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Entanglement of Hard-Core Bosons on the Honeycomb
Lattice
Xue-Feng Zhang,* Raoul Dillenschneider, and Sebastian Eggert
The entanglement of hard-core bosons in square and honeycomb lattices with
nearest-neighbor interactions is estimated by means of quantum Monte Carlo
(QMC) simulations and spin-wave (SW) analysis. The particular U 1ð Þ-invariant
form of the concurrence is used to establish a connection with observables,
such as density and superfluid density. For specific regimes, the concurrence is
expressed as a combination of boson density and superfluid density.
1. Introduction

The past few years have seen a large explosion of interest in the
studies of the interfaces between quantum information and
many-body systems. Among the subjects of interest can be cited
quantum information processing in ultracold atomic gases.[1]

This subject was initiated by the first proposal of using ultracold
atoms on optical lattices for quantum information.[2] The physics
of quantum ultracold gases in optical lattices has rapidly grown
in interest.[3] Theoretical studies suggest that ultracold gasesmay
be used for the experimental realization of the phenomenon of a
supersolid.[4–11]

In another register, entanglement is an important element in
quantum information. It is used in quantum computation[12]

and is also a valuable resource in quantum thermodynam-
ics.[13,14] Meanwhile it can characterize quantum phase
transitions,[15–23] which are of central interest in a variety of
many-body quantum systems, such as models with spins,
bosons, or fermions on frustrated lattices,[10,23–27] quasi one-
dimensional ladders[28,29] and chains,[16–18,30] and unfrustrated
geometries in 2D or higher dimensions.[9,19,20,31–33] In this
paper, we will take a closer look at the pairwise entanglement
between two sites for the example of hard-core bosons on the
square lattice and the honeycomb lattice, for a fundamental
understanding to make this measure more useful for a deeper
analysis of quantum many body systems. Entanglement is
maximal close to the critical points and its derivatives can signal
precisely the presence of a quantum phase transition at the
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critical points.[16–23] In pioneering works,
Syljuåsen showed how entanglement can
be measured by quantum Monte Carlo
(QMC) methods,[34] which has also been
applied to the XXZ-model on the square
lattice.[35] The purpose of this paper is to
show how the entanglement changes on
the honeycomb lattice with less connectiv-
ity and also provide an independent
approximate estimate based on spin wave
(SW) theory.

There are various quantities that can be
used to extract information on the entangle-
ment, such as the concurrence,[36,37] the entropy of entangle-
ment,[38] and the negativity[39] arementioned.Quantumdiscord is
a related measure of non-classical correlations.[40,41] While the
entropy of entanglement and negativity are bipartite measures,
concurrence is a pairwise measure of entanglement which can be
conveniently determined by means of QMC simulations.[34] Here
we focus our attention on the hard-core bosonmodelwith nearest-
neighbor interactions in two spatial dimensions, which can be
mapped onto a two dimensional spin-1/2 XXZ model.[42,43] By
means of QMC simulations and SW analysis, we estimate the
entanglement by using concurrence. For a specific region of the
phase diagram of the XXZ model, the concurrence takes a very
simpleU(1)-invariant form.[34] This particularU(1)-invariant form
is used to establish a connection with observables, such as boson
density and superfluid density of the hard-core boson system.
Concurrence can henceforth be expressed as a combination of
boson density and superfluid density.

The outline of the paper is as follows. In section 2, we present
the hard-core boson model and its mapping onto the XXZ spin
model. In section 3, we recall the elements of information theory
which leads to the U(1)-invariant form of the concurrence. In
section 4, the QMC and SW approaches used to derive the
quantum correlations are presented. In section 5, we provide the
results of QMC simulations and SW analysis. In section 6, the
connection between concurrence and observables is established.
In section 7, we conclude and discuss on potential outlooks.
2. The Model

We will consider a two dimensional system of hard-core bosons
on the square lattice and the honeycomb lattice. The
Hamiltonian is given by

H ¼ �t
X
hiji

a†i aj þ a†j ai
� �

� μ
X
i

bni þ V
X
hiji

bnibnj ð1Þ
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where hiji denotes nearest neighbor bonds, ai a†i
� �

destroys
(creates) a hard-core boson on site i, and μ is the chemical
potential. The hopping parameter is denoted by t and the
interaction between nearest neighbors is introduced by V.

To enforce the hard-core constraint in a simple way, the
Hamiltonian (1) is mapped onto the two dimensional XXZ
model with external magnetic field. The exact mapping is
performed by a†i $ Sþi , ai $ S�i , and bni $ Szi þ 1=2.[42–44] For
the particular case with V=2t ¼ Δ and μ ¼ λV, where λ is half the
coordination number z (z ¼ 3 for a honeycomb lattice and z ¼ 4
for a square lattice), and in units of t=2 the Hamiltonian reduces
to the familiar XXZ spin model

HXXZ¼
X
hi;ji

� σxi σ
x
j þ σyi σ

y
j

� �
þ Δσzi σ

z
j

h i
þ κΔ ð2Þ

where the sum is taken over all nearest neighbor sites on a
lattice which is bipartite. The operators σα with α ¼ x; y; z are
Pauli matrices and σ0 is the unit matrix. The constant κΔ is
equal to �ΔzN=8 and simply arises from the mapping between
the spins and bosons operators. N is the number of sublattice
spins of the bipartite honeycomb lattice. We keep explicitly the
constant κΔ present in the Hamiltonian (2) because it will be
important for the computation of nearest-neighbor spin–spin
correlation functions from the precise value of the bond energy
using the Hellmann–Feynman theorem[47,48] in section 4. The
Hamiltonian is real and invariant under U(1) rotation about
the spin z axis. This continuous symmetry can only be
spontaneously broken in dimensions higher than one and for
Δj j < 1. A global Z2 symmetry about the spin x (or y) is also
present.

At the critical point Δc ¼ 1 the XXZ spin lattice undergoes a
quantum phase transition between an XYphase for �1 < Δ < 1
and an Ising antiferromagnetic phase for Δ > 1. For Δ < �1, the
XXZ system is in a ferromagnetic phase.

In order to extract information about entanglement in the
system by means of concurrence, we need to build the joint state
of two spin sites. The two-site density matrix provides such
requirement.
3. Concurrence

The information on the joint state is contained in the two-site
density matrix ρij, which is derived from the following operator
expansion[21]

ρij ¼ Tr�ij ρ½ � ¼
1
4

X3
α;β¼0

Θαβσ
α
i � σ

β
j ð3Þ

where the trace is taken over the whole system excluding the
sites i and j. The coefficients Θαβ of the expansion are related to
the spin–spin correlation functions through the relation

Θαβ ¼ Tr σαi σ
β
j ρij

h i
¼ hσαi σβj i ð4Þ

Owing to the symmetry of the Hamiltonian most of the
coefficientsΘαβ are equal to zero. Translation invariance requires
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that the density matrix ρij is only a function of distance r ¼ i� j
independent of the position i. The reflection symmetry leads to
ρij ¼ ρji, the Hamiltonian being real the density matrix verifies
ρ�ij¼ ρij. Combining all symmetry constraints the density matrix
expressed in the natural basis fj ##i; j #"i; j "#i; j ""ig reduces
to

ρij ¼

u g g y

g w x g

g x w g

y g g u

0BBBB@
1CCCCA ð5Þ

where the matrix elements are given by u ¼ 1
4 þ

hσzi σzj i
4 ,

w ¼ 1�hσzi σzj i
4 , x ¼ hσxi σxj iþhσyi σ

y
j i

4 , g ¼ hσxi
4 , and y ¼ hσxi σxj i�hσyi σ

y
j i

4 . There-
fore, information on entanglement of the system can be
extracted easily from the two-point correlators.

As mentioned before, a good indicator of entanglement is
provided by the concurrence C. The concurrence of two spins
may be computed from the joint state ρij through the formula

C ¼ max 0; γ1 � γ2 � γ3 � γ4
� �

, where γi are the eigenvalues in

decreasing order of the matrix R ¼
ffiffiffiffiffiffiffiffiffi
ρij eρijq

,[36,37] whereeρ ¼ σy � σy
� �

ρ� σy � σy
� �

. The square root of the eigenvalues
of the matrix R are given by

Γ� ¼ 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hσxi σxj i

� �2
� 4hσxi

r
� hσyi σyj i � hσzi σzj i
			 								

					
Θ� ¼ 1

4
1� hσxi σxj i � hσyi σyj i þ hσzi σzj i

� �			 			 ð6Þ

For two-space dimensions and for Δj j < 1 the average hσxi
takes spontaneous non-zero values, the U(1) symmetry of the
XXZmodel is spontaneously broken. However, as was argued by
Syljuåsen[34] for bi-partite lattices the concurrence in the
symmetry-broken state (5) still takes on a U(1) invariant form

C ¼ 1
2

hσxi σxj i þ hσyi σyj i � hσzi σzj i � 1
� �

ð7Þ

if and only if the spin–spin correlation functions verify hσyi σyj i þ
hσzi σzj i > hσxi σxj i � 1 and hσyi σyj i > hσzi σzj i. While this expression is
valid of any two spins, we will restrict our discussion in the
following to nearest neighbors only.

The U(1)-invariant form of the concurrence is very
convenient for the computation by means of QMC simulations.
The corresponding correlations can also be estimated by SW
theory as shown below.Moreover, the expression in Equation (7)
helps to establish a connection between entanglement and
observables such as boson density and superfluid density. In
particular, we show below that the concurrence can be
expressed as a linear combination of boson density and
superfluid density.

To work out the correlation functions in the following we will
apply both an analytical approach using SW theory and a
numerical approach with QMC methods.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2 of 6)
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4. SW Analysis and QMC Simulations

SW analysis provides a good analytical approach as was shown
for the hard-core bosons problem on the square lattice[43] and the
honeycomb lattice.[8] A SW analysis can be performed in the
regime �1 < Δ < 1 for which the ground state corresponds to
spins aligned in any direction within the XY plane. In order to
grab fully the particular symmetry of the XY interactions a
Haldane mapping is performed[45] and a semi-classical approach
can be applied[46] to compute the spin–spin correlation function.

We first recall the transformations applied to the Hamiltonian
(2) that lead to a diagonalized Hamiltonian as demonstrated in
ref. [46]. The following demonstration is in some steps very
similar to the derivation of the non-linear sigma model.[45] We
are going to work out the spin–spin correlations function by
means of a semi-classical version of the Hamiltonian (2).

First the spin operators are expressed bymeans of the Haldane
mapping. In terms of the in-plane angular coordinate ϕi and the
spin projection σzi in the z-direction, the spin operators read

σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σz2i

q
cosϕi;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σz2i

q
sinϕi; σ

z
i


 �
ð8Þ

With this mapping the Hamiltonian (2) becomes

H ¼
X
hi;ji

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σz2i
� �

1� σz2j

� �r
cos ϕi � ϕj

� �
þ Δσzi σ

z
j


 �
þ κΔ ð9Þ

At zero temperature we can assume a dilute SW boson gas. In
this case, the Hamiltonian can reasonably be expanded for small
σz and ϕ. The expansion of the Hamiltonian up to quadratic
terms and to second order in σz and ϕ reads

H 2ð Þ¼
X
hi;ji

�1þ 1
2

σz2i þ σz2j

� �
þ 1
2

ϕi � ϕj

� �2
þ Δσzi σ

z
j


 �
þ κΔ

ð10Þ

Higher orders of the expansion are not explicitly considered.
Later in the derivation of the spin–spin correlation functions we
introduce corrections arising from those neglected higher order
terms. After Fourier transformation the Hamiltonian H(2)

becomes

H 2ð Þ ¼
X
k

1� γk
		 		cosφk

� �
ϕkϕ�k þ 1þ Δ γk

		 		cosφk

� �
σzkσ

z
�k

� �
þ κΔ þ κ0

ð11Þ

where κ0 ¼ �zN collects the constant parts of H 2ð Þ. We also

introduced the structure factor γk=
1
z

X
d
eik�rd = γk

		 		eiφk which is

a complex number for the honeycomb lattice and where the sum
runs over nearest neighbors sites. The amplitude of the structure
factor for the honeycomb lattice reads

γk
		 		 ¼ 1

3
3þ 4cos

3kx
2

cos

ffiffiffi
3

p
ky

2
þ 2cos

ffiffiffi
3

p
ky

� �" #1=2

ð12Þ
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For square lattices the phase φk equals zero and the structure
factor is given by γk ¼ ðcoskx þ coskyÞ=2. We then use the
canonical transformation ϕk ¼ αkðb†k þ b�kÞ and σzk ¼ iβkðb†k �
b�kÞ where bk’s are bosons and

αk ¼
1þ Δ γk

		 		cosφk

1� γk
		 		cosφk

" #1=4

;

βk ¼
1� γk

		 		cosφk

1þ Δ γk
		 		cosφk

" #1=4

ð13Þ

Finally, the Hamiltonian takes the diagonalized form

H 2ð Þ ¼ κ0 þ κΔ þ
X
k

ωk b†kbk þ 1=2
� �

ð14Þ

where ωk ¼ 4z 1� γk
		 		cosφk

� �
1þ Δ γk

		 		cosφk

� �� 
1=2
.

In order to compute the nearest-neighbor spin–spin corre-
lations functions, we can employ the Hellmann–Feynman
theorem which relates the correlations functions to the bond-
energy of the system.[47,48] The bond-energy e Δð Þ is defined as the
average of the Hamiltonian H divided by the number of bonds,
e Δð Þ ¼ hHi=zN. The spin–spin correlations functions are easily

given by hσzi σzj i ¼ @e Δð Þ
@Δ and hσxi σxj þ σyi σ

y
j i ¼ �e Δð Þ þ Δ @e Δð Þ

@Δ .

Taking the average of the second order Hamiltonian H(2) over
the ground state leads to the approximated ground state energy
e 2ð Þ ¼ hH 2ð Þi=zN. The spin–spin correlations functions can then
be expressed in terms of the approximated bond energies

hσzi σzj i ’
@e 2ð Þ Δð Þ

@Δ
þ κzz ð15Þ

hσxi σxj þ σyi σ
y
j i ’ �e 2ð Þ Δð Þ þ Δ

@e 2ð ÞΔ
@Δ

þ κxy ð16Þ

Non-negligible corrections to the spin-spin correlation func-
tions (15) and (16) may be taken into account from higher order
terms of the expansion of the Hamiltonian (9). These corrections,
κzz and κxy, are functions of the anisotropic parameter Δ. In the
region�1 < Δ < 1, we approximate κzz and κxy by constants. For
the honeycomb lattice wefind κzz ’ 0:15 and κxy ’ 1:65, while for
the square lattice we obtain κzz ’ 0:5 and κxy ’ 2 from fits to the
MonteCarlo simulation results atΔ ¼ � 1.Despite theaggressive
approximations we have applied here wewill see that a reasonable
description of the system is obtained.

The QMC simulations used in the present work are based on
the stochastic series expansion algorithm.[49–51] The numerical
results are obtained for lattices of size L� L (L ¼ 12, 18, and 24
for honeycomb lattices, and L ¼ 16, 20, and 24 for square
lattices) with periodic boundary conditions and a finite inverse
temperature of βt ¼ 50.
5. Results

Figure 1(a) and (b) provides a comparison between the spin–spin
correlation functions derived from QMC simulations and the
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim3 of 6)
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Figure 1. Spin–spin correlation functions for nearest neighbors on the
honeycomb lattice, with a) hσx

i σ
x
j þ σy

i σ
y
j i and b) hσz

i σ
z
j i obtained from

Monte Carlo simulation (full line) and SW analysis (dashed line).

Figure 2. Nearest neighbor concurrence derived from Monte Carlo
simulation (full line) and SW analysis (dashed line) on the honeycomb
lattice.

Figure 3. Spin–spin correlation functions for nearest neighbors on the
square lattice, a) hσx

i σ
x
j þ σy

i σ
y
j i and b) hσz

i σ
z
j i obtained from Monte Carlo

simulation (full line) and spin-wave analysis (dashed line).

Figure 4. Nearest neighbor concurrence derived from Monte Carlo
simulation (full line) and SW analysis (dashed line) on the square lattice.
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SW approach on the honeycomb lattice. For the region Δ < 0,
SW theory provides a good approximation of the correlation
functions. For larger anisotropic parameter Δ, the deviations
increase slowly, since the interaction between SWs becomemore
and more relevant. Note that the correlation function hσxσx þ
σyσyi is larger than one for Δ > �1. This may surprise at a first
glance, however, considering the two inequalities�1 	 hσxσxi 	
1 and �1 	 hσyσyi 	 1 we expect that hσxσx þ σyσyi belongs to
the range �2; 2½ �. In particular, for the spin singlet and triplet
T�i ¼ "#i�j j #"ið Þ= ffiffiffi

2
p		 the XY-correlation function reads

hT�jσxσx þ σyσyjT�i ¼ �2. This supports the fact that the
absolute value of the XY-correlation function can take values
larger than one.

Figure 2 depicts the concurrence obtained from QMC on
honeycomb lattices. For Δ < �1, the spin systems is in a
ferromagnetic phase. The state of the system can be expressed as
a product of separate states, the concurrence is equal to zero and
the system is separable. For Δ 
 1, the system is in an
antiferromagnetic phase. For Δ ¼ 1, the concurrence is maximal.
Increasing the parameter Δ from the ferromagnetic to the
antiferromagnetic phase increases the entanglement of the spin
system (or equivalently the hard-core boson system).

The concurrence obtained from SW approach on honeycomb
lattices (dashed line in Figure 2) agree with QMC predictions
close to the ferromagnetic phase transition, for Δ ! �1. For
larger values of Δ, the gas of SW excitations becomes denser.
Hence the approximation of a dilute gas no longer holds and our
present SW analysis is no longer valid.

Similar results are obtained for hard-core bosons on square
lattices as depicted in Figure 3 and 4, in full agreement with
previous calculations.[35]

It isexpectedthat theSWresultsunderestimate theconcurrence
in both cases, since higher order correlations are ignored.
However, interestingly thedeviation isstronger for thehoneycomb
lattice, which also shows a larger concurrence compared to the
square lattice. The lower coordination number appears to increase
quantum correlations in this case, since the pairwise entangle-
ment has to be divided over a fewer number of neighbors.We find
that the SW theory works better for larger coordination number
and for smaller values of Δ close to �1.
Phys. Status Solidi B 2019, 256, 1800639 © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1800639 (4 of 6)
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6. Concurrence, Boson Density, and
Superfluidity

According to the mapping relating the hard-core bosons and
spins, theU(1)-invariant form of the concurrence in Equation (7)
can be expressed in terms of the boson density and superfluid
density of the hard-core boson system.

Indeed the spin–spin correlation function in the z direction
can be easily expressed in terms of the boson density by making
use of the exact mapping bni $ Szi þ 1=2 which leads to
hSzi Sz

j i ¼ 1=4� hbni þ hbnibnji.
The superfluid density is related to the energy cost to

introduce a twist ν between pairs of nearest neighbors spins. The
superfluid density is given by the second derivative of the energy
of the spin system with respect to the twist ν,
ρs ¼ d2hH νð Þi=d2ν.[52,53] The Hamiltonian H νð Þ is derived from
the XXZ model by application of a local rotation at site i by an
angle νi around the z axis, Sþi ! Sþi e

iνi , S�
i ! S�i e

�iνi , and
Szi ! Szi . Expanding the Hamiltonian around νij ¼ νi � νj ¼ 0
leads to H νð Þ ¼ HþP

hi;jiðνijJsij þ ν2ijTij=2Þ, where Jsij ¼
i=2ð ÞtðSþi S�j � Sþj S

�
i Þ is the spin current in the z direction

and Tij ¼ 1=2ð ÞtðSþ
i S

�
j þ Sþ

j S
�
i Þ is the spin-kinetic energy.[52–54]

In first-order perturbation theory, the spin stiffness is given by

ρs ¼ 1
2N

@2

@ν2
P

ijν
2
ijhTiji. Second order perturbation leads to a term

integrating the current–current correlator, with respect to Js, that
is neglected in our SWapproach. The spin stiffness for a uniform
twist ν and a given direction leads to hSxi Sxj þ Sy

j S
y
i i ’ 2ρs=t.

Replacing the spin–spin correlation functions by their linear
expressions with respect to the boson density and superfluid
density the concurrence reads

C ’ max 0;K0 þ Kbρb þ Ksρs þ Kcor;bhρbρbi
� � ð17Þ

whereK0 ¼ �1,Kb¼ Kcor;b ¼ 2, andKs ¼ 4=t are constants. This
expression provides a direct way to approximately measure the
entanglement between two hard-core bosons experimentally.
7. Conclusion

In conclusion, we proposed a SW analysis as well as numerical
approach to estimate the entanglement in a hard-core bosonmodel
on the honeycomb lattice and the square lattice. By means of the
particular U(1)-invariant form that the concurrence takes we
compare SW theory and QMC measures of entanglement.
Moreover, we also show the existence of an approximate linear
relation between concurrence, boson density, and superfluid
density. This relation may be used in experimental measurements
fordirect evaluationof theentanglement inhard-corebosonsystem.

Our results show that the numerical data generally shows a
larger increase of entanglement with anisotropy parameterΔ than
would be predicted from the SWapproximation. Compared to the
square lattice this increase is even larger for thehoneycomb lattice,
which has the lowest possible connectivity in two dimensions, and
therefore stronger pairwise entanglement.

It has to be mentioned that the present demonstration is
generic andmay be easily applied to different lattice symmetries.
The U(1)-form of the concurrence is sensitive to the lattice
Phys. Status Solidi B 2019, 256, 1800639 1800639 (
symmetry only through the spin-spin correlation functions. The
linear relation of the concurrence with observables should also
remain valid.
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