponentially small for energies below the average-length gap \(\omega \ll p\pi v/L \equiv p\pi v \). The suppression of bulk spectral weight with \(E_1 \) due to the finite-size gaps was discussed and observed.
experimentally [25,26], but we find that the additional redistribution of spectral weight becomes very important, which can be traced to the effect of boundary correlations.

The averaged signal in Fig. 1(a) and the impurity correction in Fig. 2 show that the signal is strongly reduced for $|vq| < \omega$, while spectral weight is created for $|vq| > \omega$. This invites the question if the k-integrated signal $S(\omega)$ at a given energy is overall increased or decreased or even unchanged due to the boundaries. This is relevant for neutron scattering experiments, which recently observed significant changes of the spectral weight around $k \approx \pi$ depending on the doping [27,28]. To calculate the integrated antiferromagnetic spectral weight \tilde{S} as a function of L, we use the fact that an integration over k of Eq. (12) leads to a delta function $2\pi \delta(x - y)$, so it is possible to apply the recurrence relation in Eq. (9) for $S_m^x(x, x)$, which is inserted into the corresponding spatial integral. Finite-size scaling gives a bulk part $\tilde{S}_\infty(\omega) \propto \omega^{-2K-1}$ which now decreases with decreasing ω corresponding to the integral of Eq. (3). However, the impurity part $\tilde{S}_{\text{imp}}(\omega) \propto \omega^{-2K-2}$ increases with decreasing ω, so we define the energy-independent ratio $\omega \tilde{S}_{\text{imp}}(\omega)/v \tilde{S}_\infty(\omega)$, which is only dependent on K (i.e., Δ), as shown in the inset of Fig. 2. Note that due to the alternation with m and L the impurity part is different if $m + L$ is even or odd, but the experimentally relevant average gives a finite and relatively small value. Therefore, the corresponding expansion and averaging in Eqs. (15) and (16) work well to calculate the doping and energy dependence using the k-integrated data in Fig. 2 (inset). The impurity part becomes negative at $K \lesssim 0.7$, i.e., larger Δ, which may in part explain an additional depletion of spectral weight at low energies, but the experimentally observed changes with different impurity types [27] require more refined models beyond simple chain breaks.

Last but not least, it is instructive to consider finite systems with periodic boundary conditions. The starting values in Eq. (10) are now independent of position $c = \left(\frac{\pi}{L}\right)^K$, so all integrals can be done directly and the recurrence relation leads to an analytical result for all energies, lengths, and momenta [49],

$$S_L(\omega_m, k_l) = \frac{A_L^2 L^2 c^2 \Gamma \left(\frac{m+1}{2} + K\right) \Gamma \left(\frac{n+1}{2} + K\right)}{4 v \Gamma^2(K) \Gamma \left(\frac{m+1}{2} + 1\right) \Gamma \left(\frac{n+1}{2} + 1\right)},$$

where now $\omega_m = 2\pi \nu m/L$ and also $k_l - \pi = 2\pi l/L$ is quantized due to periodicity with the condition that l and m are either both even or both odd integers and $|l| \leq m$. Therefore, there is no spectral weight for $|v(k_l - \pi)| > \omega_m$, in strong contrast to the open boundary conditions discussed above. It is straightforward to expand Eq. (18) in $1/L$ using Stirling’s formula [49] to obtain S_∞ in Eq. (3) and a negative impurity part S_{imp}.

In summary, we have analyzed the structure factor of doped spin chain systems. Using bosonization and numerical DMRG, we see that doping leads to a significant shift of spectral weight from $k \approx \pi$ to regions $|k - \pi| > \omega$ in neutron scattering experiments, which would not show any signal for infinite or periodic systems. The relative change from doping near the threshold $|vq| \to \omega$ is infinitely large, so that the first-order impurity contribution diverges near the threshold $\omega(q)$ with a stronger power law than the bulk and a $1/L$ expansion from the thermodynamic limit always breaks down. Previous studies also found that the divergence in the thermodynamic limit is not universal, but instead is strongly dependent on either the cutoff procedure [47,48] or higher-order terms. Naively, it could have been expected that bosonization works particularly well in the thermodynamic limit, but instead it turns out that the finite-size theory is much better controlled and quantitatively accurate even for $|vq| \to \omega$, as shown in Fig. 1. From a technical point of view, the mode expansion for finite systems leads to finite sums, which can be efficiently evaluated to a closed analytical expression using a recurrence relation without the need for contour integral, asymptotic limits, nonlinearities, or cutoff procedures.

It is fair to say that in one dimension it is always important to consider boundaries, since physical systems only contain finite chains even in the absence of doping [65]. This is especially also true for artificially created spin chains using surface structures [66,67], ion traps [68], or ultracold gases [69–72] as quantum simulators, where measurements of energy- and space-resolved correlations are in principle possible [73].

Finally, we would also like to discuss the limitations and open questions which remain. In the limit $\Delta \to 1$ it is well known that logarithmic corrections lead to strong quantitative changes [52]. Those log corrections have not yet been fully understood for open boundary systems [53,60] and are beyond the scope of this Rapid Communication. Nonetheless, the DMRG analyses for $K = 0.7$ and $K = 0.6$ (larger Δ) show that the predicted momentum dependence is not strongly changed by higher-order operators. Instead, we observe an overall renormalization of the signal with a k-independent factor of the form $(1 - 0.26\omega^2/\gamma)$ with $\gamma = 4K - 2$, as argued in the Supplemental Material [49]. For future research it would be interesting to look for the corresponding renormalization in periodic chains, where the structure factor can be calculated exactly [2–7]. In any case, the strong transfer of spectral weight to $|v(k - \pi)| > \omega$ for open chains is a robust feature even for $\Delta = 1$.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via the research centers SFB/TR173 and SFB/TR185 and by the Studienstiftung des deutschen Volkes. We are thankful for helpful discussions with Dr. Shijie Hu.

