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Abstract. We investigate the possible occurrence of a Bose-Einstein condensed phase of matter within
neutron stars due to the formation of Cooper pairs among the superfluid neutrons. To this end we study
the condensation of bosonic particles under the influence of both a short-range contact and a long-range
gravitational interaction in the framework of a Hartree-Fock theory. We consider a finite-temperature
scenario, generalizing existing approaches, and derive macroscopic and astrophysically relevant quantities

like a mass limit for neutron stars.

1 Bose-Einstein condensates in astrophysics

In this work we present a model for a quantum phe-
nomenon with impact on macroscopically large scales by
considering the possible occurrence of a Bose-Einstein con-
densate (BEC) in compact astrophysical objects. Labora-
tory experiments on cold gases have first confirmed [1,2]
the existence of a particular state of matter for bosonic
particles when cooled down to ultracold temperatures
in low-density environments. Originating from Bose’s re-
derivation of Planck’s law of black body radiation [3],
Einstein predicted this phenomenon employing a new
statistics for the distributions of massive bosons in an
ensemble, thereby describing a synchronization of the
wave functions of all particles in the system [4]. Velocity-
distribution data from experiments show a macroscopic
occupation of the ground state, thus demonstrating the
existence of a quantum phenomenon with impacts on large
scales.

Even though the effect is known from laboratory
physics, it can be considered in completely different cir-
cumstances as well, as for example in compact objects in
astrophysics. Generally a BEC is created when the tem-
perature in a system falls below the critical temperature
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corresponding to the point where the thermal de Broglie
wavelength equals the average interparticle distance, so
the wave functions of individual particles overlap and
synchronize. Rather surprisingly, considering the typical
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temperatures and densities in astrophysical scenarios ex-
tracted from observations, condition (1) seems to be met
in some cases of compact objects. A possible example for
BECs in compact objects in astrophysics are boson stars —
either as an abstract concept of a bosonic field in a spheri-
cally symmetric metric [5], or as the concrete case of a star
consisting of bosonic particles. Helium white dwarfs have
been considered as candidates before [6,7], even though
due to the ongoing fusion processes inside the star the
abundance of objects solely made up of helium is presum-
ably small. Another problem is posed by the ionization of
Helium at temperatures higher than about 10° K, which
makes the theory of a BEC of neutral bosons effectively
inapplicable in that case. More realistically, white dwarfs
can be described by an approach considering a background
lattice of positive ions immersed in a sea of electrons.

Alternatively, the existence of BECs in neutron stars
has been suggested [8]. Neutron stars have been consid-
ered firstly by Tolman [9] as well as Oppenheimer and
Volkoff [10]. They investigated a fluid of self-gravitating
neutrons, for which the equation of state is determined by
Fermi statistics, in the context of general relativity em-
bedded in a spherically symmetric metric, and searched
for stable equilibrium configurations of the system. In the
scenario assumed by Tolman, Oppenheimer and Volkoff
(TOV), the gravitational collapse of a cloud of neutrons
is counterbalanced by the degeneracy pressure of the
neutrons as a consequence of the Pauli exclusion prin-
ciple. The maximum stable mass of such a system, the
TOV limit, was found to be about 0.7Mg [9,10]. In con-
tradiction to this original prediction, observations [11]
have found neutron stars with masses up to a value of
2Mg,. Hence, there has been an abundance of proposals
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and models to explain the observed masses of neutron
stars [12]. The existence of all kinds of states or types
of matter in the core of the objects was suggested, reach-
ing from strange baryons over heavy mesons like kaons or
pions to quark matter, while the crust of neutron stars is
usually assumed to consist of neutrons and electrons [13].

BECs in neutron stars are feasible despite the fact that
neutrons are fermions. A general consensus exists over the
fact that neutrons in a neutron star should be in a super-
fluid phase [14], i.e. the particles are bound in Cooper pairs
and can be treated as composite bosons with an effective
mass of m = 2m,,, which can form a BEC. A microscop-
ically exact way of treating such a system is provided by
the theory of a BCS-BEC crossover [15,16], i.e. a transi-
tion from the quantum state of superfluidity (BCS phase)
to a Bose-Einstein condensate. The theory describes the
pairing mechanism between neutrons, allowing for a co-
existence of single neutrons and neutron pairs in a mixed
state of Fermi and Bose fluids. The phenomenon has been
observed in the laboratory on weakly bound molecules
formed by two fermionic atoms [17], and has more recently
also been applied to the case of nuclear or neutron mat-
ter. Calculations in references [18-21] show that nuclear
forces between nucleons, in particular neutrons, lead to
the formation of nucleon pairs, which can be treated as
effective bosons in a BEC under appropriate conditions.
The phenomenon of nucleon pairing was firstly proposed
in 1935 by a phenomenological formula by Weizsicker [22]
in the context of atomic nuclei. Later on, the superfluid-
ity of fermionic particles was formulated microscopically
exactly in terms of a BCS-type theory, which was then
applied to the case of nucleons inside an atomic core, and
by now the treatment of superfluidity in nuclear matter is
well established [23]. Superfluidity in the context of neu-
tron stars can be described in the same way as in atomic
nuclei — physically, neutron stars are nothing but a gi-
gantic atomic nucleus, consisting of neutrons and protons
which are subject to the same pairing effect as in atomic
nuclei.

In the present work, we use several assumptions and
simplifications which differ from the picture of an atomic
nucleus. Firstly, we assume the system to be purely made
up by neutrons, and neglect the presence of other parti-
cles as protons and electrons. Further, we approach the
system in a purely phenomenological way and treat the
paired neutrons as effective bosons which form the BEC.
There is no fermionic component in our system, i.e. we
assume the pairing of the neutrons as strong enough to be
able to consider them as perfectly bosonic. Typical densi-
ties in the center of neutron stars lie around 10** g/cm?,
whereas in the outer regimes densities decrease to about
10% g/cm?®. Assuming an effective boson mass of m = 2m,,,
according to equation (1) this corresponds to critical tem-
peratures of 10'° K to 10° K, respectively. Thus it is po-
tentially possible during the initial stages of the evolution
of a neutron star to fulfill condition (1) and consider the
presence of a neutron-pair BEC.

Given that the known scattering length of neutrons in
nuclear matter is quite large, the interior of neutron stars
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is actually better described by the unitary regime, i.e. the
transition phase between the BCS and the BEC limits.
It is clear that for a realistic description it is necessary
to consider also the single neutrons in the star and set up
the exact theory of the BCS-BEC crossover. The cases of a
pure BCS phase and a pure BEC phase then have to result
as limits of this general crossover theory. In the literature,
neutron stars are usually described in one of the limiting
states, i.e. the BCS fluid. In this work we will investigate
the opposite limit of a BEC fluid as a first step towards
the unifying crossover theory.

Systems of self-gravitating bosonic (and fermionic)
particles have already been considered some time ago in
reference [24]. For the case of Newtonian gravity, the in-
vestigations have resulted in unstable configurations for
bosons, which could only be stabilized by the inclusion
of general relativistic effects. However, in contrast to our
model the particles in reference [24] are assumed to be
free, only subject to gravitational interactions. In our
model, contact interaction, i.e. hard shell scattering be-
tween bosons, will be employed to stabilize the system
against gravitational collapse. Thus, even for zero temper-
ature with vanishing thermal pressure and in the case of
Newtonian gravity, contact interaction provides the nec-
essary pressure to counterbalance gravity.

A system of bosons in a Bose-Einstein condensed phase
with contact and gravitational interactions, such as the
system we are considering, for the case of zero tempera-
tures has recently been treated in reference [8] and applied
to the example of superfluid neutron stars. A generaliza-
tion to a BEC at finite temperatures was recently worked
out in reference [25], but then applied to the example of a
dark matter BEC in a Friedmann-Robertson-Walker uni-
verse. The theory of Bose-Einstein condensation for the
case of bosonic dark matter was also considered by other
authors (see Refs. [26-28]). Due to the widely unknown
nature and properties of dark matter, it is, however, a
rather speculative field, and the effects of the presence of a
Bose-Einstein condensate of dark matter particles in con-
trast to thermal phase dark matter are difficult to detect,
most likely only by the gravitational lensing behaviour of
dark matter halos. The environmental conditions in dark
matter halos are supposedly suitable for the existence of a
BEC of dark matter particles though, assuming that dark
matter is bosonic [29].

The scenario of a BEC at finite temperatures has never
been extended to the example of compact objects, so the
present work represents the first contribution in this direc-
tion. In Section 1.1 we first review the zero-temperature
case as presented in reference [8], before outlining the con-
tents of the main body of the paper which contains our
own work in Section 1.2, including a motivation for the
specific choice of treatment.

1.1 Zero-temperature case

A BEC subject to contact and gravitational interaction
has been formulated in reference [8] via a Heisenberg equa-

tion for the bosonic field operator @(x,t) representing
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bosons with mass m. The corresponding second-quantized
Hamiltonian operator for this system reads

H= / Pt (x,1)

/ B0 (X U (%, x’)@(x’,t)]

x U(x,t), (2)

R |
_M AL
X[2m mty

where p denotes the chemical potential in the grand-
canonical treatment, and the interaction term U(x,x’) in
the presence of contact and gravitational interaction reads

Gm

)

Ux—x')=gd(x—x") (3)
Here g = 4mh?a/m denotes the strength of the repulsive
contact interaction, with a being the s-wave scattering
length of the bosons in the system, while G is Newton’s
gravitational constant. The resulting Heisenberg equation

of motion defined from the Hamiltonian (2) reads

0

) P 2 s 2
ih  W(x,t) = —2mA+g|W(x,t)|

ot
m2 | . A
_/d3x’|XG X,||gp(x,t)}2 F(x,t). (4)

To implement the presence of a condensate as well as of
thermal and quantum fluctuations, the field operator can
be split into a mean field condensate and fluctuations. For
the zero-temperature case, where no thermal fluctuations
are present, and weak enough interparticle interactions
such that quantum fluctuations can be neglected as well,
a mean field condensate is assumed, represented by the
wave function

U(x,t) = (U(x,1)). ()

The Heisenberg equation (4) then reduces to the Gross-
Pitaevskii (GP) equation,

ihgtgp(x’t) - [_ ;;A +9¥(x, t)|2 + P(x,t)| ¥(x,t),
(6)

where we have defined the Newtonian gravitational poten-
tial as

Gm?

|x — x

P(x,t) = —/d3x’

Assuming a Madelung representation of the condensate
wave function, i.e. using an ansatz featuring an amplitude
and a phase,

’ W (x', 1) (7)

W(x,t) = \/no(x,t) e ()
we can identify the density of the condensate as
no(x,t) = ¥ (x, )" (9)

With equation (8), the Gross-Pitaevskii equation (6) de-
composes into two equations by setting its real and imag-
inary part to zero separately. This results in two coupled
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hydrodynamic equations, i.e. the continuity equation and
the Euler equation for the density ng and for the velocity
field v = AV.S/m,

on
8150 +V - (nov) =0,
d
mng [d;,Jr(v.V)

(10a)

V:| = —gVn% —mngV® — Vcrg.
(10Db)

The last term in the Euler equation contains the so-called
quantum stress tensor

Q_ M
g, = novivj‘ lnno,
m

ij 4 (11)

which represents a quantum contribution originating from
the Laplacian term in the Gross-Pitaevskii equation. Com-
monly the Thomas-Fermi (TF) approximation is adapted,
in which the kinetic term is neglected, and the quantum
stress tensor is dropped. Also all other time dependences
are neglected from here on since we restrict ourselves to
static configurations only.

By comparison of equation (10b) with the general form
of the Euler equation of a fluid, we can identify the pres-
sure of the condensate from the first term on the RHS as

ng. (12)

It is non-zero even for zero temperature, which is a direct
consequence of the presence of the contact interaction. For
zero contact interaction, the pressure vanishes as well, as
should be the case for a free Bose gas [30]. Defining the
mass density of the system as

p = mng (13)
leads to the equation of state
g 2
= . 14
P= o oh (14)

This is a polytropic equation of state, in general written
as

p=rp’, (15)
where v = 1+ 1/n defines the polytropic index n, and
K represents a suitable constant of proportionality. In the
present case of a BEC we have n = 1 and xk = 2rh%a/m3.

Neglecting all time dependent terms in equation (10b)

and employing the TF approximation leads to

Vp = —pVo. (16)

Combining equations (14), (16) and the Poisson equation
for the gravitational potential,

V2 = —4nGp, (17)

results in the so-called Lane-Emden equation, a second-

order differential equation for the mass density of the con-
densate p as a function of the radial coordinate r. With
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the substitutions y = (p/pe)"/™, where p. is the central
condensate density, as well as the dimensionless length
scale

&= 7’\/47TG/ {/{(n + 1)pc_1+1/"},
the Lane-Emden equation reads

1d 2dx _
€ de (5 d&)‘ X

For n = 1 the system can be solved analytically, yielding
the corresponding mass limit straightforwardly. The exact
solution in this case is found as

(18)

sin &

5 )
which gives the radius Ry of the star by the condition
X (&) =0, i.e. & = 7, yielding the condensate radius

h2a
Ry = .
0 7T\/Gm3

The mass of the object can then be obtained by integrating
the density profile up to that point,

h2a 3/2
— 42
M =4r (Gm3) Pes

X (&) = (19)

(20)

(21)

and depends on the condensate density at the center of
the star p.. These results were already obtained in refer-
ence [8] and applied to the example of neutron stars. Some
physical criterion has to be invoked in order to determine
a limit on the maximum mass of the configuration. A limit
on the central density can follow from demanding that the
adiabatic speed of sound in the fluid at the center of the
star be bound by the speed of light. Alternatively a limit-
ing mass can be calculated from the criterion of gravita-
tional collapse, derived from the Schwarzschild radius of
the configuration. In reference [8], the Schwarzschild limit
resulted in a maximum mass of about 2.3Mg.

We would like to note that the results for the equation
of state can also be used in more general versions of the
theory, i.e. when extending the treatment to general rela-
tivistic settings. Considering the Einstein equations with
an ansatz for a spherically symmetric metric leads to the
Tolman-Oppenheimer-Volkoff equation [9,10],

o G+ PO PO 4 ()
dl;i =~ [p r2 [1 H2GM(T)} } - (@)

rc2

This equation, together with an equation of state p = p(p)
as e.g. given by (14), and the mass conservation equation

dM (r)
dr

completely determines the system in question. In this way,
the equation of state extracted from the above procedure
can be used in the context of general relativity as well.

= dnp(r)r? (23)
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This was worked out for the zero-temperature condensate
in reference [8] in addition to the Newtonian case. Alter-
natively, the equation of state might serve as an input pa-
rameter in astrophysical simulations for compact objects
which do not consider the physics inside the star from first
principles but approach the issue on a more phenomeno-
logical level [31].

1.2 Finite-temperature case applied to neutron stars

In the work presented in this paper, we carry out a general-
ization of the above treatment, aiming at deriving a theory
of a Bose-Einstein condensate subject to repulsive contact
interaction and attractive gravitational interaction for the
case of finite temperatures. A first step in this direction
in the framework of the Heisenberg equation (4) was per-
formed in reference [25], where the field operator is split
into a mean field contribution and a fluctuating term, i.e.
U(x,t) = (¥(x,t)) + 1(x,t). However, the authors solely
calculated the equation of state of condensate and thermal
density, and applied them to the example of dark matter,
deriving the resulting expansion behaviour of the universe
in a cosmological scenario. In our case however, we investi-
gate the behaviour of a self-gravitating Bose-Einstein con-
densate in compact objects, compute the density profiles
of a BEC star at finite temperatures and derive relevant
macroscopic quantities, which can then be compared to
astrophysical observations.

To do so, we first need to determine the appropriate
treatment for the scenario in question. One aspect to be
reflected upon is the gravitational framework of the the-
ory, i.e. the choice between Newtonian gravity and general
relativity. Estimating the typical size scales of the system
and comparing them to their corresponding Schwarzschild
radii,

2GM

rs =
2’

(24)

shows whether the general relativistic regime is reached
or Newtonian gravity suffices for the description of the
gravitational interactions. Furthermore, we need to con-
sider the typical velocities of particles in the system in or-
der to be able to distinguish between non-relativistic and
relativistic dispersion relations. From the typical temper-
atures in compact objects we can estimate the particle
velocities from
v 2kpT 7 (25)
m
and a comparison with the speed of light ¢ will determine
the appropriate treatment. For v < ¢, we can resort to
a non-relativistic quantum-mechanical treatment with a
Schrédinger-type equation as outlined above, whereas for
v ~ ¢, it would be necessary to formulate the theory in
terms of a relativistic description with the Klein-Gordon
equation.
The case of a neutron star can at least partly be treated
with a non-relativistic dispersion relation, since typical
temperatures range from 10''-10'2 K at the initial stages,
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and decrease down to 10° K after several years, corre-
sponding to thermal velocities of 0.09¢ and 0.3 x 10~ 3¢, re-
spectively. As for the gravitational theory, the typical size
of a neutron star is estimated to be about 12 km, and at
the observed masses between 1-2Mq, typical radii are only
about 2-4 times larger than the respective Schwarzschild
radii, which means that a general relativistic description
should be necessary.

Despite these numbers, for the sake of simplicity here
we develop a theory which is non-relativistic in both re-
gards, i.e. a model for a non-relativistic BEC in Newtonian
gravity, and evaluate later to what extent the theory
is applicable to neutron stars. We treat the system in
the framework of a Hartree-Fock theory, and set up self-
consistency equations for the densities of the BEC and the
thermal cloud of excited atoms. To this end we start from
a general Hamiltonian and derive the governing Hartree-
Fock equations for the wave functions of the particles in
the ground state and in the thermally excited states. The
detailed derivations of this part are shown in the appendix,
as the Hartree-Fock theory for bosons has been worked
out in the literature before (see e.g. Ref. [32]). Still for the
general case of a Hamiltonian with unspecified interac-
tions U(x,x’) we then consider the semi-classical limit of
the theory and derive the equations for the macroscopic
densities of condensate and thermal excitations. In Sec-
tion 2, we start from the respective equations of motion
in the semi-classical approximation for the case of contact
and gravitational interaction. We show the numerical so-
lution of the system of equations in Section 3, and then
derive astrophysical consequences and quantities in Sec-
tion 4, like the size scales and maximum mass of the sys-
tem and the equation of state of matter inside the star.
We investigate the physical viability of the system and ob-
tain a limit for the maximally possible masses in analogy
to the TOV-limit. In Section 5 ultimately, we comment
on the significance of our work in the astrophysical con-
text and conclude the part with an outlook to further
investigations.

2 Semi-classical Hartree-Fock theory
for contact and gravitational interaction

In this section, we first revisit the Hartree-Fock equations
of motion governing the evolution of the condensate and
thermal density in the semi-classical approximation as de-
rived in detail in the appendix. Then we show how to
solve the combined system of self-consistency equations
in two regimes, distinguished by the presence and vanish-
ing of the condensate, respectively. Originating from the
Hamiltonian (2) of the system with the interactions (3),
a Hartree-Fock theory was developed, resulting in the
equations of motion for the wave functions of condensate
and thermal fluctuations calculated from a variation of
the free energy with respect to one-particle wave func-
tion basis of the system. After having obtained the ex-
act self-consistency equations governing the system, the
semi-classical limit of the theory was taken. The detailed
derivations are to be found in the Appendix.
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2.1 Semi-classical equations of motion

In this section we consider the semi-classical Hartree-Fock
equations of motion as derived in the appendix for a sys-
tem with contact and gravitational interaction. Note that
we are employing the Hartree approximation for the gravi-
tational part of the interactions, i.e. we discard any bilocal
contribution to the equations. The equation of motion for
the condensate density equation (A.54) and the thermal
energies ex(x) given by equation (A.55) thus read

— 1+ g[no(x) + 2nn(x)]

- [ ) ] =0, (29
and
) = "X 129 o) + )
_ / &’ |XGm;| no(x) + nu(x)] . (27)

The first equation is valid for a non-vanishing condensate
density, and originates from an equation with the com-
plementary solution ng(x) = 0, as argued already in the
appendix. The second Hartree-Fock equation in the semi-
classical approximation yields the wave vector dependence
of the thermal energies, which can be employed to cal-
culate the thermal density from its semi-classical defini-
tion (A.42) according to

d*k 1
nen (%) = / (27)3 eBlex()—nl — 1 (28)

In the following, we substitute ¢ = h?k?/(2m), and intro-
duce the abbreviation
a(x) = 2g[no(x) + nen(x)] + (%) —p,  (29)

with the gravitational potential @(x) now defined as

G 2
b(x) = — /de’ " [no(x") + nen(x")] - (30)
x —x'|
With this, the thermal density (28) becomes
V2 m3/2 > 1
) = o5 g /0 Ve peray 10 B

which can be solved with the help of a standard inte-
gral [33], and yields

nen (x) = )\13 G3/2 (e_ﬁa(x)) ;

where A = (27h%/m)"/? denotes the thermal de Broglie
wavelength, and

(32)

m

Cu(z) = Z ;U

m=1

(33)

represents the polylogarithmic function.
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2.2 Introduction of spherical coordinates

Before we proceed to process the derived expressions, we
simplify the equations by assuming spherical symmetry
which enables us to introduce spherical coordinates. Thus,
both condensate and thermal density simplify to

no(x) = no(r), nen(x) = nen(r). (34)
Furthermore, we reformulate the gravitational poten-
tial (30) in terms of a multipole expansion in spherical
coordinates. Separating the areas of r < v’ and r > 1/, we
express the 1/r-term in the gravitational potential (30) as

00 l
1 4dr .
=0 m=—1

T/l+2 l

X [9(7‘ —7') +0O(r' - (35)

r
Fl+ r) -1
Applying these substitutions to the Hartree-Fock equa-
tions (26) and (32), we use the mathematical properties

of the spherical harmonics, like the addition theorem,

l
20+ 1
Y ()Y, ()= 36
m;l lm( ) lm( ) A7 ’ ( )
the normalization condition,
[ A2 (2 it (@D = b, (3T

and the fact that Ypo(£2) = 1/+/4mw. With this, the first
Hartree-Fock equation (26) yields

—p+gno(r) + 2nm(r)] + &(r) = 0, (38)
where the gravitational potential (30) now reads in spher-
ical coordinates,

™ Jo

d(r) = 477Gm2{ 1 /T dr'r'? [no(r") + nen ()]

+ /°° dr'r [ng(r') + ngn(r’)] } (39)

The thermal density (32) correspondingly becomes

nin(r) = /\13 Cs/2 [6ﬁ(Qg["f’(T”"““(T)H@(T)“)] . (40)
Note that this result for the thermal density is valid ev-
erywhere in the system. The argument of the exponent
contains an expression which depends on the radial coor-
dinate. For our system, we expect two regimes: the inner
zone, where the condensate density is non-zero and coex-
ists with the thermal density, and the outer regime, where
the condensate vanishes, but a thermal phase continues
to exist. The boundary between those two regions is given
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by the Thomas-Fermi radius, i.e. the point where the con-
densate density vanishes,

no(Ro) = 0. (41)

Therefore, we have to consider two different versions of
the thermal density for the inner and outer regime, which
will be denoted by subscripts 1 and 2, respectively. The
condensate exists solely in the inner region, and is zero
outside the Thomas-Fermi radius.

In the following two subsections, we will treat both
regimes in more detail and further process the equations
for the condensate and the thermal densities analytically
up to a point, where we then have to resort to numerical
solution methods.

2.3 Inner regime

In the inner regime, we can employ the first Hartree-Fock
equation (38) to simplify the argument of the exponent in
the thermal density (40) and obtain

fﬁgno(r)} ) (42)

1
Neh,1(r) = A3 C3/2 [6
Having obtained this expression for the thermal density in

the inner regime, we can now consider the first Hartree-
Fock equation (38),

—p 4 gno(r) + 2gnimn,1 (r) + (r) = 0, (43)

in order to obtain a solution for the condensate density,
and subsequently calculate the thermal density in the in-
ner region via (42). The first Hartree-Fock equation (43)
can be further processed by multiplying the equation by
r and differentiating twice with respect to r to get rid of
the integrals which are due to the gravitational interac-
tions. With this, the integral equation (43) reduces to a
differential equation

82
gp2 [ no(r) + 2nea (r)]} = —0°r [no(r) + nena (7)),
(44)
where we introduced the inverse length scale
4 2
o \/ TG'm 7 (45)
)

which characterizes the typical size scales of the system.
Employing (42), we can express equation (44) only in
terms of the condensate density,

82

2r — Bane(r
o2 {7“7”00(7“) + \3 C3/2 {6 Agnol )} }

= —027{710(7“) + )\13 C3/2 [e_ﬁgnom} } (46)

This second-order differential equation for ng(r) has to be
solved by taking into account the boundary conditions

dTLO

no(0) = A4, i

=0.
r=0

(47)
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Here, the constant A represents a parameter which is in-
directly related to the total number of particles N of the
system. It is the only parameter needed in the complete so-
lution of the system in both regimes, and thus the choice of
A is equivalent to a choice of N. After having obtained the
numerical solution for the condensate density, the thermal
density can then be obtained from the result for ng(r) us-
ing equation (42).

In the limit of zero temperature, the thermal fluctua-
tions are zero, and from (46) follows that the condensate
density is exactly determined from the simplified differen-
tial equation

02 )
3 Irmo(r)] = ~o*rmno(r). (18)
The solution of (48) with (47) is
no(r) = Asinior)’ (49)

which corresponds to the solution (19) outlined in Sec-
tion 1.1. In this special case, the integration constant A
can be determined analytically by computing the total
number of particles in the system,

Ro
N = 47r/ drr®*no(r), (50)
0
yielding
N
Ar-0= 5, 1)

For zero temperature, it is also possible to calculate the
Thomas-Fermi radius Ry according to (41), yielding

ROZ )

g

(52)

which coincides with (20) due to equation (45). For non-
zero temperatures, the Thomas-Fermi radius will differ
from this value, since the condensate density obtains cor-
rections due to thermal fluctuations.

2.4 Outer regime
In the outer regime, the thermal density (40) is specified

further by considering the fact that ng(r) = 0. The ther-
mal density then reads

1 — n- T T)—
nen,2(r) = 36872 [6 8(2oman 2(r)+2(r) “)} ; (53)

where the gravitational potential (39) is evaluated for r >
Ry as

Ro
d(r) = —471Gm2{ i / dr'r" [no(r') + nen1 (r')]
0

1 T o0
+ / dT/TIQch)Q(T/)+/ dr’r’nth,g(r’)}.
r Ro r
(54)
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Note that @(r) still contains the condensate density in the
first term, since the presence of the condensate in the in-
ner regime gravitationally influences the thermal density
in the outer region. However, this dependence can be sim-
plified in notation by introducing the number of condensed
atoms,

Ro
No = 47r/ drrng(r), (55)
0

and the number of thermal atoms in the inner regime,

Ro
Nini1 = 47r/ drr®ngn 1 (7). (56)
0

For abbreviation, we denote the total number of particles
in the inner regime as
Nin = No + N1 (57)

The gravitational potential in the outer region (54) then
simplifies to

2
Nin
&(r) = _Gm — 47Gm?
r
1 T o0
X [r/ dr'r’2nth,2(r’)+/ dr'r’nmg(r')].
Ro T

(58)

The determining equation (53) for ng,2(r) is rather in-
volved due to the polylogarithmic function and the oc-
currence of the thermal density as the argument of the
integral in the gravitational potential (58). In order to
solve the equation, we will carry out some substitutions
to convert the integral equation to a differential one. First,
we integrate expression (53) over the region outside of the
Thomas-Fermi radius, i.e. over the regime r € [Ry, o).
Substituting this integral with a function h(r), defined by

h(r) := i

/dr’r’Qnth,z(T/)Jr/ dr'r'nen2(r'),  (59)

Ry

Equation (53) then reads

b= {, [ )

+ [Carrap e}, (60)
with the argument
2(r) = Exp{ - 6[ - 27;6’ 52 [rh(r)
_ Gm:Ni“ — ArGm?h(r) — u} } (61)

The thermal density can be obtained by multiplying h(r)
with r and differentiating twice, i.e.

71 d?
rdr?

[rh(r)] - (62)

Neh,2(1) =
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We also have to insert an expression for the chemical po-
tential into the equation. It is obtained by evaluating the
first Hartree-Fock equation (43) at the Thomas-Fermi ra-
dius r = Rj as

n = 29nth,1(R0) + @(Ro), (63)
which yields with (42), (58) and (59)
2 Gm2Nin
= 5Ga(1) - Ry | AmGmEh(R). (64)

By multiplying equation (60) with » and differentiating
twice with respect to r we end up with a differential equa-
tion for h(r),

d? r
R = — oo 200,

with the argument
2g d?

o) = Bxp( = =2 1, bl - Y Ga(0)

— Gm? [477 [A(r) — h(Ro)] — Nin <i - }%0)} })
(66)

(65)

For convenience we will carry out another substitution, i.e.

H(r) = h(r) = h(Ro). (67)

This eliminates the unknown h(Rp)-term in the exponent,
while (62) is conserved in its form,

==& ) (63)
Nth2(T) = rerT ).
The final differential equation for H(r) thus reads
d? r 2g d?
e PO == oo (B =5 = 0 ()
4nGmH () — 29¢5 (1
—AnGm H(r) = | 3Ga/2(1)
1 1
— Gm2Ny, — ) 69
e (mw)l}) o

In order to solve it in the outer regime for r > Ry, we
have to specify appropriate boundary conditions. From
the definition of H(r) in (67), we deduce the condition

H(Ry) = 0. (70)

Furthermore, we have to demand that the thermal den-
sities of inner and outer regime must be equal at the
Thomas-Fermi radius, i.e.

Neh,1(Ro) = ngn,2(Ro)- (71)
From the relation (68) between n 2(r) and H(r) as well
as (42), we end up with the second boundary condition
1 " 2 !
33 63/2(1) = —H"(Ro) — ROH (Ro).
Solving (69) with the boundary conditions (70) and (72)

thus determines the thermal density via (68) in the outer
region.

(72)
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3 Numerical simulations and solution

We will now proceed with describing the numerical pro-
cedure to solve the coupled equations for the two densi-
ties as outlined in the previous section. We distinguish
two regimes, the condensate area, 0 < r < Ry, and the
outer area, r > Ry, where the condensate density ng(r)
vanishes. The thermal density n¢,(r) is non-zero in both
regimes. We have to solve the equation (46) for the con-
densate density in the inner regime using the boundary
conditions (47), which will further determine the thermal
density in the inner regime via (42); whereas for the outer
regime we have to solve equation (69) with the bound-
ary conditions (70) and (72) to obtain the thermal den-
sity in the outer regime via (68). Note that in the whole
procedure we do not need to specify the chemical poten-
tial p since we have managed to eliminate or substitute
it wherever it occurred. Instead, however, the constant A
appears in (47), as a yet unknown parameter connected
to the total number of particles. The correct value of A
can only be determined numerically after having obtained
the solution, i.e. in order to carry out the simulation for
a fixed total number of particles, the parameter A has to
be tuned to achieve a specific V. Important to note is the
fact that A is the only input parameter to our solution,
to be specified for the interior regime. For the solution in
the outer regime, results from the inner region are used
as parameters, i.e. the number of particles (57) as well as
the Thomas-Fermi radius Ry from (41). Apart from these
values, however, no additional parameters are necessary
in the outer regime, and thus the complete solution of the
system in both the inner and outer region is determined
only by specifying the parameter A.

3.1 Dimensionless parameters

In order to carry out the numerical calculations cleanly,
we rewrite all expressions using dimensionless quantities
according tor — p =or, T — 0 = T/Teh, n — 0 =
nAy, = ng/keTe, and € — € = €/kpTen, where n stands
for a particle number density and e for an energy. Any
other quantity, when expressed with a tilde, as e.g. fi or
@, denotes the corresponding dimensionless quantity. The
newly introduced constants are a characteristic tempera-
ture for the system in question, and the corresponding de
Broglie wavelength,

2mh?
o \/kaTch ¢

The inverse length scale o has been introduced before
in equation (45) and determines the typical size scale of
the system in question. In the following, we will elabo-
rate on the concrete values of all parameters used in the
computations.

h2r

T =
ch 2a2mkp’

(73)

3.2 Simulation details and results

In order to calculate a solution to the above equations, we
have to decide upon a specific application of our theory.
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Choosing the case of a superfluid neutron star with neu-
tron pairs as the effective bosons in the system, we have to
adjust the simulation parameters to the conditions within
these objects. We will resort to observational information
to fix the appropriate range of parameters in order to be
in accordance with physically realistic scenarios.

Considering the typical masses of neutron stars and the
mass of a neutron pair, we carried out the simulation for
a total number of particles of Nyt = 10°7, which results
in a neutron star of about 1.7Mg. The parameter that
controls the total number of particles in the Hartree-Fock
theory is A. Thus we have to tune the value of A in order
to obtain such a specific number of particles.

A microscopic parameter to be determined is the con-
tact interaction strength ¢, which in turn depends on
the s-wave scattering length a of the neutron pairs in-
side the star. As a rough estimate for a within the hard
sphere scattering approximation, we will use the average
volume which is to be expected for each particle in the
star. With typical radii of neutron stars of about 12 km,
and a total number of particles of 10°7, each particle can
move within a spherical volume of radius 10~'° m, so we
choose a = 1 fm.

Temperatures in a neutron star depend on its stage
of evolution, and range from 10'2 K at the time of its
formation down to 10 K after a rapid cooling stage of
several years. Thus, there is a broad spectrum of tem-
peratures possible. In our simulations, we used a range
of temperatures between 10! K and 4 x 10'' K, which
cover the high end of the possible temperature regime.
The reason for choosing such high temperatures lies in
the results themselves: we found the thermal fluctuations
negligible for temperatures below 10! K, implying that
in that range the zero-temperature treatment would be
sufficient. On the other hand, numerical computations for
higher temperatures than 4 x 10'! K become unstable,
thus providing a natural upper limit of our investigations.

For the outlined values of the parameters, the inverse
length scale o is computed from (45) as

0~469x10"*m™!, (74)
which leads to a Thomas-Fermi radius at zero tempera-
ture (52) of

Ry ~ 6.701 km. (75)

The typical size scales to be expected from our Hartree-
Fock theory must thus be of this order of magnitude,
which corresponds well to the typical observed size of neu-
tron stars of the order of 10 km.

With those parameters we have solved equation (46)
for the condensate density in the inner regime using
the boundary conditions (47) and subsequently employed
equation (42) to calculate the thermal density in the inner
regime. With the boundary conditions (70) and (72) at Ro
and quantities like No and Ny, 1 extracted from the inner
solution, we then continue to solve equation (69) for H(r)
and obtain the thermal density in the outer regime from
equation (68). In Figure 1 we show the corresponding solu-
tions for both of the densities for a range of temperatures

Page 9 of 21

T=10"K
1x 106

oo

X

S
=

6x10"

mng(R) [g/em?]

- 4x 10"

meno(R)
8]

X

S

r [km]

T=10"K
1x10'

=5}

X

(=}
o

mng(R) [g/em?]
(=)}
X
=

2 4% 10"

m-no(R)

2x 1013

r [km]

T=210"K
1x 106

=]

X

S
=

6x10"

mng(R) [g/em?]

> 4x 10"

mno(R)
8]

X

S

1x10'

=5}

X

(=}
o

mng(R) [g/em?]
(=)}
X
=

4x10"

no(R)

2x 1013

m

0 1 2 3 4 5 6 7
r [km]
Fig. 1. Radial profiles of condensate (black) and thermal den-
sity (red) with increasing temperature for the total particle
number Nio; = 10°7.

from 10! K to 4 x 10" K and for the total number of par-
ticles Niot = 10°7. The condensate is given by the black
curve, whereas the thermal density is plotted in red. For
all simulations, the central density p. and the Thomas-
Fermi radius Ry are shown in Table 1. We have also listed
the corresponding thermal radius Ry, which denotes the
border of the star, i.e. the point where the thermal density
in the outer regime has fallen off to zero.
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Table 1. Summary of simulated data: central condensate density p., Thomas-Fermi radius Rp, and total radius of the star Ryp.

T [K] 0 10t

pe [10'° g/cm®]  8.718 8.718
Ro [km] 6.701  6.680
Rin [km] - 6.936

4 Astrophysical implications

We will now proceed to extract results from the above
calculations which are of astrophysical relevance, deducing
various macroscopic and observable quantities for neutron
stars.

The parameters we will consider are the mass and the
radius of the neutron star. Furthermore, we determine a
restriction on the possible masses in form of a maximum
allowed mass derived from physical constraints, and the
equation of state of the neutron star.

In general, the determination of neutron star prop-
erties from observations is not straightforward. It differs
from case to case and often involves the deduction of pa-
rameters from a combination of directly observable param-
eters or even assumptions on the physics inside the star.
Neutron stars are rotating, magnetized objects, which can
exist on their own or as part of a binary system. Its mag-
netic fields usually lead to the emission of electromagnetic
radiation at the magnetic poles of the star. If the emitted
beam lies in the direction of the earth, it is possible to de-
tect this radiation, which pulsates with the frequency of
the star’s rotation, and, if the neutron star is part of a bi-
nary system, is further modulated with the orbital period
of the binary. Due to this pulsed emission, neutron stars
are also called pulsars. The emission can lie in a broad
range of frequencies, from radio via optical to X-ray and
~y-ray frequencies, depending on the specific properties of
the star itself and on the possible companion star.

The physical observables of neutron stars are few. Be-
sides the spectra detected from the neutron star and its
companion, observations of the rotation, and the orbit in
a binary system, are the most important features.

In the case of isolated neutron stars the spectrum can
be very insightful since it is not contaminated by the influ-
ence of a companion or the remnants of a supernova. From
the spectroscopy of the detected radiation and the timing
of the pulses and their redshift, it is possible to infer tem-
perature and distance to the observer, which yields the
star’s radius. From certain emission features in the spec-
trum, it might also be possible to deduce the gravitational
redshift at the surface of the star, which constrains the re-
lation of the mass to the radius [34] — and thus even the
mass of the neutron star can be obtained. In a binary sys-
tem on the other hand, where the neutron star accretes
material from its companion, the X-ray bursts from the
accretion process can be fit to a black body spectrum and
thus, via temperature, flux and distance of the binary sys-
tem, the radius of the star is obtained as well [35].

Besides the spectrum, the orbital parameters of a neu-
tron star in a binary system are crucial in order to estimate

2x 10" 4x10" 6 x 10
8.925 9.133 9.341
6.546 6.346 6.012
6.802 6.602 6.268

its mass. Some neutron stars feature planetary systems,
which lead to the determination of the neutron star’s mass
via Kepler’s laws of planetary motion [36]. About 5% of
neutron stars are part of a binary system — in these cases,
the exact observation of the companion can yield impor-
tant information on the neutron star’s properties. Via the
Keplerian laws and the law of gravitation the masses of
the neutron star and its companion can be expressed in
terms of parameters like the orbital period, the radial ve-
locities and the inclination angle of the orbit with respect
to the line of sight to the observer [12]. The radial veloc-
ities can in turn be obtain from the measurement of the
Doppler shifts of the spectra. Depending on how many
parameters can be successfully determined from observa-
tions of the orbit, and how much additional information
can be extracted from the spectra, one or both of the
masses of the binary system can be calculated. The mass
of the most massive neutron star found so far was calcu-
lated from orbital parameters and the mass of the white
dwarf companion, obtained from the spectroscopy of the
detected energy spectrum [37]. In some cases, in partic-
ular for radio pulsar binaries with very compact orbits,
the orbital parameters can be determined with such pre-
cision that the detection of general relativistic effects is
possible [38]. The mass of another very massive pulsar
was thus determined using Shapiro delay, a gravitational
time delay effect on the radiation of the pulsar due to the
presence of the companion [11].

In cases where a clean calculation of the star’s radius
from the spectrum is not possible, the radius is often in-
ferred from the determination of the mass and assump-
tions on the star’s density, which is believed to be of the
order of nuclear density. Due to the unknown nature of
neutron star’s interiors, and the fact that the equation
of state of neutron stars can unfortunately not be mea-
sured directly, these radius estimates are however highly
uncertain.

The equation of state of neutron stars is subject to
wide speculation and has spawned many different mod-
els describing the physical processes inside a neutron star.
Many models assume a composition of nuclear or neutron
matter, but this assumption still admits a broad range of
possible equation of states. Also more exotic models with
other particle species have been discussed, as already men-
tioned in the introduction. The impact of the equation of
state is mirrored e.g. in the mass-radius relation, and can
be constrained from observations if both mass and radius
are reliably known. Also the distribution of neutron star
masses from an ensemble of observations can give clues
on the equation of state, by comparing the maximally al-
lowed masses predicted by a certain equation of state with
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the maximum masses of neutron stars found in observa-
tions. We will employ the latter method to compare our
calculations to observational information.

4.1 Mass and density plots

The total mass of the star in our model is given by

Rin
M = 47Tm/0 drr? [no(r) + nen(r)], (76)

obtained via the numerical integration of the respective
density profiles and multiplication with the mass m of a
neutron pair. Our simulations were carried out for the ex-
ample of Ny = 10°7, which corresponds to a mass of
M =~ 1.7Mg. We can obtain density profiles and thus
objects with arbitrarily high mass by modifying A, which
determines the total number of particles. It is not possible
to obtain an upper limit on the mass from our calculations
since the simulations can be carried out for an arbitrary
number of particles. Therefore we have to resort to other
methods to obtain a limitation of the mass, employing ei-
ther the general relativistic limit, i.e. the Schwarzschild
limit of gravitational collapse, or an upper bound on the
speed of sound of the particles inside the star, demanding
that causality may not be violated. It turns out that in
the case of a neutron star the Schwarzschild limit yields
a more stringent condition than the limit on the speed
of sound. The Schwarzschild limit requires the object to
be larger than its Schwarzschild radius to prevent gravi-
tational collapse into a black hole, i.e.,

2GM

Rth > rs = 02 (77)

For the simulation with Nio; = 10°7 particles, i.e. a mass
of M ~ 1.7Mg), the Schwarzschild radius turns out to be
rs =~ 3.17 km, which is below the obtained thermal radii
of the configurations (see Tab. 1). However, it is possible
to turn around the criterion and calculate the maximum
possible mass for the size scales obtained in our simula-
tions, via
CQRth
2G

By using the dependence of the thermal radius on the
temperature as obtained from the numerical results, it is
possible to obtain a limit on the maximum mass of the
system as a function of temperature. We will elaborate
further on this issue in Section 4.3.

Mmax = (78)

4.2 Size scales

Besides the mass, another quantity of interest is the size
of the system. We represent the condensate radius Ry and
the total radius Ry, of the star in Figure 2 as a function
of temperature. The dots and triangles give the numerical
results obtained in the simulations, and the curves show
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Fig. 2. Dependence of the Thomas-Fermi radius Ry and the
thermal radius Ry, on temperature T': results from the simu-
lations (dots, triangles) and numerical fits (solid, dashed) as
given by equations (79)—(82).

the best fit for the numerical data. For the condensate
radius, the general form

Ro(e) = Ry + a10%? (79)

was used for the fit, where Ry = w/c = 6.701 km is the
Thomas-Fermi radius for zero temperatures, and 6 is the
dimensionless temperature. The best fit results yield

a1 = —0.342 km, as = 1.53. (80)
The fitting ansatz for the thermal radius was
Rin(0) = by + b6 (81)
where the results read
by =6.962 km, by = —0.349 km, b3 =1.5001. (82)

Both exponents, in particular the one for the thermal ra-
dius, are very close to the value 1.5, which can be ascribed
to the leading dependence of any occurring variable on the
temperature to the power of 3/2. Any deviations from the
exact power 3/2 stem from the argument of the polyloga-
rithmic function, which contains a further dependence on
the temperature. We see that not only the condensate ra-
dius is decreasing with rising temperatures, but also the
thermal radius, despite the growing expansion of the ther-
mal cloud at the border of the star. In total the star is thus
decreasing in size with rising temperatures, while its cen-
tral density increases correspondingly. The size scales are
of the order of 6 km, which is determined by the zero-
temperature limit and only depends on the natural con-
stants G and & and the choice of the parameters m and a.

4.3 Maximum mass

Subsequently, we can proceed to derive a maximum mass
for the system by employing the upper limit on the mass
as given by the Schwarzschild limit. Generalizing equa-
tion (78) to finite temperatures, we obtain

2R (T)

Mmax = G2 )

(83)
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Fig. 3. Maximum mass as a function of temperature, as in-
ferred from the limits given by the Schwarzschild criterion:
numerical results (dots) and a fit (solid) as given by equa-
tions (85) and (86).

and employing the temperature dependence of the thermal
radius as given by equations (81) and (82), we can com-
pute the correspinding mass limits for the system, shown
in Figure 3. The limit for zero temperatures can be com-
puted employing the Thomas-Fermi radius Ry as given by
equation (52),
2Rg nhe?y/a
Mmax,O — GCQ — 2(Gm)3/27 (84)
and results in the value Mpyax,0 >~ 2.3Mg. The qualitative
temperature dependence of Mp,,x can be inferred again
from a fit of the curve with a general fitting function

Mmax(e) = Mmax,O + d10d27 (85)
resulting in the best fit values
dy = —0.118 Mg, da = 1.5001. (86)

Again, we obtain a small, but distinct dependence on the
temperature to the power of 3/2. The maximum mass
2.3Mg, for zero temperatures is larger than the original
limit on neutron stars given by Tolman, Oppenheimer
and Volkoff [9,10] and corresponds well to observational
evidence [11,39]. The decrease of the maximum possible
mass with increasing temperatures can be understood by
considering the increase in the central condensate density
with higher temperatures — the condensate seems to be
compressed by the thermal density, which makes the ob-
ject smaller and thus leads to a smaller mass given by the
Schwarzschild limit. This is supported by the results for
the equation of state of the condensate, as computed in
the next subsection.

For neutron stars, a commonly shown plot is the re-
lation between maximum mass and radius. In our model,
we obtain a mass-radius-relation by plotting the (M, Ry )-
pairs for the different temperatures used in the computa-
tions, shown in Figure 4. As expected from equation (83),
the dependence of M. on Ry is linear, and thus the
plot shows no peculiar structure. This is due to the impo-
sition of the Schwarzschild criterion to calculate the max-
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Fig. 4. Maximum mass plotted over the thermal radius Ry,
for different values of the temperature 7.

imum allowed masses, instead of having a natural maxi-
mum mass limit given by an instability of the theoretical
description.

4.4 Equation of state

Ultimately, we investigate the equation of state, i.e. the
characteristic relation of pressure and density p = p(p) of
the matter in the star. In principle, a BEC has a poly-
tropic equation of state with an index n = 1, which is
an equation of state that has been used in the context
of neutron stars before [8]. However, since in our system
two different phases of matter coexist, we have to define
an equation of state for each of them independently. In
the case of thermal fluctuations, we further have to con-
sider the two different regimes inside and outside of the
Thomas-Fermi radius. Thus we have to distinguish three
phases of matter with different equations of state.

The equation of state of the condensate was de-
rived in references [8,25] for a system obeying the same
Hamiltonian as given in equation (4). Adding a small per-
turbation to the mean field wave function of the conden-
sate and using a Madelung ansatz for the mean field itself,
it is again possible to derive a set of hydrodynamic equa-
tions, i.e. the continuity and Euler equations, from the
Heisenberg equation, but this time under the inclusion of
thermal fluctuations. From equation (40) in reference [25]
the gradient of the pressure can be read off by comparison
to a general Euler equation for a hydrodynamic system as

VponoV [g (no + 2n4n)] - (87)

Subsequently we can calculate the pressure of the con-
densate by integrating equation (87). This leads to the
well-known polytropic equation of state for the pure con-
densate with polytropic index n = 1, and a correction
term proportional to a polylogarithm of order 5/2, as well
as a term containing both condensate and thermal fluctu-
ations, and a constant,

9

Po = 2m2p

g [7]
Bg”} - 51345/2(1)

2g _
+ mg)\ngS/Q |:€ m (88)
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(b) Condensate equation of state in a close-up.

Fig. 5. Equation of state of the condensate for the example
of T =4 x 10K and Nios = 1057, as obtained from the exact
formulation (88) (dots) and the equation of state for the zero-
temperature limit (14) (dashed). Both curves are rather close,
so that they cannot be distinguished in (a), whereas in (b) a
close-up for small densities is shown, where the discrepancy is
noticable. A numerical fit (solid) as given by equations (89)
and (91) was performed. At the density p ~ 7.95 x 10'* g/cm?
the pressure becomes negative.

Here again p = mng denotes the mass density of the con-
densate. Equation (88) is the equation of state for the
condensate with corrections from the thermal density. Fig-
ure ba shows the condensate pressure given as a function of
the condensate density for the example of T = 4 x 10! K
and Niot = 10°7. As we can see from the close-up of the
condensate equation of state in Figure 5b, the pressure
turns out to become negative for small densities. This is a
consequence of the Thomas-Fermi approximation for the
condensate: at the border of the star, where the conden-
sate density is small, the quantum pressure of the con-
densate, which we had neglected, becomes important. For
the small densities at the border of the star, the quan-
tum pressure would thus correct the unphysical negative
pressures obtained in (88). Considering this correction,
the pressure of the condensate would presumably increase
for small densities, which would explain the compression
of the condensate and subsequent shrinking of the star
with increasing temperatures, as obtained in the previous
subsections.
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Besides the exact form of the condensate pressure (88),
denoted by the dots, and the zero-temperature limit
(dashed), Figure 5b contains a fit (solid), carried out with
the general polytropic ansatz for the pressure as a function
of the dimensionless condensate density ng,

(0)

Po = py Mg + c1iig2. (89)

where the coefficient for the first term is
0) _ 1 (kpTen)? 90
0 2 g ) ( )

and for a neutron star with the chosen specifications

amounts to p) = 3.288 x 1027 bar. The best fit for the
parameters c¢; and co resulted in the values

¢1 = —0.105 bar, co = 0.703. (91)
The parameter co in the exponent leads to the polytropic
index

ny = —3.363, (92)

which implies that the polytropic form with n = 1 for the
condensate at T = 0 is modified at finite temperatures
to obtain another polytropic component with negative in-
dex ng, which is due to the presence of the thermal den-
sity. Negative polytropic indices denote metastable states
of matter which can occur in highly energetic processes
and environments in astrophysics [40]. Since the thermal
cloud makes up only a small fraction of the total number
of particles however, as can be seen from the respective
smallness of ¢; as compared to pE)O), and moreover negative
pressures only occur for very small densities of the order
of less than 10'® g/cm? at the border of the star, we infer
that the negative polytrope component does not endanger
the stability of the system as a whole. We have calculated
the percentage of the Thomas-Fermi radius for which the
pressure becomes negative, which happens at the density
p~7.95x 10 g/cm?®. For the example of T = 4 x 101! K
this corresponds to the radius r = 6.346 km, which is
equivalent to 0.99997 R,.

For the thermal cloud, the pressure can be obtained
from its definition

[ &Pk RK/2m
pen(r) = (27)3 eblex(r)=nl — 17

which leads to a polylogarithmic function, similar to the
thermal density, but with an index 5/2:

(93)

1 — n T n T T)—
pun(r) = e Cs )2 {e Bglno () +nmMI+e(-w]| - (94)

For the two regimes, we can formulate the pressure as

1
pth,l(r) = ﬁ)\?’ <5/2 [e*ﬁgno(ﬂ} , (95)

1 — n- ks T)—
Den2(1) = a3 C5/2 [e B(2gnen,2(r)+o(r) u)} ) (96)
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The results can be obtained in analogy to the solution for
the thermal density in the respective regimes. For ther-
mal fluctuations, the functional dependence as given by
results (95) and (96) is exactly what is to be expected
for a thermal gas of bosons, and confirms the vanishing
pressure of free bosons for zero temperatures.

However, when attempting to numerically compute the
thermal pressure from (95) and (96) we run into problems,
as the pressure becomes complex around the border of the
condensate. This deficiency is again due to the Thomas-
Fermi approximation, which affects the condensate and
thus also the thermal fluctuations in that regime, and the
polylogarithmic function, which becomes complex for ar-
guments larger than one. Therefore we could not obtain
numerical results for the thermal pressure, which only dif-
fers significantly from zero in the critical region at the
border of the condensate.

5 Conclusions and outlook

The work presented in this paper investigated the occur-
rence of a BEC phase in compact astrophysical objects
such as neutron stars. A careful consideration of the typ-
ical environments showed that the neutrons inside neu-
tron stars are likely to form pairs due to the strong nu-
clear forces between them, similarly to an atomic nucleus,
i.e. are present in a superfluid state. These neutron pairs
are considered as the effective bosonic elementary parti-
cle in the BEC. The model presented in this article starts
from this simplified picture of very strongly bound neutron
pairs as perfect bosons, and does not take into account
the presence of single neutrons or other particle species.
Our work represents a first step towards an alternative
description of neutron stars based on the phenomenon of
BCS-BEC crossover in nuclear or neutron matter, and in-
creasing efforts by theoreticians to consider these scenarios
validate our efforts to compute observable quantities that
can be compared to observations.

We would like to emphasize though that a physically
more exact treatment would require the investigation of
the BCS-BEC crossover itself along the lines of refer-
ences [18-21], not just the BEC limit. The full crossover
would unify the different physical behaviour of the BCS
and BEC regimes into one theory, and would apply to
both fermion and boson stars simultaneously in the re-
spective limits of the theory. The treatment we have set
up must result from the complete crossover theory as the
BEC limit, and should thus only be regarded as an ap-
proximate solution to the issue.

In the BEC limit, the system was treated within
the framework of a Hartree-Fock theory, starting from
a Hamiltonian including contact and gravitational inter-
actions between the particles. Self-consistency equations
determining the wave functions of condensate and ther-
mal fluctuations were obtained from the variation of the
free energy of the system. In analogy to these deriva-
tions, the semi-classical limit of both the free energy and
the Hartree-Fock equations was formulated, describing the
system in terms of the densities of condensate and ther-
mal fluctuations. The resulting equations were processed
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further up to a certain point, before the solutions for both
the profiles of condensate and thermal density as a func-
tion of the radial distance from the center of the star
were obtained by numerical procedures. Integrating out
the obtained densities leads to the total mass of the sys-
tem, along with other quantities of astrophysical conse-
quences. From our model, we have obtained objects with
radii of about 6 km, masses of about 2.3M and central
densities around p, ~ 10*® g/cm3, which approximately
coincide with the typical values to be expected for neu-
tron stars. Since from the zero-temperature limit and the
subsequent analysis for finite temperatures, the radial ex-
tension of the system was found to be around 6 km, de-
creasing with a temperature dependence proportional to
T3/2, we were able to employ the Schwarzschild criterion
of gravitational collapse in order to derive a mass limit on
the neutron stars, which lead to a maximum mass of about
2.3My, decreasing proportional to T%/2 as well. The order
of magnitude of these results seems plausible considering
observational evidence.

As already stated at the outset, the theory contains
several simplifications, introduced in order to make the
system more treatable. Some of them were mathemati-
cally motivated, whereas others have been general physi-
cal assumptions within our model from the beginning. We
considered a phenomenon mainly known from ultracold
quantum gases in laboratory scenarios and applied an es-
tablished mathematical treatment to a rather unusual field
of application, namely the large scales of astrophysics. It
is therefore to be expected that simplifications and ideal-
izations are necessary in order to obtain results.

On the mathematical side, we have carried out a
Hartree-approximation for the gravitational part of the
interactions, which eliminated the bilocal Fock terms in
the expressions. The inclusion of these terms could per-
haps be treated in form of an appropriate local density
approximation.

The theory is limited to low temperatures, where
by definition the particles in the thermal phase are
few and the condensate dominates. However, the ne-
cessity to develop a more complete theory featuring a
smoother description of the high-temperature transition
region between condensate and thermal state of the sys-
tem, incorporating the breakdown of the condensate as a
phase transition, is obvious.

A further assumption of the theory is a spatially con-
stant temperature throughout the star, which is unlikely
to hold in realistic physical situations. This is closely
connected to the breakdown of the condensate towards
the outer layers of the star, where the density and thus
the critical temperature decrease, and at a certain point
the condition T' < Tt for the formation of a condensate
cannot be met anymore. The inclusion of spatial variation
of temperature in the self-consistency equations would
thus allow for a much more detailed and realistic model.

Finally, we would like to comment on the possibility
of rotation. It is presumed that most of the compact ob-
jects in the universe rotate, since an evolution of a com-
pletely static system is highly unlikely in an initially hot
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and violent universe. Rotation of BECs in laboratory en-
vironments have been shown to exhibit new phenomena
like the formation of vortices of normal phase matter in-
side the BEC [41], growing with increasing temperature
until the breakdown of condensate at the transition to
the thermal phase. The existence of a vortex in a Bose
star, or, more realistically, a grid of vortices, should be as-
sumed, which grow in width and finally cause a transition
to a normal phase Bose star with increasing temperature.
The inclusion of rotation is expected to lead to a destabi-
lization of the system due to the presence of tidal forces,
and thus should lead to a higher maximum mass counter-
balancing the increased outwards forces. Further, rotation
could potentially help to explain dynamical phenomena
observed in neutron stars, like e.g. glitches in the rotation
frequency, and would provide further means to compare
our results to observations.

Thus there is a large number of possibilities to gener-
alize and extend the present work.
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Appendix A: Hartree-Fock theory for bosons

In the appendix, we derive the Hartree-Fock theory at
finite temperatures for a generic system of bosons, em-
ploying the formalism of the grand-canonical ensemble
and its definition of the free energy. By means of a vari-
ational principle we then determine a set of coupled self-
consistency equations for the wave functions of both con-
densate and thermal fluctuations. The derivation relies
largely on the formalism introduced in reference [32], and
has been adapted for our scenario.

A.1 Free energy

We start from the general Hamiltonian

H= / Pt (x)

X [h(x) —p+ ; /dg’x’!IA/T(x’)U(x, X (x') | ¥(x),
(A1)

where the first-quantized Hamiltonian operator h(x) is de-
fined as the kinetic term plus an external potential,

2

h(x) =— f A+V(x),

- (A.2)

and the interaction term U(x,x’) is as yet unspecified.
The field operators ¥ and ¥ obey the usual commutator
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relations for bosonic particles,

[@T(x),gﬁf(x’)} = [W(x),@(x’)} —0,
[¢<x), @ux')} = 5(x — x).

(A.3)

(A.4)

The grand-canonical formalism defines the partition func-

tion Z as X

Z="Tr [e*mf} , (A.5)
where 8 = 1/(kgT) is the inverse temperature and the
trace in the expression has to be taken over all states of
the Fock space.
We now derive the equations that govern the state of the
field operators. To this purpose, we employ a for now un-
known one-particle basis ¥, (x) characterized by discrete
quantum numbers n, and write the field operator as an
expansion with respect to these functions ¥,,(x) as

= 0,0, (x), ¥ Z al v (x

The expansion coefficients af and a, represent the cre-
ation and annihilation operators of a particle with the
quantum number n, and they obey similar commutator
relations as the field operators ¥T and ¥ above. The one-
particle basis is chosen to be orthonormal and thus

(A.6)

/ BT (X)T,y (%) = Gone, (A7)

DT ()P, ('

hold. We can then write the Hamiltonian operator (A.1)
in terms of these creation and annihilation operators as

H= Z Z By ey,
15995 5 9D B

n m m’ n’

=d0(x —x) (A.8)

n.m,m’.n'0n Tal Tl G s

where the respective matrix elements read

Buw = [ 00,60 (h60) ~ U (), (A9)
Un,m,m’,n’ :/d3$/dsxlgp;;(x)!p;;l(xl)
X U(x, X' W, (X)W, (x). (A.10)

To treat the system further, we suppose the existence of

an effective Hamiltonian Heg describing the system as ef-
fectively non-interacting with one-particle energies €y, i.e.

Hest = Y (en — 1) ity

n

(A.11)

Thus, the system is formulated in terms of an unknown
one-particle basis ¥, (x) with unknown one-particle ener-
gies e,. These quantities have been artificially introduced,
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which means that in the end the result should not de-
pend on them. Inspired by variational perturbation the-
ory [42,43], we now express the real Hamiltonian in terms
of the effective Hamiltonian and an additional parame-
ter n as

H(n) = Her +1 (7:( - Hcff) . (A.12)
If Heg is a good approximation for the real Hamiltonian
‘H, then the second term is small, and the grand-canonical
partition function can be expanded into a Taylor series
with respect to the difference of the two Hamiltonians. In
the end, we have to set 7 = 1 in order to obtain a valid
identity in equation (A.12).

Using relation (A.12), the partition function (A.5) can
be written as

Z(n) =Tr {e—ﬁ[ﬂcff-&-n(ﬂ—ﬂcff)]} ) (A.13)

Expanding this expression into a Taylor series with respect
to the assumed smallness of H — Hcg leads to

200 =T 7] 4y (A ) ]

+ ; (_577)2 Tr {(7:[ — ﬂeff>2 e_m%“ff} + ...
(A.14)

After defining the notions of the effective partition
function

Zogt = Tr [e*ﬁ’*eff} (A.15)

and the effective expectation value of an operator X as

1
X)g =
(Rer =,

Tr [Xe*fmeff} , (A.16)

we can rewrite the expansion of the partition function as

Z(n) = Zog [1 + (—=6n) <(H - Hﬁ>>

eff
1 9 N NN
+ ., (=6n) (H - Hcﬁ') +.... (A7)
2 eff
This is an expansion in terms of the moments, i.e. for the

nt" order in the expansion the n'® power of the effective
expectation value of (H — Heg) appears. The free energy

Fly) = — - 1n Z(n)

5 (A.18)

can then be written as

F(n) = Fegr — ;m{l _ﬁn<(ﬂ_ﬂeﬂ)>eﬁ

Lo o )
+ 8% (H—Heﬁ) v b (A9
eff
with the effective free energy defined as

Fop — 7; In Zog. (A.20)
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We then employ the Taylor expansion of the logarithm to
expand the free energy (A.19) into a series as

F(n) = Feg + 77<<7:( - 7:(cff>>cff - ;5772

(A~ Pr) v = (R Fr)) |+

(A.21)

This expression is now an expansion in terms of cumu-
lants, i.e. the nth order of the expansion contains the ef-
fective expectation value of the nth power of (7:1 — 7:(65)
and the nth power of the effective expectation value of
(H — Heg). The first non-trivial approximation of the free
energy is obtained by cutting off the series after the first-
order term. In order to obtain the original free energy, we
have to set n = 1, which leads to

FO(1) = Fg + <(H - Heﬁ)>cﬁ. (A.22)
We can further evaluate the free energy F((1) by in-
serting the original and the effective Hamiltonians equa-
tion (A.1) and (A.11) and taking the effective expectation
value (A.16) of the occurring operators, to result in

FO1)=Feg+ > > [Enw — (en — 11) nw] (@l )
1 b
#5220 D Vs v (i G ) g

(A.23)

We now process the effective expectation values further
by applying the Wick rule [44]. For the four-point corre-
lation function in the interaction term, this leads to the
decomposition into products of two-point correlation func-
tions as

langleal al apin) o = (OnnOmm’ + OnmOmn’)
X (ahan) g (Al ) g - (A24)

From the investigation of the effective free energy, we can
deduce a concrete expression for the two-point function
that we are now left with. The effective free energy (A.20)
reads with (A.11) and (A.15)

1 .
Fur =~ nTr {e—ﬁin“n—waﬁ%} , (A.25)
which reduces to
1
Fa =, S in [1 - e_ﬁ(s“_“)} . (A.26)

Differentiating both versions (A.25), (A.26) of Fog with
respect to the energies €, leads to an identity for the ex-
pectation value of the two-point function,

1

e 1 (A.27)

<den>cﬁ =

i.e. the Bose-Einstein distribution function.
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We now introduce by hand the macroscopic occupation
of the ground state, which is the predominant attribute of
Bose-Einstein-condensation, by setting

b ~ ag ~ /No = 1), (A.28)

with Ng being the total number of particles in the ground
state, which is characterized by the quantum number
n = 0. We now split all the terms into the n = 0 and
the n # 0 contributions, and introduce a condensate wave
function as

T (x) = Ol (x), T (x) = (). (A.20)

This wave function has the normalization
[#ar o) = v [ Eareore) = v = No
(A.30)

Note that the four-point correlation function as processed
in equation (A.24) by the Wick rule, has to be modified
for the condensate as

<dgd£&0&0>cﬁ = 1/’4- (A-31)

Inserting the normalization (A.7) for ¥, (x) into the effec-
tive free energy, we have as a result

FOQ) = B+ [ Boo — (co = ) [ aa5 0000 02

D> B (e =) [ 0300000 @i

+ UOOOOw +Z n00n+Un0n0)w2<&;fl&n>eff

n#0

1 At s At
+ 2 Z Z(Un,m,m,n+Un,m,n,m) <a;flan>eff<a;fnam>eff7

(A.32)

where F.g now consists of the two terms

Fer = (€0 — (A.33)

Zln |:17€ Blen—p)

n;ﬁO

Inserting the expressions for the matrix elements Ey, n/
and U, o as defined in equation (A.9) and (A.10),

’
n,mm’,

we can now write the total free energy, which will in the
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following be denoted shortly by F, as
F=Fat [ o0 () - 1 7(x)
o= n) [l (¥ )
+3{ [Pere0 160 - 1,0

n#0
(e 1) [ EB T 00 e )

+ ; / Padd a0 ()W (XU (%, X)W (x' ) (x)

+Z/d3 &2 W ()0 (x)U (x, %)
n#0
X W ()W, () + W, (X (x)] (g @
d3 d3 /
n%éo/
X Wy (%) W3 ()03 (X YU (5, X ) (5 )y ()|
(A.34)

n>e1Cf

() (XU (3, X )y (X')

x <didn>cﬁ' <&j’1—1&m>cff :
In this theory, the condensate wave function encodes the
behaviour of the particles in the condensate, i.e. a major-
ity of particles in the system for low enough temperatures,
while the wave functions with n ## 0 describe the ther-
mal fluctuations on top of the condensate with increasing
quantum numbers n

A.2 Self-consistency equations

As the unknown one-particle basis ¥,,(x) and energies e,
have been introduced artificially into the analysis, the re-
sult for the free energy should not depend on them. This is
however only true for the exact expressions for I, and does
not hold for the approximated form that we have used in
the derivations following (A.22). This means that the ap-
proximation for the free energy F does indeed depend on
the one-particle basis and energies, but this dependence
is unphysical and undesired. For this reason, we have to
demand that the dependence of the free energy on these
quantities be as small as possible — which mathematically
corresponds to an extremization. This is the principle of
minimal sensitivity, which was firstly introduced in ref-
erence [45]. The equations obtained by varying the free
energy (A.34) with respect to the condensate and thermal
wave functions ¥*(x) and ¥} (x),

oF

oF
SU*(x) =0

502() (A.35)

are called first and second Hartree-Fock equations, respec-
tively. Furthermore, also the variation of the free energy
with respect to the one-particle energies €, must vanish,

oF

e =0.

(A.36)
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Finally, the derivation of F’ with respect to the chemical
potential must yield the total number of particles N in

the system,
oF
— = N.
O
We now define the densities of condensate and thermal
fluctuations as

(A.37)

no(x) = [¥(x)]%, num(x,x') = Z fg((:)_%l(j(/l) (A.38)
n#0

For equal arguments of the thermal density, we will use
the abbreviation np, (x, X) = ngn (X).

With this, the variation of the free energy with respect to
the condensate wave function leads to the first Hartree-
Fock equation,

oF
sy = 09— ()
+ /d?’x'U(x,x’){ [no(x") + nen (x")] ¥ (x)

+ nen (%, x)q/(x')} ~0, (A.39)

whereas the variation of F' with respect to the thermal

wave functions yields the second Hartree-Fock equation,

oF

6W:{ (X) = [h(X) - En] Wn(x)

[ @06 [0 + o)) )

=0.
(A.40)

+ [T (XN (%) + e (x', %) 7, (X)

In both equations, the first, local part of the interaction
is referred to as Hartree term, or direct interaction term,
whereas the second, bilocal part is the Fock term, or ex-
change interaction term.

The derivation of the free energy with respect to the
energies e, reproduces the already known identity (A.27)
for the expectation value of the two-point correlation func-
tion of the creation and annihilation operators. Finally,
the negative derivative of the free energy with respect to
the chemical potential,

N = /d3x [no(x) + nen(x)] (A.41)

recovers correctly the total number of particles in the
system.

A.3 Semi-classical limit

Instead of using the wave functions of condensate and
thermal fluctuations, we now pursue a different approach
and define the densities of condensate and thermal cloud
in the semi-classical limit as the basic variables instead.
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Let us thus first take the semi-classical limit of the free
energy, introducing both condensate and thermal density
instead of the wave functions, and then show that it is
possible to derive the correct Hartree-Fock equations by
variation of the semi-classical free energy with respect to
the respective densities.

In the semi-classical approximation we use plane waves
as an ansatz for the thermal wave functions, i.e. ¥, (x) —
¥, (x) = e™* 50 the discrete energies €, become local dis-
persions ek (x). Furthermore, we apply the Thomas-Fermi
approximation for the condensate, which means neglect-
ing the Laplace term for the condensate wave functions.
In addition, the sums over the quantum numbers n are re-
placed by integrals in k-space, which changes the thermal
density in (A.38) to

3
Nth (X) :/(gﬂlsgnth(x, k). (A.42)

Here we have defined the thermal Wigner quasiprobability,

1

Bl -] (A.43)

nen(x, k) =

which will become the variational parameter instead of
the thermal density itself. Applying all the prescriptions
above, the semi-classical approximation of the free en-
ergy (A.34) reads

1 3k Blen(x)—pi
Fscﬁ/d%/(%)gm{le ple) i)
+/d3$ [V(x) — p] no(x)
3 &k Rk X) — €k (X)| nen (x
# [ 22 [ G [ + 710 00] i
+ / Brd®2'U(x, x')[; no(x)no(x") +no(x")nin (x)
+ /no(x")no(x)nem(x, x) + ;nth(x)nth(x')

+ ;nth(x, xYnen (X, x)} . (A.44)

Let us now derive the semi-classical Hartree-Fock equa-
tions by variation of Fgc with respect to the densities.
The extremization of Fsc with respect to the condensate
density ng(x) yields

0Fsc

=V(x)— 32 U(x,x') [ng (x' Nen (X7
ety = V00 =it [ U rofs) + ()

n ; /de'U(x,x’)
% \/ZT(:)) [ren (', %) + nen (x, %)) = 0.

(A.45)
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Considering a multiplication with the wave function
¥(x) = +/no(x), this correctly corresponds to the
Hartree-Fock equation for the condensate (A.39) in the
Thomas-Fermi-approximation.

In view of the variation of Fsc with respect to the ther-
mal quasiprobability ny,(x,k) we first have to define the
Wigner quasiprobability function for the bilocal thermal
density. Generalizing the notion (A.42) straightforwardly
for different arguments x,x’, we get from (A.38)

efzks

[ Bk
- (27'()3 eﬁ[fk(R)_H] —1

dsk —1ks
::/(27‘_)36 k0 (R, s, k),
(A.46)

nen(x, x') — ne (R, s)

where we have adapted the center-of-mass coordinate R =

(x+x')/2 and the relative coordinate s = x —x’ instead of

x and x’. This general definition is in accordance with the
definition (A.42) for the local expression of the thermal
density, since in the case x = x’ we have

B 3k 1
nin (%, %) = nen(R,s =0) = (27)3 eflex(R)—u] — 1

3
_ / (;W])anth(R, k), (A.47)

which is identical with the Wigner quasiprobability de-

fined in equation (A.42). The semi-classical free en-
ergy (A.44) can be rewritten in terms of R and s as

Re=y fer [ ok

+ [ @RVER) - i no(R)

n {1 _ efa[ekm)w]}

+ ; /d3Rd35U(s)n0 (R+ ;) ng (Rf ;)

e J o] oy Lo+
o fomes f g
Jon (5 ()

o (R4 5) o (R = (R e
ey femte [fon v

x [nth <R+ ;k> e (Rf ;,k’)

V(R) ek(R)] nyn (R, k)

+ e 3K (R, K)nen (R, k’)] : (A.48)
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The total variation of the free energy with respect to
ntn (R, k) then reads

0Fsc  h2K? , s
S (k) ~ 2m VR +/d sU(s)no (Rf 2)

—ex(R) + /dBSU(s)eﬂ'kS
()

+ / s / éjf); U(s) [nth (R-1.K)

4 emistk) (R+ ;k>] = 0. (A.49)

This yields the local dispersion of the thermal fluctuations,
now in terms of x and x’, as

h%k?

(x) 2m

+V(x) + /dBI'U(X,X/)no(X/)

+ / Ba'U(x, x e &) /ng (%) no (x')

A3k
3,/ /
+/d z /(27T)3U(x,x)
X [nth(x’, k') + e*i(x*xl)(k*kl)nth(x, k’)} )
(A.50)

The derivation of Fgc with respect to the energies ex(x)
simply rederives the form of the function n,(x,k) as in-
troduced in equation (A.42). The derivation of Fgc with
respect to the chemical potential y leads as expected again
to the particle number equation (A.41). The fact that we
obtained consistent equations from the variation of the
semi-classical free energy with respect to the condensate
and thermal density shows that the semi-classical limit
conserves the physical properties of the system. The semi-
classical output of the Hartree-Fock theory consists thus
of the equation of motion for the condensate density equa-
tion (A.45) and the semi-classical energies of the thermal
fluctuations equation (A.50).

A.4 Specializing to contact
and gravitational interaction

These two Hartree-Fock equations can now be specified
to a system with repulsive contact and attractive gravi-
tational interactions. To this end the general interaction
U(x — x’) is replaced by equation (3), and we set the ex-
ternal potential to zero, i.e. V(x) = 0. In terms of these
interactions, the two exact Hartree-Fock equations (A.39)
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and (A.40) read
—p¥(x) + g [no(x) + 2nem(x)] ¥(x)

— [ £ L o) + na ) 0

—l—nth(x',x)W(x’)} =0, (A.51)

and

[1(x) — €n] ¥ (%) + g [2n0(x) + 2n4n(x)] ¥y (%)
- /dgxl |XGinX,| { [no(xX) + nun (x)] ¥ (x)

+ [Viol a0 + o) 1) =0, (452
respectively, where we have used the identification

(X)W (x) = /no(x')no(x) (A.53)
by assuming that the condensate wave function ¥(x) just
contains a global phase, which is justified for a stationary
superfluid with vanishing velocity. The first parts of each
equation are familiar from a system of particles in an ex-
ternal trap considering only contact interaction between
the particles, as is the case for most BEC experiments in
the lab. With the gravitational interaction the situation
becomes less convenient due to its nonlocality. In partic-
ular, the Fock terms of the gravitational interaction pose
a problem since they contain the bilocal form of the re-
spective densities, i.e. \/no(x')no(x) and ny,(x’,x). Due
to the mathematical difficulties related to these terms, we
discard the bilocal contributions to the theory, i.e. we will
carry out a Hartree-approximation for the gravitational
interaction, ad neglect the bilocal Fock terms.

With this we conclude from equation (A.51) that the
equation is fulfilled either if the wave function ¥(x) is zero,
or the equation

— 1+ g[no(x) + 2nem(x)]
— /d3x’ |XGin;| [no(x') +nen(x’)] =0 (A.54)

holds. Therefore, the system contains two regimes - one,
where the condensate wave function, or density, vanishes,
and another, in which the condensate density is non-zero
and the dynamics of condensate and thermal density are
determined by equation (A.54).

The semi-classical limit of the second Hartree-Fock
equation (A.52) just gives the thermal energies (A.50) as

Eur. Phys. J. D (2014) 68: 341

a function of the wavenumber k,

h2k?

29 110(%) + 7 ()]

ex(x)

m2
-/ d%"XG o o) ()] (459)

The two equations (A.54) and (A.55) will be the starting
point of our calculations in Section 2.
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