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PACS 68.37.Ef – Scanning tunneling microscopy (including chemistry induced with STM)
PACS 71.10.Pm – Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid,

etc.)
PACS 73.21.Hb – Quantum wires

Abstract – We examine the local density of states (DOS) at low energies numerically and
analytically for the Hubbard model in one dimension. The eigenstates represent separate spin
and charge excitations with a remarkably rich structure of the local DOS in space and energy.
The results predict signatures of strongly correlated excitations in the tunneling probability along
finite quantum wires, such as carbon nanotubes, atomic chains or semiconductor wires in scanning
tunneling spectroscopy (STS) experiments. However, the detailed signatures can only be partly
explained by standard Luttinger liquid theory. In particular, we find that the effective boundary
exponent can be negative in finite wires, which leads to an increase of the local DOS near the
edges in contrast to the established behavior in the thermodynamic limit.

Copyright c© EPLA, 2013

Introduction. – Interacting one-dimensional quan-
tum wires are well-studied examples of systems in which
the Fermi liquid paradigm of electron-like quasi-particles
is known to break down. Luttinger liquid theory predicts
that strong correlations lead to the remarkable phenom-
enon of separate spin- and charge-density waves as the
fundamental collective excitations in one dimension at low
energies [1]. Experimental confirmation for this picture has
long been controversial, but now there is some evidence
for separately dispersing spin and charge resonances for
quantum wires on semiconductor hetero-structures [2,3],
quasi–one-dimensional crystals [4] and self-organized
atomic chains [5] as a function of momentum. The density
of states (DOS) has also been analyzed by scanning
tunneling spectroscopy (STS) in carbon nanotubes [6–8]
and self-organized atomic chains [9]. This immediately
invites the question as to whether there are characteristic
signatures from standing waves of separate spin and
charge densities, that can potentially be detected in
locally resolved STS experiments in finite wires. Detailed
Luttinger liquid calculations near boundaries exist, which
predict corresponding wave-like modulations in the local
DOS and a sharp reduction of the DOS near boundaries
[10–16]. However, it is far from clear whether these
signatures are robust in realistic lattice systems, since

even minimalistic models like the Hubbard chain are not
perfect Luttinger liquids. There are two main reasons for
possible discrepancies: First, the assumed degeneracy of
spin and charge modes in the low-energy spectrum can
never be exact and will be lifted by band curvature and
other effects. Second, it is known that strong logarithmic
corrections will arise from a spin umklapp operator which
is generically present in 1D electron systems with SU (2)
invariant interactions [17–19].
The most relevant minimalistic lattice model for quan-

tum wires is the Hubbard chain,

H =−t

L−1
∑

σ, x=1

(

ψ†σ,xψσ,x+1+h.c.
)

+U

L
∑

x=1

n↑,xn↓,x, (1)

which captures the main aspects of interacting one-
dimensional electron systems. This model shows signa-
tures of spin-charge separation in numerical simulations
of the momentum resolved DOS [20], which is the central
quantity relevant for photoemission experiments. In this
paper we will now analyze the local DOS as a function
of position and energy which in turn is relevant for STS
experiments.
Recently, several numerical density matrix renormaliza-

tion group (DMRG) studies considered the local DOS for
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Fig. 1: (Color online) Energies Δω= ωα−ω0 as a function of U
for excited states with N↑ =N↓+1= 31 particles on a lattice
of length L= 90. The quantum numbers on the right indicate
the corresponding mode {ms,mc}. Dashed lines correspond to
S = 3/2 states. For larger U , excitations from level 3 (3s 0c)
and level 4 also appear in the low-energy spectrum.

spinless lattice fermion models in one dimension [21–23],
where there is no spin and charge separation. Therefore,
the complications mentioned above do not arise [24,25] and
the agreement with theory is close to perfect in that case.
As we will show here, the local DOS for a spinful elec-
tron system away from half-filling is much more complex
and some key features of the Luttinger liquid theory are
strongly renormalized.
The observable of interest is the local DOS to tunnel an

electron with spin up at a certain energy ω into the wire,

ρ(x, ω) =
∑

α

∣

∣

∣
〈ωα|ψ

†
↑,x |0 〉

∣

∣

∣

2

δ(ω−ωα) (2)

=
1

π
Im

∫ ∞

0

e iωt i〈ψ↑,x(t)ψ
†
↑,x(0)〉dt. (3)

Here, the fermion operator ψ†↑,x creates a particle at
position x on top of the ground state |0 〉 and the sum
runs over all states |ωα〉 with one additional electron.
In the following we will compare analytic calculations

for the local DOS from Luttinger liquid theory with
simulations using the numerical DMRG algorithm [26,27].
For the matrix elements in eq. (2) we use a multi-target
DMRG with a large number of target states in two
different particle number sectors [21] and keep track of
all local fermion creation operators.

The spectrum. – In order to identify the separate
spin and charge excitations, we first focus on the energy
spectrum Δω= ωα−ω0 for finite wires of length L as a
function of interaction U as shown in fig. 1 in units of
t= 1. The ground state |0〉 is assumed to be a filled Fermi
sea with total magnetization Sz = 0, so that all particle
excited states |ωα〉 have N↑ =N↓+1 particles and total
spin z-component Sz = 1/2.

For U=0 all excitations are described by simple products

of fermion operators c†σ,n=
√

2

L+1

∑

xψ
†
σ,x sin(kF+kn+1)x,

where kn = n
π
L+1

and |ω0〉= c
†
↑,0|0〉 is the lowest-energy

particle excitation. Since the spectrum is approximately
linear Δω∼ vF (k− kF ), a state involving several fermion
operators (i.e., a multi-particle excitation) is nearly degen-
erate with a single-particle excitation at U = 0 if the sum
of excited wave numbers is the same, which results in the
quantized fermion levels shown in fig. 1. For example, in
level 1, the two states c†↑,1|0〉 and c

†
↑,0c

†
↓,0c↓,−1|0〉 both have

approximately the same energy ω1−ω0 ≈ vF k1. In general
there are many multi-particle states in each level n, but
only one single-particle state c†↑,n|0〉 carries all the DOS
if U = 0.
The situation changes for finite U . Now all states may

potentially carry spectral weight in the DOS and the
near-degeneracy of the levels is lifted. According to the
Luttinger liquid picture the states are now described by
integer spin and charge quantum numbers {ms,mc} with
energies ωms,mc = (msvs+mcvc)

π
L+1

in terms of the spin

and charge velocities vs � vc [1,14]. The spectrum in fig. 1
shows a regular spin and charge spacing with quantum
numbers shown on the right. For each spin/charge mode
{ms,mc} there can be several states with approximately
the same energy. The number of states in each mode is
given by the number of ways it can be created by boson
creation operators b†m,ν , i.e., the product of the integer
partitions of ms and mc. For example, for the mode
0s 2c in fig. 1, we have mc = 2= 1+1 corresponding to
the two states created by b†2,c and (b

†
1,c)

2, respectively,
which indeed have almost the same energy. On the other
hand, the near-degeneracies of spin modes (e.g., 2s 0c)
are significantly split in fig. 1 by well-known logarithmic
corrections as will be discussed below [17–19].
Regarding the DOS, it is now interesting to explore

how the total spectral weight is distributed among the
excited states. The compact answer from Luttinger liquid
theory is that the summed up DOS in each mode {ms,mc}
should be proportional to a power law of the corresponding
energy, but there are no predictions how the DOS is
distributed among the states within each mode. For the
lowest-energy modes the situation is still simple, since
the first level corresponds to one spin and one charge
state, which should have roughly the same DOS of 1/2
each for small U according to theory. However, the
numerical results in fig. 2 already demonstrate obvious
deviations from this prediction, since the charge mode
has a much larger DOS for small U . The reason for this
discrepancy comes from the non-linear band curvature,
which lifts the degeneracy for finite L even at U = 0, so
that the interaction has to overcome this energy splitting.
Indeed for cases in which the two states are exactly
degenerate at U = 0 (e.g., in the thermodynamic limit)
the spin and charge states have comparable DOS even for
infinitesimally small U . As can be seen in fig. 2 for L= 90
the charge state dominates for U � 0.5, which would imply
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Fig. 2: (Color online) Total DOS for the excitations of the first
two levels from fig. 1.

that for U � 10vsπ
L
the band curvature is dominant over

the interaction effects. The next five states from the second
fermion level in fig. 2 show a similar crossover behavior
with U . Nonetheless, features in the local DOS will clearly
show the interaction effects even in the crossover region as
we will see below.
In the 0s 2c and the 2s 0c modes there are two states

each as expected. However, only one of the states in
each mode contributes most of the corresponding DOS,
while the other state would be practically invisible in
an STS experiment. The reason why some states in a
given mode have zero DOS can sometimes be linked
to exact symmetries, such as the SU (2) symmetry of
generic Coulomb interactions. In particular, all particle
excitations |ωα〉 in the S

z = 1/2 sector are representatives
of SU (2) multiplets. The lowest-energy state |ω0〉 always
belongs to a doublet with S = 1/2. Excitations with charge

bosons b†ℓ,c never change the total spin, but excitations

with spin bosons b†ℓ,s may generate higher spin values,
which can be calculated using the commutation rules of
the non-Abelian SU (2)-Kac-Moody algebra [17], since the
spin bosons correspond to the modes of the SU (2) current
along the z-direction as discussed in the appendix. For
example the lowest-energy S = 3/2 state is given by the

spin boson excitation 1√
3
[(b†1,s)

2− b†2,s]|ω0〉 with ms = 2

which is plotted as a dashed line in fig. 1. The total spin
analysis is discussed in more detail in the appendix. It
is useful since states with S > 1/2 must have zero DOS
due to angular momentum addition rules. For example
in the fifth spin mode 5s 0c, there are 7 states, three
of which have total spin S = 3/2 and exactly zero DOS.
Interestingly, three more states carry only very small
spectral weight, so that only one state dominates for this
mode. This indicates that the eigenstates remain the same
in terms of their bosonic expressions even for U �= 0. For
charge modes there is also exactly one state which carries
the overwhelming weight in each mode, but the DOS of
the other states is finite and generally increases with U .

Local density of states. – For a complete analysis
it is now useful to turn to the local DOS ρms,mc(x) for
each mode {ms,mc}. For a non-interacting system, the

local DOS is given by the square of a quickly oscillat-
ing standing wave, corresponding to the eigenstate at the
corresponding wave vector near kF . However, with inter-
actions we also expect long-wavelength modulations and a
characteristic behavior near the boundary. It is therefore
useful to decompose the local DOS into a quickly oscillat-
ing part (o) and a uniform part (u). In order to analyze
the long-wavelength modulations we will concentrate on
the uniform part of the local DOS in the following, which
according to bosonization is given by a product of spin
and charge contributions [14]

ρms,mc(x) = |cx|
2ρus,ms(x)ρ

u
c,mc
(x) (4)

for a given mode {ms,mc}. The slowly varying amplitudes
ρuν,m(x) can be determined by a simple recursive formula
for spin and charge (ν = c, s) separately [14],

ρuν,m(x) =
1

m

m
∑

ℓ=1

ρuν,m−ℓ(x)γ
u
ν,ℓ(x), (5)

where
γuν,ℓ(x) = aν + bν cos(2kℓx). (6)

Here we have defined spin and charge exponents aν =
(1/Kν +Kν)/4 and bν = (1/Kν −Kν)/4 in terms of the
respective Luttinger parameters Kν for ν = c, s. The over-
all prefactor |cx|

2 ∝ (sin πx
L+1
)bc+bs in eq. (4) does not

depend on energy and serves as normalization so that
ρuν,m=0 = 1. It is straightforward to see that the recursive
formula results in power laws for the DOS in the bulk
ρ∝ ωac+as−1 for L→∞ [14,28]. In addition, the formula
predicts slow wave-like modulations in the local DOS due
to the second term in eq. (6), which also survive in the
thermodynamic limit near the edge [10].
The local DOS from the DMRG data is shown in

fig. 3 for the first few modes at 1/3-filling. For the
lowest excitation |ω0〉 the oscillating and uniform parts
are the same and given by the prefactor |c(x)|2. Already
at first sight it is surprising to see that the local DOS
for all modes increases slightly near the boundary, while
all previous analytic calculations have predicted it to
decrease according to the boundary exponent [10,28,29].
Indeed it must be emphasized that the local DOS does
not fit the theoretical prediction. All curves should in
principle be fit free, up to one overall normalization,
since the local DOS of all levels follows from eqs. (4)–(6),
where the Luttinger parameters Kc(U) and Ks = 1 are
known from the thermodynamic Bethe ansatz. However,
in fig. 3 two important adjustments have been made: First
the theoretical curves were shifted down for the charge
modes and up for the spin modes in order to fit the
numerical data (indicated by arrows). This adjustment
was already observed in the crossover of the total DOS
in fig. 2 due to the competition of energy scales (band
curvature vs. interaction) as argued above. We could
not find any explanation of the shifts in the framework
of a renormalized Luttinger liquid. Secondly, we find
that the spin Luttinger liquid parameter must be chosen
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Fig. 3: (Color online) The local DOS of the first few modes
for L= 92 and U = 1. Points are DMRG data and lines are
theoretical predictions for Kc = 0.9081 and Ks = 1.16 adjusted
by a shift as indicated by arrows (see text). Top: local DOS for
|ω0〉. The thick line corresponds to 2|cx|

2. Lower plots: uniform
part of the local DOS for the first few charge and spin modes.

considerably larger than unity Ks ≈ 1.16 for all spin
modes in order to fit the numerical data corresponding to
attractive behavior in the spin modes. This is especially
surprising since the charge Luttinger parameter from the
Bethe ansatz Kc = 0.9081 agrees perfectly with the data
without any finite-size adjustments. There are no other
adjustable parameters in the fits of fig. 3, except for one
overall normalization constant. The oscillating parts ρoν
can be analyzed analogously and give the same results (not
shown). The local DOS can also be calculated by Fourier
transforming the real-space Green’s function [10–13,28],
but for an analytic analysis of individual states the
recursive formulas in eqs. (4)–(6) are a great advantage,
since they give a closed form without divergences and
in return allow the quick and accurate determination of
the effective parameters Ks and Kc by fitting the data
from (numerical) experiments for the first spin and charge
excited states.
In fig. 4 the behavior of the Luttinger parameters from

the corresponding fits to the uniform local DOS is shown
as a function of interaction and length at 1/3-filling.
The charge parameter from the Bethe ansatz Kc always
agrees very well with the data without any additional
adjustments. However, the observed spin parameter Ks is
considerably larger than Ks = 1. Non-Abelian bosoniza-
tion predicts Ks = 1 for any SU (2) invariant model, but
at the same time it is known that a marginal irrelevant
operator causes corrections to the anomalous dimension
which only vanish logarithmically slowly with 1/lnL in
the thermodynamic limit [17,18]. In Abelian bosonization
such a correction can indeed effectively be modeled by a
renormalizing spin Luttinger parameter [17–19,30,31]

Ks− 1∝ g, with g−1+
1

2
ln(g) = ln(L/L0), (7)
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Fig. 4: (Color online) Left: Luttinger parametersKc (line) from
the Bethe ansatz andKs (points) from the fits to ρ

u

s,m=1(x) as a
function of U for L= 92. Right: renormalization of Ks (points)
at U = 1 with the system size L compared to eq. (7).

where L0 is non-universal and depends on the model
and the quantity of interest. As shown in fig. 4 such
a renormalization description is indeed consistent with
our data for Ks. The parameter Ks increases with U
at a given length L, but decreases slowly as the length
is increased. The parameter Ks appears to be the same
for all spin modes at a given U and L, i.e., independent
of energy ω. The renormalization of Ks is very slow, so
that exponentially large systems are required to observe
the thermodynamic limit Ks→ 1. The fit parameters for
Ks ≈ 1+1.98g with lnL0 ≈−6 are outside the range,
which would normally be expected for a spin chain
model [19]. Therefore, the particular form of the observed
corrections remains a puzzle.
Nonetheless, the results of the logarithmic corrections

have interesting consequences. In particular, the correc-
tions are so large, that the boundary exponent αB =
(1/Ks+1/Kc)/2− 1 may become negative if Ks+Kc <
2KsKc, i.e., Ks− 1� 1−Kc to lowest order in the correc-
tion, which is indeed the case for small U � 2t at L= 92.
This results in an increase of the local DOS for small ener-
gies ω and small distances x near the boundary, which is
described by a weak power law divergence ρ∝ xbs+bcωαB .
Such a negative boundary exponent would also explain the
recently reported boundary anomalies for small interac-
tions in functional renormalization group studies [32,33].
It is known that logarithmic corrections also exist as a
function of energy near the boundary, which lead to a very
small energy region where an uncorrected boundary expo-
nent can be observed [24,25].

Conclusions. – In conclusion, we have analyzed the
local DOS of the Hubbard model in the low-energy regime.
Individual states can be classified by separate spin and
charge quantum numbers. We observe that typically only
one eigenstate has a relatively large local DOS in each
spin/charge mode, while all other states in that mode
are negligible. The spin and charge Luttinger parame-
ters Ks and Kc can be extracted from the modulations
in the local DOS of individual excited states. While the
charge parameter Kc agrees well with the Bethe ansatz,
the spin Luttinger liquid parameter is attractive Ks > 1
due to large finite-size corrections, which can only be
neglected for exponentially large chain lengths. In fact,
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Table 1: The SU (2) eigenstates in terms of bosonic quantum
numbers with integer spin.

S= 0 |ω0〉

S = 1 |{1}〉

S = 0 |{1, 1}〉

S = 1 |{2}〉

S = 0 |{2, 1}〉

S = 1 |{3}〉

S = 1 |{1, 1, 1}〉

S = 0
√

2

3
|{3, 1}〉+

√

1

3
|{1, 1, 1, 1}〉

S = 0
√

1

9
|{3, 1}〉+

√

2

3
|{2, 2}〉−

√

2

9
|{1, 1, 1, 1}〉

S = 1 |{4}〉

S = 1 |{2, 1, 1}〉

S = 2 −
√

2

9
|{3, 1}〉+

√

1

3
|{2, 2}〉+

√

4

9
|{1, 1, 1, 1}〉

S = 0
√

4

7
|{4, 1}〉+

√

3

7
|{2, 1, 1, 1}〉

S = 0
√

6

63
|{4, 1}〉+

√

49

63
|{3, 2}〉−

√

8

63
|{2, 1, 1, 1}〉

S = 1 |{5}〉

S = 1 |{3, 1, 1}〉

S = 1 |{2, 2, 1}〉

S = 1 |{1, 1, 1, 1, 1}〉

S = 2 −
√

1

3
|{4, 1}〉+

√

2

9
|{3, 2}〉+

√

4

9
|{2, 1, 1, 1}〉

the corrections to Ks are unexpectedly strong and may
even lead to negative boundary exponents for moderate
interactions U � 2t. The common assumption that it is
possible to generically use Ks = 1 due to SU (2) invari-
ance is certainly not justified for the local DOS. In partic-
ular, for finite wires on conducting substrates the inter-
actions may be reduced by screening, so that the charge
Luttinger liquid parameterKc may be close to unity, while
the spin Luttinger liquid parameters Ks can already be
significantly increased, which leads to a negative boundary
exponent. This would have quite dramatic consequences,
since the DOS near the boundary determines the tunnel-
ing between connected wires and the renormalization of
the conductivity through impurities [29], which will show
an increase at low temperatures in this scenario.

∗ ∗ ∗

We are thankful for useful discussions with A. Struck
and M. Bortz. This work was supported by the DFG
and the State of Rheinland-Pfalz via the SFB/Transregio
49 and the MAINZ graduate school of excellence.

Table 2: The SU (2) eigenstates in terms of bosonic quantum
numbers with half-integer spin.

S= 1/2 |ω0〉

S = 1/2 |{1}〉

S = 1/2
√

2

3
|{2}〉+

√

1

3
|{1, 1}〉

S = 3/2 −
√

1

3
|{2}〉+

√

2

3
|{1, 1}〉

S = 1/2
√

1

3
|{3}〉+

√

2

3
|{1, 1, 1}〉

S = 1/2
√

2

9
|{3}〉+

√

6

9
|{2, 1}〉−

√

1

9
|{1, 1, 1}〉

S = 3/2 −
√

4

9
|{3}〉+

√

3

9
|{2, 1}〉+

√

2

9
|{1, 1, 1}〉

S = 1/2 −
√

1

3
|{3, 1}〉+

√

2

3
|{1, 1, 1, 1}〉

S = 1/2

√

12

27
|{4}〉+

√

2

27
|{3, 1}〉+

√

12

27
|{2, 1, 1}〉

+
√

1

27
|{1, 1, 1, 1}〉

S = 1/2

√

3

54
|{4}〉+

√

8

54
|{3, 1}〉+

√

27

54
|{2, 2}〉

−
√

12

54
|{2, 1, 1}〉+

√

4

54
|{1, 1, 1, 1}〉

S = 3/2 −
√

1

3
|{4}〉+

√

1

3
|{2, 2}〉+

√

1

3
|{2, 1, 1}〉

S = 3/2
−
√

1

6
|{4}〉+

√

4

9
|{3, 1}〉−

√

1

6
|{2, 2}〉

+
√

2

9
|{1, 1, 1, 1}〉

Appendix: quantum numbers from non-Abelian

bosonization. – In order to determine the total spin
eigenstates as shown in tables 1 and 2, it is useful to
use non-Abelian bosonization in the spin channel [17].
In this case the excitations are created by the modes
of SU (2) currents Jam with a= x, y, z obeying the Kac-
Moody algebra,

[Jam, J
b
n] = iε

abcJcm+n+
1

2
mδa,bδm,−n. (A.1)

The ground state is characterized by Jam|ω0〉= 0, ∀m< 0.
The total spin operator is given in terms of the m= 0
currents,

S2 = �J0 · �J0 = 2J
+
0 J

−
0 +J

z
0 +(J

z
0 )
2, (A.2)

where J± = Jx± iJy. The current modes in the z-
direction are related to the Abelian spin bosons above
by Jzm =

√

m
2
b†m,s and J

z
−m =

√

m
2
bm,s for m> 0. It is

therefore straightforward to consider the total spin of
any bosonic spin and charge excitation by using the
Kac-Moody commutation relations. The charge bosons
commute with the total spin operator S2. Spin excita-
tions are created by products of spin creation operators
b†m,s acting on |ω0〉. The corresponding normalized
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states can be labelled by the set of which bosons
were created |{m1,m2,m3, . . .}〉, e.g., |{3, 1, 1}〉=
1√
2
b†3,s(b

†
1,s)

2|ω0〉. Therefore, the matrix elements of

〈{m1,m2,m3, . . .}|S
2|{m′1,m

′
2,m

′
3, . . .}〉 between any two

such excitations can be evaluated uniquely by the Kac
Moody algebra (A.1). The Jz0 operators commute with
all excitations and the ground state is characterized by
Jz0 |ω0〉= S

z|ω0〉=
1

2
|ω0〉 in our case. For the J

± operators
we use the Kac-Moody relation in eq. (A.1) with the help
of computer algebra in order to successively commute
them to the right until the action on the ground state
is known. This results in a non-diagonal matrix for S2

for each spin mode separately, which can be brought into
diagonal form. The resulting eigenstates and eigenvalues
are given in table 1 for the case in which the state |ω0〉
has total spin of S = 0. In this paper we considered an
excitation on the filled Fermi sea, which will correspond
to a state |ω0〉 with S = 1/2. In this case the eigenstates
are given in table 2.
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