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We investigate a spin-1/2 two-leg honeycomb ladder with frustrating next-nearest-neighbor (NNN) coupling
along the legs, which is equivalent to two J1-J2 spin chains coupled with J⊥ at odd rungs. The full parameter
region of the model is systematically studied using conventional and infinite density-matrix renormalization group
as well as bosonization. The rich phase diagram consists of five distinct phases: a Haldane phase, a NNN-Haldane
phase, and a staggered dimer phase when J⊥ < 0; a rung singlet phase and a columnar dimer phase when J⊥ > 0.
An interesting reentrant behavior from the dimerized phase into the Haldane phase is found as the frustration
J2 increases. The universalities of the critical phase transitions are fully analyzed. Phase transitions between
dimerized and disordered phases belong to the two-dimensional Ising class with a central charge c = 1/2. The
transition from the Haldane phase to NNN-Haldane phase is of a weak topological first order, while the continuous
transition between the Haldane phase and rung singlet phase has a central charge c = 2.
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I. INTRODUCTION

Frustration due to competing interactions in quantum spin
systems often gives rise to interesting and rich quantum phase
diagrams [1–3]. The prototypical example of a spin-1/2 chain
with the frustrating next-nearest-neighbor (NNN) interactions
J2 is known to undergo a Berezinskii-Kosterlitz-Thouless
(BKT) transition from a gapless Tomonaga-Luttinger liquid
(TLL) phase to a gapped dimerized phase with spontaneously
broken translational symmetry [4–8] at J2,c � 0.241167J1,
where J1 is the nearest neighbor (NN) interaction along the
chain. At the Majumdar-Ghosh point [9,10] J2 = J1/2 the
ground state is known exactly and for J2 > J1/2 incom-
mensurate spiral spin-spin correlations emerge [8,11]. For
comparison the spin-1 chain is in a gapped Haldane state
[12,13] with a topological string order [14,15] for small J2,
but the correlations become incommensurate for J2 � 0.284J1

and a transition to a NNN-Haldane phase occurs at J2,c �
0.7444J1, where the valence bonds link NNN sites [16–23],
which is sometimes also referred to as a double Haldane
phase.

Quantum spin ladders have been intensively studied in order
to systematically extend the systems towards two dimensions
(2D) [24–42]. For unfrustrated two-leg spin-1/2 ladders the
ground state is either in a rung singlet (RS) phase or in a
Haldane phase for positive or negative rung couplings J⊥,
respectively. By including frustrating couplings between the
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chains J× the possibility of a columnar dimerized (CD) phase
between the Haldane and RS phases was proposed [30,43,44],
but the numerical evidence remains controversial for this case
[31–34]. On the other hand, small frustrating NNN couplings
J2 on the legs are known to induce and stabilize dimerized
phases in the columnar or the staggered order [35–42], and in
some cases reentrant behavior for larger J2 may occur [37].

We now analyze the honeycomb ladder as shown in Fig. 1
consisting of two spin-1/2 legs with an odd-rung coupling
[45,46]. In this paper we focus on the effect of frustrating
NNN couplings on the legs (J2), while frustrating interchain
couplings (J×) may be considered in a later work. Experi-
mentally, the honeycomb ladder has recently been realized in
a four azide copper coordination compound [Cu2L1(N3)4]n
(L1 = 2, 6-bis (4, 5-dihydrooxazol-2-yl) pyridine), with the
antiferromagnetic intrachain coupling and ferromagnetic in-
terchain coupling [47]. As a 2D model, the honeycomb lattice
has received considerable attention also in the context of
long-range interactions and spin-liquid physics [48–52]. Using
an optical lattice such a honeycomb structure can also be
constructed for interacting ultracold gases [53].

The paper is organized as follows: In Sec. II, we introduce
the model Hamiltonian and discuss the symmetries. The phase
diagram from the numerical simulations is summarized and
discussed in Sec. III. In Sec. IV, we use bosonization and
the renormalization group (RG) to analytically predict the
transition lines and compare with numerics before a detailed
analysis of the critical behavior near the phase transitions is
presented in Sec. V. The interesting behavior of the energy
gaps is discussed in Sec. VI and we conclude in Sec. VII. The
detailed field theory derivation and the RG flow is presented
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FIG. 1. Illustration of interactions on a frustrated two-leg spin-
1/2 honeycomb ladder.

in Appendix A and the boundary conditions are discussed in
Appendix B.

II. MODEL

The frustrated honeycomb model shown in Fig. 1 is de-
scribed by the spin-1/2 Hamiltonian

H = Hlegs + Hrungs (1)

with

Hlegs =
∑

α=1,2

L∑
j=1

(J1Sj,α · Sj+1,α + J2Sj,α · Sj+2,α), (2)

where α = 1, 2 are the leg indices, j = 1, . . ., L are the
rung indices, N = 2L is the number of spins, and the interleg
exchange on the rungs reads

Hrungs =J⊥
L∑

j=1

1 − (−1)j

2
Sj,1 · Sj,2. (3)

Frustrating coupling (J×) between the legs can in principle also
be included but will not be considered here. The leg couplings
J1, J2 > 0 are both chosen to be antiferromagnetic, while the
rung couplings J⊥ can be ferromagnetic or antiferromagnetic.
For uniform couplings on every rung the known instabilities
are either the RS phase or the Haldane phase, depending on
the sign [24–29], but an alternation of rung couplings may
open the possibility for a richer phase diagram especially
in connection with the frustration J2, which tends to induce
ordered dimerized phases [35–42].

Obviously, the total spin St = ∑
j,α Sj,α commutes with the

model Hamiltonian, due to the global SU (2) symmetry. There
is a mirror symmetry under the exchange of the leg indices.
For periodic boundary conditions (PBC) the translational
symmetry by two rungs is maintained, but there is no parity
symmetry along the legs. Only for an odd number of rungs L

and open boundary conditions (OBC) such a parity symmetry
exists with respect to the middle rung.

III. GROUND STATE PHASE DIAGRAM

In this section, the quantum phase diagram is summarized
and discussed before the underlying detailed analytical and
numerical calculations are presented in the following sections.
The phase diagram in Fig. 2 was derived by extensive density
matrix renormalization group (DMRG) [54–57] and infinite-
size density matrix renormalization group (iDMRG) [58–60]
simulations with the U (1) symmetry and OBC or shifted OBC

FIG. 2. Ground state phase diagram of the frustrated two-leg
honeycomb ladder. The ordered dimer phases SD and CD are
separated by a first order transition and Haldane to NNN-Haldane
is also weak first order. All other phase transitions are continuous (◦:
c = 1/2; �: c = 2).

(see Appendix B) are used unless stated explicitly otherwise.
The numerical calculations are implemented by keeping states
in both blocks up to 2000 for keeping the truncation error less
than 10−7. For the DMRG, more than four iterative steps of
sweep are used to guarantee the convergence of the ground state
and the low-lying excited states. In the iDMRG simulation, a
warmup process with at least 1000 truncated states is used and
the number of states m increases during the measurement.

The model Hamiltonian in Eq. (1) allows us to define two
parameters, which adjust the frustration J2/J1 in the legs
and the coupling J⊥/J1 between the legs independently. The
resulting phase diagram in Fig. 2 shows distinct phases: the
Haldane, NNN-Haldane, and staggered dimer (SD) phases for
J⊥ < 0, the CD and RS phases for J⊥ > 0. There is also a TLL
phase along the line of J⊥ = 0 and J2 < J2,c.

The dominant correlations in the different phases are shown
in Fig. 3, where red ovals denote singlet valence bonds. In the
Haldane and NNN-Haldane the spins on the rungs are in a

FIG. 3. Dominant correlations in the different phases. The red
ovals denote singlet valence bonds. In the Haldane and NNN-Haldane
phases the spins on the rungs are in a fully symmetrized state denoted
by green rectangles, so the end points of valence bonds are also
implicitly symmetrized.
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fully symmetrized state denoted by green rectangles, so the
end points of valence bonds are also implicitly symmetrized
[61]. In the CD or SD phase the valence bonds on each
chain form a long-range order, with a columnar or staggered
arrangement between the chains, respectively. The RS phase
shows dominant singlet formation on the rungs with short range
correlations along the chains.

In the strong ferromagnetic limit of the odd-rung coupling
−J⊥ � J1, the spins on the odd rungs are in the triplet state,
which effectively behave as spin-1. The NN interaction J1 in
the rung-alternating model may in principle cause interesting
states with broken translational symmetry, where effective
triplets over several rungs may be formed (so-called Haldane-
dimer states) [46,62]. However, for the simple alternation of
bonds in Eq. (3) the states on the even rungs are always
observed to be in an effective triplet state in agreement with the
second order perturbation theory for −J⊥ � J1. In particular,
for relatively strong NN coupling J1 � J2 the triplets on the
even rungs can form valence bonds to the odd rungs on both
sides equally, which corresponds to the well-known Haldane
state [61]. For the spin-1 chain this state was shown to be
topologically nontrivial and protected by the time-reversal,
parity and dihedral group (incomplete Z2 × Z2) symmetries
[63,64]. For OBC, topologically protected spin-1/2 degrees of
freedom are localized at the edges. Thus it is well characterized
by a double degeneracy in the entanglement spectrum [65]. It is
also interesting that the translational symmetry by one rung is
recovered since no dimerization is observed in such a Haldane
phase. On the other hand, in the limit J2 � J1 a NNN-Haldane
state is formed only involving the odd rungs directly. The
spins on the even rungs then again form induced triplet states,
which are also stable in a NNN-Haldane state. In this case, the
translation by one rung remains broken. This state is therefore
characterized by two weakly coupled Haldane states with
valence bonds over NNN rungs. The fractional edge spin-1/2
are no longer protected, so the state can adiabatically transit to
a trivial state without breaking any symmetry. Analogous to the
J1-J2 spin-1 chain [16–23], a weak first order topological phase
transition from the Haldane phase to NNN-Haldane phase can
be observed.

For a weaker ferromagnetic rung coupling there is a
more complex competition between frustration and triplet
formation. Above a critical value which can be pre-
dicted from bosonization in the next section, the frus-
trating coupling J2 causes a long-range dimer order, i.e.,
εj,α = (−1)j 〈Sj,α · Sj+1,α〉 on each leg α. The weak ferro-
magnetic odd-rung coupling then causes a staggered pattern
of dimers on the two legs [42] (SD phase), with a finite dimer-
ization order parameter Ds = 1

2 | ∑α=1,2(−1)α[εj−1,α + εj,α]|.
In contrast to the Haldane phase this state is long-range
ordered with a broken translational symmetry by one rung.
The region of the SD phase extends far to the ferromagnetic
side, especially around J2 ≈ 0.6J1 where the dimerization and
triplet gap of the underlying zigzag chains are largest [8].
However, the transition from the Haldane phase to the NNN-
Haldane phases occurs at even larger J2, which in turn causes
an interesting reentrant behavior around moderate values of
J⊥ ∼ −1.5J1: Increasing J2 causes a phase transition from
Haldane to SD and then again from the SD to Haldane states,
before finally the NNN-Haldane phase is observed at larger J2.

In the limit of strong antiferromagnetic interleg coupling
J⊥ � J1, singlets are formed on the odd rungs, while effective
interactions on the even rungs can be obtained by integrating
out spins belonging to the odd rungs via the second order
perturbation theory. In this case the effective couplings for
spins on the even rungs have been determined by Amiri et al.
[46] for J2 = 0, which are given by antiferromagnetic rung
interactions J̃⊥ = J 2

1 /(2J⊥) with NN coupling J̃1 = J 2
1 /(4J⊥)

and a ferromagnetic cross-coupling J̃× = −J 2
1 /(4J⊥). The

system therefore is effectively described by two ladders for
even and odd rungs, which are in the RS phase [66]. Slightly
stronger couplings J1, J2 along the legs cause resonating
valence bonds [26], but do not change the nature of the RS
correlations. Therefore, in contrast to strong ferromagnetic
rung couplings there are no degrees of freedom available which
could allow another phase in the limit J⊥ � J1. For weak
antiferromagnetic rungs, on the other hand, the dimerized state
becomes important again. For uncoupled legs dimerization
is stable for J2 > J2,c [4–8] and the weak antiferromagnetic
rungs now cause a columnar dimer pattern on the two legs with
a finite order parameter Dc = 1

2 | ∑α=1,2[εj−1,α + εj,α]| [42].
The region of the resulting CD phase is again largest around
J2 ≈ 0.6J1 where the strongest dimer correlations and triplet
gaps are found [8]. However, the CD phase only extends about
a third in |J⊥| compared to the SD phase, which is simply
due to the fact that breaking rung singlets costs three times
the energy compared to the triplets. For small J⊥ the shape of
the transition line can again be predicted by bosonization in the
next section, which is found to be in the 2D Ising universality
class. Incommensurate short range correlations are found in the
SD and CD phases for larger frustration J2, but the dimerization
order parameter changes continuously [8]. The transition line
between SD and CD phases has been drawn at J⊥ = 0 in Fig. 2,
since obviously the SD and CD patterns must be degenerate
for two uncoupled chains. However, it must be emphasized that
there is a large uncertainty if the CD phase may also be stable
for small negative J⊥ in a region around J2 ∼ 1.5J1, which
both bosonization and numerical results seem to indicate as
discussed in Secs. IV and V.

IV. FIELD THEORY AND RENORMALIZATION GROUP

A RG treatment based on bosonization gives an analytical
approach to determine the phase boundaries [8,30,32,41,42].
Here we employ non-Abelian bosonization to express the spin
operators in an effective continuum theory of decoupled chains
[4,67–70].

To derive the non-Abelian bosonization, it is useful to
consider the Heisenberg chain as the spin channel of the half-
filled Hubbard model in the large U limit [4]. The bosonization
of the fermionic operators of the Hubbard model is performed
in terms of a bosonic matrix field g, member of the SU(2)
Lie group, accounting for the spin degrees of freedom, and
a U(1) boson field ϕc, accounting for the charge degrees of
freedom. The two field theories are completely decoupled
(so-called spin-charge separation). The field ϕc is described
by a sine-Gordon model which in this case is a massive theory,
so the charge sector acquires a gap and can be neglected in the
following. The theory that describes the spin part of the system
is the Wess-Zumino-Witten (WZW) model [70]. Left-right
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products of fermionic operators can be expressed in terms of
the two fields ψ

†
LaψRb ∼ gab exp i

√
2πϕc, which leads to the

bosonization formula for the spin operators

Sα(x) ≈ Jα(x) + (−1)x�nα(x), (4)

where � is a nonuniversal constant of order unity that has to be
determined by comparison with exact or numerical methods.
The uniform part of the spin operator Jα = Jα,L + Jα,R is
the sum of the chiral SU(2) currents of the WZW model,
while the staggered one is related to the matrix field g of the
WZW model via n ∼ Trσg, with σ the Pauli matrices. By
symmetry, the field ε ∼ Trg is also allowed corresponding to
the dimerization operator, εj,α = (−1)j Sj,α · Sj+1,α . In what
follows we consider this theory for fixed points of decoupled
chains, which are perturbed by the interchain couplings. The
RG treatment is then used to identify the leading instabilities,
which in turn determine the phase transition lines.

To give a brief overview of the RG procedure, consider a
fixed point Hamiltonian H0 to be perturbed by a set of operators
Ok . In the RG treatment the energy cutoff is lowered according
to �(l) = �0e

−l with the dimensionless scale parameter l,
which changes the effective coupling constants [70,71]. The
evolution of each coupling under the RG procedure can be
evaluated via the second order correction to the partition func-
tion of the free system due to the corresponding perturbations.
This procedure results in a flow equation for each coupling
[69,71,72]

dλk

dl
= (2 − dk)λk − π

v

∑
i,j

Cijkλiλj , (5)

where the coefficients Cijk are determined by the operator
product expansion between the perturbing operators and dk

is the corresponding scaling dimension. Typically one of the
coupling constants grows fastest under the renormalization
flow, which determines the leading instability.

Let us first consider the fixed point of J⊥ = 0 and J2 <

J2,c, corresponding to two decoupled gapless chains (black
lines in Fig. 1). It is well known that even without interleg
coupling there is a marginal perturbation from an in-chain
current-current marginal operator [61] for each leg α = 1,2

Ha = 2πv

∫
dxλaOa, Oa =

∑
α

Jα,L · Jα,R, (6)

of scaling dimension da = 2. The velocity v ≈ πJ1/2 −
1.65J2 as well as the bare coupling λa ≈ 1.723(J2 − J2,c) can
be found as functions of the in-chain NNN couplingJ2 [4,7,67].
The interleg couplings connect the chain field theories yielding
a number of perturbations to the fixed point Hamiltonians,
which in principle contain all operators allowed by symmetry.
The possible perturbing operators with the lowest scaling
dimensions are found to be

H1 = 2πv

∫
dx(λεOε + λnOn + λcOc + λbOb), (7)

with

Oε = ε1ε2,On = n1 · n2, Oc = J1 · n2 + J2 · n1

Ob = J1,L · J2,R + J2,L · J1,R (8)

with scaling dimensions dε = dn = 1, dc = 3/2, and db = 2.
The bare couplings are determined by using Eq. (4)

λε = 0, λn = �2 J⊥
4πv

, λc = �
J⊥

4πv
, λb = J⊥

4πv
. (9)

Note that although λε is initially zero, it can be generated under
the RG evolution of the couplings due to the second order
contribution of the relevant Oc operator.

In our case Eq. (5) yields the following RG equations (see
Appendix A)

λ̇a = λ2
a + 1

2λ2
ε − 1

2λ2
n, (10a)

λ̇b = λ2
b − λελn + λ2

n, (10b)

λ̇ε = λε + 3
2λaλε − 3

2λbλn + 3
2λ2

c, (10c)

λ̇n = λn − 1
2λaλn − 1

2λbλε + λbλn + λ2
c, (10d)

λ̇c = 1
2λc − 1

4λaλc + λbλc + 1
2λcλε − λcλn. (10e)

We now integrate these equations until the magnitude of one
coupling constant reaches the cutoff λ∗ = 1, which in turn
determines the dominant correlations. As the strong coupling
regime is reached, the system is no longer scale invariant and
renormalization stops. When either λa or λε first reaches the
strong coupling limit the ladder is dimerized, where λε > 0
corresponds to an SD pattern while λε < 0 gives the CD phase.
When either λb or λn becomes dominant the system acquires
strong correlations on the rungs, where λn > 0 corresponds
to singlets (RS) and λn < 0 to triplets (Haldane). There is
no region in the parameter space where the less relevant
operator Oc becomes dominant, and its role is restricted to
simply promote one of the other phases. If this operator can
be made large by fine tuning in an extended parameter space,
it was argued to enhance incommensurate correlations [42].
The lower part of the phase diagram in Fig. 4 was produced
by identifying the coupling constant to first reach the values

-2 -1.5 -1 -0.5 0.5 1 1.5 2
J⊥/J1

0

0.5

1

1.5

2

J 2
/J
1

J⊥/J2

NNN-Haldane

Haldane

SD CD
RS

RS

SD CD

FIG. 4. Ground-state phase diagram of the honeycomb ladder
obtained via the field theory and RG. The blue circles correspond to
the critical points determined numerically via the DMRG algorithm,
while the black dashed lines indicate the critical lines as determined
via analytical RG using � = π and λ∗ = 1.
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λ∗ = 1 under integration of the RG equations, where � = π

was used for the best agreement with the DMRG results. Both
λ∗ and � are in principle adjustable parameters, which change
the exact location of the lines but not the topology of the phases.

There is another possible fixed point in the limit J2 �
J1,J⊥, which consists of four decoupled chains denoted by
ᾱ = 1,2,3,4 corresponding to the red lines in Fig. 1. In this
case, the couplings between the inner and the outer chains are
different depending on J1 and J⊥. Consequently, we need to
treat the marginal operator from Eq. (6) separately for the inner
chains (ᾱ = 2,3), Oi with coupling λi , and for the outer ones
(ᾱ = 1,4), Oo with coupling λo. The interchain perturbation
now reads

H2 = 2πv

∫
dx[λεOε + λnOn + λbOb + λuOu

+ λvOv + λwOw], (11)

with

Oε = ε2ε3,On = n2 · n3,

Ob = J2,L · J3,R + J3,L · J2,R,
(12)

Ou = J1,L · J2,R + J3,L · J4,R + L ↔ R,

Ov = ε1∂xε2 + ε4∂xε3,Ow = n1 · ∂xn2 + n4 · ∂xn3,

with scaling dimensions dε = dn = 1 and db = du = dv =
dw = 2. The bare couplings are

λε = 0,λb = J⊥
2πv

, λn = �2 J⊥
2πv

,

λv = 0,λu = 2J1

2πv
, λw = −�2 J1

2πv
, (13)

where the velocity is v ≈ πJ2/2. The resulting RG equations
are

λ̇o = λ2
o − 1

4

(
λ2

v − λ2
w

)
, (14a)

λ̇i = λ2
i + 1

2

(
λ2

ε − λ2
n

) − 1
4

(
λ2

v − λ2
w

)
, (14b)

λ̇b = λ2
b − λnλε + λ2

n, (14c)

λ̇ε = λε + 3
2λiλε − 3

2λbλn, (14d)

λ̇n = λn − 1
2λiλn − 1

2λbλε + λbλn, (14e)

λ̇u = λ2
u − 1

2λvλw + 1
2λ2

w, (14f)

λ̇v = 3
4 (λo + λi)λv − 3

2λuλw, (14g)

λ̇w = − 1
4 (λo + λi)λw − 1

2λuλv + λuλw. (14h)

For weak perturbations we find that the critical lines are
determined by the competition of the relevant On, driving the
system into strong rung correlations, and the marginal Ou,
Ow both of which drive the system into a dimerized phase
for large values. The dimer operator Oε is more relevant than
the marginal couplings but remains smaller under RG flow
for the starting values in Eq. (13). However, the pattern (SD
or CD) is still determined by the sign of λε which indicates
that the transition line is shifted to negative values of J⊥ in
Fig. 4. It should be noted that the numerical analysis of the
exact location of the transition line is also extremely difficult
which will be discussed below in Sec. V, so it remains an open
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0 4 8 12
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0.55

0.60

FIG. 5. Columnar dimerization order parameter Dc
L for OBC as

a function of J⊥ for L = 96 (�), 128 ( ), 192 (+), 256 (♦), 320
(◦), and 384 (�) when J2 = J1 is fixed. In the inset, we do a linear
extrapolation of the quasicritical points J⊥,L (•) to the TDL.

question if the CD phase may be stable for small negative J⊥.
All other transition lines are in quantitatively good agreement
in the vicinity of both fixed points in Fig. 4. For larger bare
couplings the RG approach breaks down, so no meaningful
prediction can be made with bosonization in the shaded region
of Fig. 4, which separates the analysis at the two fixed points.

V. NATURE OF THE TRANSITIONS

This section is devoted to discuss detailed numerical results
for the nature of phase transitions presented in Sec. III.
Traditional phase transitions can be fully described in the
framework of Landau theory of symmetry breaking, where
the concept of local order parameter is involved. The critical
exponents for the continuous phase transition can be extracted
from the order parameter. However, a so-called symmetry
protected topological (SPT) state may only be characterized
by nonlocal order parameter dubbed as a topological order
[73].

Since all the other disordered phases are adjacent to the
dimerized phases in the parameter space considered, one can
use the local order parameter of the CD/SD phase to distinguish
the phase boundaries and extract the critical exponents by
the finite-size-scaling (FSS) method. As mentioned above the
dimerization order parameters in the columnar and staggered
patterns Dc

L and Ds
L, respectively, are given by

D
c/s
L (j ) = 1

2

∣∣∣∣∣
∑

α=1,2

(±1)α[εj−1,α + εj,α]

∣∣∣∣∣, (15)

where εj,α = (−1)j 〈Sj,α · Sj+1,α〉. The dimerization shows
strong Friedel oscillations near edges, which decay exponen-
tially towards the middle. Therefore we shall set j = L/2 in
Eq. (15) so as to minimize the boundary effect and chose
compatible OBC as discussed in Appendix B.

A. RS–CD transition

The typical behavior of the order parameter Dc
L with

increasing J⊥ at fixed J2 = 1.0 is presented in Fig. 5 for
different lengths L and OBC. To determine the accurate value
of the critical point J⊥,c, we shall first obtain quasicritical
points J⊥,L which are defined by the position of the first-order
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FIG. 6. Von Neumann entropy S as a function of partition size
x/L fitted by Eq. (16) at CD-RS quasicritical points J⊥,L for different
L. The inset shows a second-order polynomial extrapolation of the
central charge to c = 0.52(3) in the TDL.

derivative peaks of Dc
L for each length L. It is then possible

to make an extrapolation to the thermodynamic limit (TDL)
to find J⊥,c as shown in the inset of Fig. 5, which gives
J⊥,c � 0.4883(12) in this case. The signature of the phase
transition can also be seen by the local entanglement measures
[74] and by the rung-singlet correlations in the RS phase [44].

Fundamental characteristics of ground states in quantum
many-body systems are manifest in their entanglement prop-
erties. In particular, the von Neumann entropy has drawn
much attention in condensed matter systems, which exhibits
a universal scaling behavior and captures some criticality
features [75–79]. For example, the central charge describes the
universality class of the criticality and subleading corrections,
for critical points in one-dimensional quantum models [77–
79]. For the frustrated honeycomb ladder we use the scaling of
the von Neumann entropy SL(x)

SL(x) = c

6
ln

[
2L

π
sin

(πx

L

)]
+ ACz(x) + B, (16)

where c is the central charge, A and B are nonuniversal
fitting parameters, and x is the size of the partition from the
edge in units of the lattice spacing. Here Cz(x) = Cz

α(x) ≡
〈Sz

x,αSz
x+1,α〉 is the z component of the spin-spin correlation

function along the leg direction, which is independent of the
leg index α = 1, 2 and alternates due to OBC. Its relation to
the alternating term of the von Neumann entropy under the
OBC was first noted by Wang [80], and then demonstrated nu-
merically by Laflorencie et al. [81]. Recently, the fluctuations
of the spin-spin correlation function for the spin-1/2 XX chain
were calculated analytically, which show that the subleading
terms of the oscillations exist [82,83].

In order to obtain a rather accurate central charge c defined
in Eq. (16), some tricks can be employed to reduce the finite
size effects and the rapid oscillations due to the OBC as well as
the alternating nature of the honeycomb ladder. We calculate
the central charge at the quasicritical points J⊥,L for each
length L and extrapolate, as shown in Fig. 6. We stress here
that each quasicritical point J⊥,L happens to be the position of
the maximum value of von Neumann entropy. The resulting
central charge is c � 0.52(3) after a second-order polynomial
extrapolation. The classification of conformal field theories
has identified c = 1/2 with the critical behavior of the 2D

0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 7. Evolution of singlet gap �S (filled symbols) and triplet
gap �T (open symbols) as a function of J⊥ when J2 = 1.0 for L = 96,
128, 192, 256, and 384. The inset gives a linear fit of �S (•) and a
second-order polynomial fit �T (◦) at the quasicritical points to the
TDL.

Ising universality class [84]. This also agrees with the critical
exponents we obtained from FSS for the phase transition in the
following subsection.

We now take a closer look at the energy gaps near the phase
transitions. The ground state can always be found in the sector
with the total spin-z Sz

t = 0. The triplet gap �T is determined
numerically by the energy difference to the first excited state
with Sz

t = 1. We can also find the singlet gap �S to the first
excited state withSz

t = 0. We show the value of gaps for various
sizes L in Fig. 7, where for each L the local minimum of
the singlet gap corresponds to the quasicritical point J⊥,L in
Fig. 5. An extrapolation of the gaps at quasicritical points to the
TDL is shown in the inset. When J⊥ crosses the critical point,
the triplet gap remains finite while the singlet gap tends to be
zero.

B. Haldane/NNN-Haldane–SD transition

The transition between the Haldane/NNN-Haldane phase
and the SD phase is similar to that of the RS–CD transition.
The phase transition could be found as before, but instead we
want to take the opportunity to illustrate that a FSS method
with critical indices gives a good data collapse. In particular,
the behavior of the order parameter Ds

L with the finite size L

follows

Ds
L(J ) � L−β/νfD(|J − Jc|L1/ν), (17)

where the critical exponent ν of the gap describes the diver-
gence of the correlation length while β is the critical exponent
of the order parameter D ∼ |J − Jc|β near the critical point Jc.
To obtain critical exponents, we change exponentsμ1,2 until we
see the collapse of Ds

L(J )Lμ1 as a function of |J⊥ − J⊥,c|μ2

for all lengths L. In this manner we extract β = μ1/μ2 and
ν = 1/μ2.

As an example, the FSS of the order parameter Ds
L for

J2 = 0.7 is shown in Fig. 8 for the SD-Haldane transition.
From the scaling of Ds

L we obtain the critical point J⊥,c/J1 �
−1.8980(5), critical exponents β = 0.126(2) and ν = 0.98(2).
These values coincide well with the critical indices of the 2D
Ising universality class where β = 1/8 and ν = 1. Following
the same way introduced in the previous subsection, we get
the central charge c = 0.51(2) at the critical point J⊥,c, which
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FIG. 8. FSS analysis of the staggered dimerization order parame-
ter Ds

L for J2 = 0.7J1 as a function of J⊥ for different length L = 96
(�), 128 ( ), 160 (�), and 192 (◦). The best fitting suggests J⊥,c =
−1.8980(5) and critical exponents β = 0.126(2) and ν = 0.98(2).

is another independent evidence of the 2D Ising universality
class.

We now turn to the topological properties of the Haldane and
SD phases by analyzing the entanglement spectrum ξχ , which
is derived from DMRG eigenvalues wχ of the reduced density-
matrix ρA for the right half of the system if the degrees of
freedom in the other half are traced out, namely ξχ = − ln(wχ )
[85]. It has been shown that the entanglement spectrum of a
SPT state exhibits a nontrivial multiplet structure of even-fold
degeneracy [65]. Such an even-fold degeneracy is usually
regarded as a characteristic signal for the SPT phases [86].
However, the degeneracy can be also influenced by the ladder
structure and is strongly dependent on the boundary condition.
For example, the one-dimensional spin-1 Heisenberg chain is
gapped with a unique ground state and a fourfold degeneracy of
the entanglement spectrum under PBC. For the OBC the edge
states give rise to a fourfold degenerate ground state in the
TDL and a twofold degeneracy of the entanglement spectrum
[65]. For the honeycomb ladder the proper choice of OBC is
therefore quite important as discussed in Appendix B. In the
Haldane phase under OBC, the ground state would generate
two spin-1/2 confined at the edges and becomes fourfold
degenerate. There is also a degeneracy in the SD phase for OBC
corresponding to the different choice of valence bonds on each
leg. By a relative shift of the legs by one site (shifted OBC) it is
possible to eliminate those degeneracies of the ground states.
This can be verified by the nonzero spin singlet gap �S for
an interchain coupling J⊥ = −1.0 as a function of the NNN
coupling J2 in Fig. 9. Near the critical point an avoided level
crossing phenomenon emerges, where the gap shows a local
minimum with linear finite size behavior towards zero (see the
inset). As shown in Fig. 10(a), both the Haldane and SD phases
have a fourfold degeneracy of their low-lying entanglement
spectra under PBC. With the shifted OBC we recover twofold
degeneracy in Fig. 10(b) for N = 2L = 190. Therefore, we
cannot distinguish the two phases solely through the multi-
plet structure of the entanglement spectrum. In general, we
conclude that the even-fold degeneracy of the entanglement
spectrum is not a unique character for the SPT states since
it can also be realized in the traditional symmetry-breaking
phases with proper boundary conditions.
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0.0

0.1

0.2

0.3

0.4

0 6 12 18
0.00

0.03

0.06

0.09

FIG. 9. Evolution of the singlet gap for shifted OBC in the vicinity
of the critical point J2,c � 0.5 at fixed J⊥ = −1.0 for L = 64 (∇), 96
(�), 128 (♦), 192 (◦), and 256 (�). In the inset, a linear extrapolation
of the singlet gap �S at quasicritical points goes to zero in the TDL.

C. Haldane–RS transition

Haldane and RS phases are both disordered and uniform
without breaking any time-reversal, parity, and point group
symmetries. Here the Haldane phase is a topologically non-
trivial state with finite string order and edge spins, while
the RS state does not have edge spins, which is due to the
different symmetry of the corresponding string order parameter
[32]. The direct transition between the Haldane phase and RS
phase is continuous with central charge c = 2, which has been
the topic of many works [24–30]. To show that there is not
an intermediate dimerized phase for J2 < J2,c, we illustrate
the behavior of the order parameter of the dimerized phase
across the transition in Fig. 11 for J2 = 0.2J1. Without loss
of generality, hereafter we shall only consider OBC and let
J2 = 0.2J1 throughout the subsection. For each given length
L, the maximal value Dc

L is always exactly at J⊥ = 0. The
extrapolation of quasicritical points J⊥,L on both sides show
that the critical point is J⊥ = 0 within the limit of error.
The maximal values Dc

L in the inset approach the TDL on

0

2

4

6

0.40 0.45 0.50 0.55 0.60
0

2

4

6
Haldane SD

FIG. 10. Lower part of the entanglement spectrum of the Haldane
and SD phases in the vicinity of the critical point J2,c � 0.5 at fixed
J⊥ = −1.0 for (a) N = 2L = 128 with PBC (b) N = 2L = 190
with shifted OBC (see Appendix B). In the multiplet structure the
degeneracy is indicated by different symbols: 2 (black circles), 4 (blue
squares), 8 (red triangles), and 16 (magenta plus).
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FIG. 11. Columnar dimerization order parameter Dc
L as a function

of J⊥ at fixed J2 = 0.2 for L = 64 (◦), 128 ( ), 192 (+), 256 (♦), 320
(�), and 384 (�). Inset shows the extrapolation of maximal values
using Dc

L → 0.1268/ ln(L/38.5) as L → ∞.

a nonlinear curve, which is consistent with a logarithmically
slow Dc

L ∼ 1/ ln(L/L0) decrease as L → ∞ in agreement
with the RG flow of the corresponding marginal operator in
Eq. (6) [4–8,67,87].

The phase transition is also reflected in the von Neumann
entropy SL, which is shown in Fig. 12 for different lengths
L of the system. For each given L, SL has a peak for
the antiferromagnetic (J⊥ > 0) and ferromagnetic (J⊥ < 0)
coupling, respectively. At the decoupled case (J⊥ = 0), a
local minimum emerges. With increasing length L, positions
of the peaks J±

⊥,L on both sides converge to the symmetric
point J⊥,c = 0 where the continuous phase transition occurs
(see inset). We also obtain the central charge c from the von
Neumann entropy SL. Best fitting with Eq. (16) for different
sizes L at the point J⊥ = 0 suggests c = 1.98(3), which is in
agreement with the existence of two decoupled TLL with c = 1
each for J⊥ = 0.

D. Haldane–NNN-Haldane transition

The spin-1 chain with NNN interactions was studied in
previous works [16–23], where a weak first order transition
between the topological Haldane phase and the NNN-Haldane
phase was found. The situation in the honeycomb ladder
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FIG. 12. Von Neumann entropy SL as a function of J⊥ at fixed
J2 = 0.2 for L = 128 (◦), 192 (�), 256 (♦), and 320 (�). In the inset,
linear extrapolations of peak positions J ±

⊥,L on both sides approach
the same critical point J⊥,c = 0 in the TDL.
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FIG. 13. Von Neumann entropy as a function of J2 when fixed
J⊥ = −3.0 for the Haldane-NNN–Haldane phase transition. We use
m = 512 (♦), 1024 (�), 2048 (◦), and 4096 (�) in the iDMRG
calculations. The inset shows the first derivative of the average energy
e0 per site with respect to J2 when m = 4096.

with the strong-ferromagnetic odd rungs is slightly different,
however, since triplet correlations on the even rungs are
only indirectly induced by second order perturbation theory.
Therefore, a careful analysis of this phase transition must be
made to exclude the possibility of intermediate phases [46,62].

We now use the iDMRG method [58–60], where no finite-
size effect is involved. Instead of finite size scaling, an
extrapolation in the number of kept state m is useful so we vary
this control parameter from 512 to 4096. The behavior of the
von Neumann entropy S with frustration J2 for different kept
states m is shown in Fig. 13. The entropy has a discontinuous
behavior in the narrow regime J2 ∈ (0.926,0.928) in all cases,
which clearly signals a phase transition. To further pinpoint
the transition point, we analyze the derivative of the energy
from the left and from the right side in this region as shown
in the inset, which shows a clear jump at the transition point
J2,c � 0.92720754. We therefore find no sign of intermediate
phases or continuous behavior, so that the transition is of first
order.

E. SD–CD phase transition

SD and CD phases are both dimerized states with conven-
tional order parameters in the framework of Landau theory
of phase transitions. Since they break different point group
symmetries, the transition between them should be first order.
However it is a surprisingly big challenge to determine the
transition line just from the numerical calculations. The main
reason for this is that the observed dimerization pattern in
finite chains also strongly depends on the edge geometries
of the OBC or shifted OBC (see Appendix B). To minimize
the edge effect we therefore use the iDMRG method again.
During the warmup process both OBC and shifted OBC are
used, until the average ground-state energy per site e0 reaches
very good convergence. Very close to J⊥ = 0 the shifted OBC
always result in an SD phase, while OBC give the CD phase,
albeit with slightly different energies es

0 and ec
0, respectively.

To identify the true ground state at zero temperature, we
then analyze the energy difference �e0 = ec

0 − es
0 per site. In

Fig. 14, we show the results for three typical cases of J2 = 0.5,
1.0, and 1.5 and different states kept m. When J2 = 0.5 and 1.0,
the convergent �e0 always gives a positive sign on the left side
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FIG. 14. Energy difference �e0 per site between OBC and shifted
OBC given by iDMRG calculations. We choose three typical cases
of J2 = 0.5 (◦), 1.0 (�), and 1.5 (♦), respectively. For each case,
different truncated dimension in iDMRG is used from m = 512 up to
12,288. The error bar is smaller than the symbol size. Inset: Enlarged
plot of �e0 for the case of J2 = 1.5.

(J⊥ < 0) and a negative sign on the right side (J⊥ > 0), so that
the SD–CD transition appears to occur exactly at J⊥ = 0. At
J2 = 1.5, the energy difference becomes very small and more
than 10 000 states are required for convergence. The energy
difference remains negative even for J⊥/J1 = −0.1, but a clear
position for the phase transition cannot be determined. It is also
known that the dimerization becomes exponentially small for
large J2 [8]. At this point it is unclear if the phase transition
remains at J⊥ = 0 or if there is a region where the CD phase
is stable at negative values of J⊥ as also suggested by the
bosonization analysis in Sec. IV, which will be an interesting
but challenging topic for future research.

VI. ENERGY GAPS

A. A special case: J2 = 0

The honeycomb ladder is unique in that the couplings on
even rungs are absent. Therefore, the correlations on the even
rungs are only indirectly induced in second order correspond-
ing to a weak energy gain. This has interesting consequences
for the energy gaps. For example, in the ordinary ladder it
is known that the triplet gap �T increases linearly with the
larger rung coupling [88,89], while we find that it decreases for
stronger J⊥ in the honeycomb ladder as shown in Fig. 15(d) for
J2 = 0. This behavior can in fact be understood by considering
the subsystem of three adjacent rungs, which simply forms
a ring of six spins coupled by J1 and J⊥ (honeycomb cell).
The behavior of the triplet gap is analogous to the honeycomb
ladder as shown in Fig. 15.

For J1 � J⊥ doublet states are formed by the top three
and bottom three spins in the honeycomb cell, which in turn
are coupled by J⊥, so the triplet gap increases linearly with
�T � 8J⊥/9 in Fig. 15(a). For the honeycomb ladder we also
find a linear behavior, which fits well to the expression

�T

J1
≈ 2�0

J⊥
J⊥ + J1

(18)

with �0 = 0.1110382(1).
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FIG. 15. Triplet gap �T of the honeycomb cell (a), (b) and the
honeycomb ladder (c), (d) for J2 = 0 compared to strong coupling
fits (solid lines).

In the opposite limit of J1 � J⊥ the singlet-triplet gap in
the honeycomb cell is produced by an indirect coupling of the
two spins of the central (uncoupled) rung, which can be found
by a perturbation expansion

�T

J⊥
= λ2

[
1 + 3

2
λ − 3

8
λ2 − 75

16
λ3 + O(λ4)

]
, (19)

where λ = J1/J⊥. This also explains the drop of the triplet gap
in the honeycomb ladder for large J⊥, which follows �T �
1
2J 2

1 /J⊥ in that limit.

B. J2 > 0

We now turn on the frustrating coupling J2 to see if the
nonmonotonic behavior of the triplet gap with J⊥ changes.
The numerical results of different J2 are shown in Fig. 16. For
small J2 < J2,c, the quick increase and slow dropoff with J⊥
gives a broad maximum analogous to the J2 = 0 case above.
On the other hand, for larger J2 > J2,c the triplet gap is already
nonzero for J⊥ = 0 and then first drops to a minimum before
rising and falling again. The size and location of the minimum
is directly related to value of the gap at J⊥ = 0 which is known
[8] to have a maximum aroundJ2 = 0.6J1. In fact, the positions
of the gap minima roughly coincide with the CD-RS transition
line, which implies that J⊥ reduces the gap in the CD phase,
while the broad maximum is a signature of the RS phase.

0 1 2 3 4 5
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0.3

0.4
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FIG. 16. Evolution of the triplet gap �T for different J2 in the
TDL.
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Moreover, in the RS phase at a given J⊥ a maximum can always
be observed as a function of J2.

VII. CONCLUSIONS

In summary, we systematically analyzed the spin-1/2 hon-
eycomb ladder as a function of interleg coupling J⊥ on the odd
rungs and NNN frustration on the legs J2. Detailed numerical
results for the order parameters, the entanglement spectrum,
and the energy gaps from DMRG and iDMRG give a complete
picture of the phase transitions, which agree quantitatively with
our analytical bosonization calculations.

For very strong ferromagnetic odd-rung couplings we find a
weak first order transition as a function of J2 between Haldane
and NNN-Haldane phases analogous to the frustrated spin-1
chain [16–23]. However, the SD phase with staggered dimer
order is stable for relatively large ferromagnetic odd rungs
which pushes far into the Haldane phase and leads to a reentrant
behavior as a function of J2. For antiferromagnetic odd-rung
coupling we find a transition from the CD phase with columnar
dimer order to a RS phase with rung singlets as a function of
J⊥ and again a reentrant behavior as a function of J2 which
can be linked to the corresponding maximum of the triplet
gap in the underlying zigzag chain around J2 ≈ 0.6J1 [8]. The
transitions from the ordered dimer phases are always of the 2D
Ising universality class.

The line J⊥ = 0 is critical below J2 < J2,c and corresponds
to a c = 2 transition between Haldane and RS phases. For
larger J2 the CD and SD phases appear, which must be
degenerate for J⊥ = 0. However, numerical and bosonization
results surprisingly find that the CD phase may be stable also
for small negative values of J⊥ around J2 ≈ 1.5J1, which
would imply a highly nontrivial behavior that calls for further
research. Also the role of interchain frustration J× promises to
be an interesting topic in the future.
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APPENDIX A: BOSONIZATION

In this appendix we provide additional information for the
field theory derivation and the corresponding renormalization

group (RG) flow. For the derivation of the bosonization
formulas and the operator product expansion (OPE) it is
useful to consider an interacting spinor Fermion model as the
underlying physical realization where only the spin channel
will be considered in the low-energy limit [4]. For the half-
filled Hubbard model, the charge channel is gapped and the
Heisenberg couplings considered in the paper correspond to
the spin channel.

The spin currents are expressed as in terms of chiral
fermionic field operators

J a
κ (zκ ) =: ψ†

κη

σ a
ηη′

2
ψκη′ : (zκ ), (A1)

where σa are the Pauli matrices, the sum over spin components
η =↑ , ↓ is implied, and κ denotes the chirality (κ = R/L or
κ = +/−, respectively). The chiral complex coordinates are
zκ = −κix + vτ . The dimerization and staggered magnetiza-
tion operators are given by [90]

ε(z) ∼ i

2
[: ψ

†
RηψLη : (z)− : ψ

†
LηψRη : (z)],

na(z) ∼ 1

2
σa

ηη′ [: ψ
†
RηψLη′ : (z)+ : ψ

†
LηψRη′ : (z)], (A2)

where z implies a dependence on both chiral variables zL, zR .
The OPEs between J a

κ , ε, and na can be calculated using
Wick’s theorem [70] and the two-point correlation function

〈ψκη(zκ )ψ†
κ ′η′ (wκ ′)〉 = δκκ ′δηη′

γ

zκ − wκ

, (A3)

where γ depends on the chosen normalization. Here γ =
1/2π . The required fundamental OPEs are [90]

J a
κ (zκ )ε(w) = iκ

γ /2

zκ − wκ

na(w),

J a
κ (zκ )nb(w) = i

γ /2

zκ − wκ

[εabcn
c(w) − κδabε(w)],

J a
κ (zκ )J b

κ ′ (wκ ′) = δκκ ′

[
(γ 2/2)δab

(zκ − wκ )2
+ iεabcγ

J c
κ (wκ )

zκ − wκ

]
,

ε(z)ε(w) = γ 2

|z − w| − |z − w|JR · JL(w),r (A4)

na(z)ε(w) = −iγ |z − w|
[

J a
R(wR)

zL − wL

− J a
L(wL)

zR − wR

]
,

na(z)nb(w) = |z − w|
[
Q̂ab(w) + γ 2δab

|z − w|2 + iεabcγ

×
[

J c
R(wR)

zL − wL

+ J c
L(wL)

zR − wR

]]
,

where δab is the Kronecker δ function and εabc the Levi Civita
symbol. Qab denotes the zeroth-order contraction between the
fermionic fields,

Q̂ab = 1
2σa

ηη′σ
b
ττ ′ψ

†
RηψLη′ψ

†
LτψRτ ′ . (A5)

As it turns out only the trace of this operator is relevant for the
RG flow of spin ladders, which reads

Q̂aa = JR · JL (A6)

after freezing out charge degrees of freedom.
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FIG. 17. Systems for N = 2L = 16. (a) Configuration of OBC
with the corresponding possible columnar pattern of singlet dimers
(cyan ellipsoids). (b) Shifted OBC with a staggered dimer pattern.

The evolution of the bare couplings is determined from the
OPEs of the perturbing operators, using [71]

dλk

dl
= (2 − dk)λk − π

v

∑
i,j

Cijkλiλj , (A7)

where dk is the scaling dimension of the operator, v the velocity,
and Cijk the coefficient extracted from the OPE

Oi(z,z̄)Oj (w,w̄) ∼
∑

k

Cijk

Ok

(z − w)νk (z̄ − w̄)ν̄k
, (A8)

with ν,ν̄ the holomorphic and antiholomorphic conformal
dimension. Using Eqs. (A4) and (A7) we compute the
corresponding RG flow.

For the lower part of the phase diagram in Fig. 4, where
J1 � J2, J⊥ is assumed, the operators content in Eq. (8) can
be obtained. Using the fundamental OPEs in Eq. (A4) we arrive
at the RG equations in Eq. (10).

In the opposite regime, where the coupling J2 is the
strongest interaction in the system, J2 � J1,J⊥, the lattice
Hamiltonian can be written as

H = J2

4∑
ᾱ=1

∑
j

Sj,ᾱ · Sj+1,ᾱ + J⊥
∑

j

Sj,2 · Sj,4

+ J1

2∑
ᾱ=1

∑
j

Sj,2ᾱ−1 · (Sj,2ᾱ + Sj+1,2ᾱ). (A9)

Bosonizing this Hamiltonian gives the operators in Eq. (12).
The RG equations in Eq. (14) are derived from the OPEs in
Eq. (A4).

APPENDIX B: COMPATIBLE BOUNDARY CONDITIONS

The CD and SD phases are both doubly degenerate for
PBC, since there are two equivalent dimer patterns related by
symmetry (reflection and translation). For OBC, the system
will choose the lower energy state with more strong bonds, so
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FIG. 18. (a) Ground state energy per rung eg = Eg/L for J⊥ =
0.4 and J2 = 1.0 with OBC and shifted OBC. (b) Corresponding
total energy difference �S−C = ES

g − EC
g . Analogous results for J⊥ =

−0.8 and J2 = 1.0 are shown in (c) and (d).

the geometry at edges lifts the degeneracy and fixes the dimer
pattern. In particular, the edges may also affect the relative
energy of the SD and CD patterns. We therefore identify two
suitable boundary conditions, which are compatible with either
the SD or the CD pattern, respectively, as shown in Fig. 17.
This allows us to always identify the lowest possible energetic
configuration in the simulations.

For the columnar arrangement we use ordinary OBC with
an even number of rungs as shown in Fig. 17(a), which prefers
the CD phase. In the staggered pattern, there is a relative
shift of the dimerization by one site on the two legs, so we
accordingly also shift the OBC (shifted OBC) as shown in
Fig. 17(b), which prefers the SD phase. For shifted OBC there
is an odd number of rungs but the first and last rung only
contain one spin, so the number of spins remains divisible by
4. As an example, we now focus on the ground state energies
for different boundary conditions at J⊥ = 0.4 and −0.8 with
J2 = 1.0 in Fig. 18. The corresponding ground-state energies
for both OBC and shifted OBC are shown in Fig. 18. As shown
in Fig. 18(a), for J⊥ = 0.4 the ground-state energies per rung
eg, c = −0.986607(8)J1 for OBC and eg, s = −0.986418(6)J1

for shifted OBC, have a small energy difference of 1.9(1) ×
10−4, independent of L. The total energy difference �S−C

therefore increases with L with the corresponding slope shown
in Fig. 18(b). This implies that the bulk energy is affected by
the boundaries, so the correlations of the ground states are
different throughout the system (in this case CD and SD).
Therefore the correct CD pattern can only be obtained with the
corresponding compatible OBC. Figures 18(c) and 18(d) show
the analogous behavior on the ferromagnetic side J⊥ = −0.8
where shifted OBC must be used to identify the correct ground
state correlations (SD phase).
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