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We consider an electronic spin in a quantum dot, coupled to the surrounding nuclear spins via inhomoge-
neous antiferromagnetic hyperfine interactions and subject to a uniform field, which is described by Gaudin’s
central spin model. We study spectral properties, the two-point correlation functions, and the magnetization
profile in the ground state and in low-lying excited states, which characterizes the structure of the cloud of
nuclear spins screening the electron spin. A close connection to the pair-occupation probability in the BCS
model is established. Using the exact Bethe-Ansatz solution of that model and arguments of integrability, we
can distinguish between contributions from purely classical physics and from quantum fluctuations.
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I. INTRODUCTION

Over the last decade, experimental realizations of strongly
correlated quantum systems have led to the possibility of
studying nonequilibrium quantum processes on a micro-
scopic level. From a theoretical point of view, the description
of such processes is challenging because it requires a thor-
ough study of the spectrum and correlation functions.

In this work, we consider a model which describes the
hyperfine interaction of an electron spin �the central spin� in
a quantum dot with a bath of nuclear spins in the dot. The
resulting Heisenberg exchange interaction is dominant for
short-time scales up to 1 ms before other mechanisms such
as spin-orbit coupling or dipole-dipole interactions between
the bath spins.1–4 This is an ideal system to generally under-
stand the decoherence of a qubit which is realized by the
electron spin5 and in this context the loss of quantum infor-
mation. Many important contributions on this central issue
have been made by a number of authors using different
methods4,6–19 as also outlined in the reviews, Refs. 20 and
21. All those works rely on often very sophisticated approxi-
mation schemes to study the time evolution of the central
spin directly. In this work, our goal is to use the exact solu-
tion of the model to study its spectrum and static correlation
functions in the ground state and excited states also in com-
parison with a simple classical approximation. In the future,
this knowledge can be used to obtain exact information about
nonequilibrium dynamics such as the decoherence process.

The central spin model �or Gaudin model22,23� we con-
sider here describes the isotropic Heisenberg coupling of the
central electron spin S0 with inhomogeneous exchange cou-
plings Aj to a bath of Nb nuclear spins S j=1,. . .,Nb

. The nuclei
are assumed to be spin-1/2 particles and their coupling gn to
the external magnetic field h is assumed to be much weaker
than that of the electron, ge

H = �
j=1

Nb

AjS0 · S j − hgeS0
z − hgn�

j=1

Nb

Sj
z. �1�

The couplings Aj are proportional to the square of the elec-
tronic wave function at the positions of the nuclei. For a

realistic distribution of the Aj, we can think of the index j as
measuring the distance from the center of the dot. The meth-
ods we use in this work, especially the classical approach
and the integrability, do not depend on the choice of cou-
plings Aj but for definiteness we assume a harmonic trapping
potential for the electron. This results in a Gaussian decay of
the couplings10

Aj = � exp�− �jB/Nb
1/D�2� , �2�

where the normalization �=x1Nb /� j=1
Nb exp�−�jB /Nb

1/D�2� is
chosen such that the mean value �or first moment� x1 of the
Aj is fixed and the dimension is taken D=1. Here, the pa-
rameter B controls the degree of inhomogeneity. We will
choose B=2 and x1=2 as generic values for inhomogeneous
couplings and B=2 /5 and x1=2 as parameters for nearly
homogeneous couplings in numerical diagonalizations in
later sections.

We calculate the spectrum, the magnetization profile �Sj
z�

of the nuclear bath spins and the two-point functions �S0 ·S j�
of the model in Eq. �1�. It is possible to distinguish two types
of contributions in these quantities: on the one hand, terms
appear that can be obtained from a purely classical approach.
Additionally, we identify terms stemming from quantum
fluctuations. Most importantly, classical and quantum terms
can be of the same order in the two-point function.

This paper is organized as follows. In Sec. II, we show
how to obtain one- and two-point functions from the exact
Bethe-Ansatz solution for the eigenvalues and eigenstates of
the Hamiltonian �1�. The central-spin and BCS-pairing mod-
els are linked by their integrability which provides a way to
calculate the magnetization profile �Sj

z�. Two-point functions
are given by derivatives of the energy with respect to the
Heisenberg coupling constants.

In Sec. III, we evaluate one- and two-point correlation
functions based on a classical picture which, for finite mag-
netic field, assumes spontaneous symmetry breaking in the
model �1�, similar to the superconducting phase transition in
the closely related BCS model. The local magnetization ob-
tained by completely diagonalizing the quantum-mechanical
model with 16 spins agrees very well with the classical re-
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sults. However, for the two-point function, the agreement is
less good, which indicates that quantum fluctuations are of
the same order as the classical terms.

We are thus led to study the exact solution in Sec. IV,
especially in order to obtain quantum-mechanical contribu-
tions to correlation functions. This is done for zero and finite
magnetic fields. The connection with the classical approach
is also established. The paper ends with an outlook.

II. EXACT SOLUTION, LINK TO THE BCS MODEL
AND CORRELATION FUNCTIONS

A. Exact solution

With a special focus on the magnetic field terms, we re-
write Eq. �1� as

H = �
j=1

Nb

AjS0 · S j − h0S0
z − htStot

z �3�

with h0=h�ge−gn�, ht=hgn, and the total polarization
Stot

z =� j=0
Nb Sj

z= N
2 −M, where N=Nb+1 is the total number of

spins and M is the number of flipped spins compared to the
ferromagnetic all-up state. Note that Stot

z commutes with the
Hamiltonian

�H,Stot
z � = 0 �4�

and thus Stot
z =N /2−M is a constant of motion. This means

that the last term in Eq. �3� provides an additive constant
which we will drop in the following unless otherwise stated.

The model in Eq. �3� has been solved by Gaudin22,23 using
a coordinate-type Bethe-Ansatz; an algebraic solution has
been given by Sklyanin24 and is also described in Ref. 25.
The exact solution has been used in Ref. 26 to calculate
nonequilibrium dynamics in a fully polarized bath. Using the
notation from Ref. 26, the eigenvalues � in a sector of given
M read

� = −
1

2�
k=0

Mb

�k +
Nbx1

4
−

h0

2
, �5�

where x1 is the mean value of the Aj and MbªM −1. The set
of the �k, k=0, . . . ,Mb, is determined by the Bethe-Ansatz
equations �BAE�

1 + �
j=1

Nb Aj

Aj − �k
− 2 �

k��k

Mb �k�

�k� − �k
+

2h0

�k
= 0. �6�

Gaudin27 showed that there are CM
N =N ! / �M ! �N−M�!� sets

of solutions ��0 , . . . ,�Mb
	 to these equations in each sector

of given M, one for each eigenvalue �. The corresponding
energy eigenstates with a fixed number M of flipped spins
are given by


M� =
1

nM
�
k=0

Mb �− S0
− + �

j=1

Nb Aj

�k − Aj
Sj

−
0� , �7�

where 
0� is the fully polarized state 
⇑ ; ↑ , . . . ,↑�, and the
arrows ⇑ ,⇓ for the central spin and ↑ ,↓ for the bath spins are
used. The normalization factor nM was conjectured by

Gaudin23,27 and proved by Sklyanin28 for h0=0

nM
2 = �− 1�Mdet M ,

Mkk = − 1 − �
j=1

Nb Aj
2

��k − Aj�2 + �
k��k

2�k�
2

��k − �k��
2 ,

Mkk� = −
2�k�

2

��k − �k��
2 , k � k�.

In Ref. 26 evidence was given that this holds for finite h0 as
well.

Let us now come back to the eigenvalues in Eq. �5�. Due
to the Hellmann-Feynman theorem,29–32 two-point correla-
tors between the central spin and a bath spin in an eigenstate
are obtained as the derivatives of the energy eigenvalues

�S0 · S j� = �Aj
� = −

1

2�
k=0

Mb

�Aj
�k +

1

4
, �8�

using Eq. �5� in the second step and the expectation value of
the central spin polarization is given by

�S0
z� = − �h0

� . �9�

By solving the BAE Eq. �6� as a function of the couplings Aj
and the field h0 it is therefore possible to obtain the expec-
tation values directly.

In order to also calculate the magnetization profile �Sj
z�,

j=1, . . . ,Nb we have to use some additional features of the
integrable structure of the model in Eq. �3�, as will be de-
scribed in the remainder of this section. Let us rewrite
Eq. �3� in the original notation used by Gaudin23

H� = − �
j=0,j��

Nb S� · S j

�� − � j
− h0S�

z �10�

such that we recover Eq. �3� with ht=0 for

Aj = 1/� j �11�

and �=0 and �0=0 in Eq. �10�. As pointed out by Gaudin23

�H�,H��� = 0, �12�

which means that an integrable Hamiltonian can be con-
structed as a linear combination of N mutually commuting
conserved quantities

H̃ ª �
�=0

Nb

��H� = − h0�
�=0

Nb

��S�
z −

1

2
�Stot�2 +

1

2�
�=0

Nb

S�
2 �13�

with Stot=��=0
Nb S�.

The model in Eq. �13�, has the same eigenstates as the
original model in Eq. �3�, even though these are not neces-
sarily in the same energetic order. For the local expectation
values, one can apply the Hellmann-Feynman theorem29–32

to the eigenvalues �̃ of H̃
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�Sj
z� = −

1

h0
��j

�̃ = −
1

h0
�Aj

−1�̃ . �14�

In order to calculate �̃, we use Gaudin’s result22 for the
eigenvalues ���� of H� in Eq. �10�

���� =
1

2�
k=0

Mb 1

�� − Ek
−

1

4 �
j=0,j��

Nb 1

�� − � j
−

h0

2
�15�

with

Ek = 1/�k �16�

such that

�̃ = �
�=0

Nb

������ =
1

2�
�,k

��

�� − Ek
−

Nb�Nb + 1�
8

−
h0

2 �
�=0

Nb

��.

�17�

By rewriting the BAE Eq. �6� in terms of the � j, Ek and
defining gª1 /h0, we arrive at

�
j=0

Nb 1

Ek − � j
− 2 �

k��k

1

Ek − Ek�
+

2

g
= 0. �18�

Observing that � j / �Ek−� j�=Ek / �Ek−� j�−1 and Ek / �Ek
−Ek��+Ek� / �Ek�−Ek�=1 we can eliminate the first term in
Eq. �17� by multiplying Eq. �18� with Ek and then perform-
ing the sum over k. Hence Eq. �17� becomes

�̃ = h0�
k=0

Mb

Ek −
h0

2 �
�=1

Nb

�� −
Mb�Mb + 1�

4

−
Nb�Nb + 1�

8
+

�Nb + 1��Mb + 1�
2

, �19�

which yields, together with Eq. �14�

�Sj
z� =

1

2
− ��j�

k=0

Mb

Ek =
1

2
− �1/Aj�

k=0

Mb 1

�k
. �20�

In summary it is therefore possible to express the two-point
function, Eq. �8�, and the local magnetization Eq. �20� in
terms of the BA numbers of the exact solution, which is the
main finding of this section. These quantities will be ana-
lyzed in detail in Secs. III and IV.

B. Link to the BCS-pairing model

It is possible to relate spin with fermionic operators, using
Anderson spin-1/2 pseudospin operators25,33

Sj
z =

1

2
�1 − cj↑

† cj↑ − cj↓
† cj↓� , �21�

Sj
− = cj↑

† cj↓
† , Sj

+ = cj↓cj↑, �22�

which preserve the SU�2� commutators �Si
+ ,Sj

−�=2�ijSj
z and

�Si
z ,Sj

��= ��ijSj
�.25

A BCS-like Hamiltonian can be defined by rescaling the

integrable model H̃ from Eq. �13�

HBCS ª
1

h0
H̃ +

1

2�
�=0

Nb

�� +
Stot

z �Stot
z + 1�

2h0
−

3�Nb + 1�
8h0

,

�23�

where Stot
z =Nb /2−Mb−1 /2 is the conserved quantum num-

ber from Eq. �3�. In terms of spin operators HBCS therefore
reads

HBCS = − �
j=0

Nb

Aj
−1�Sj

z −
1

2
� −

1

2h0
�Stot�2 +

1

2h0
Stot

z �Stot
z + 1� .

�24�

Replacing the spin operators using Eqs. �21� and �22�, one
arrives at the fermionic representation

HBCS =
1

2 �
�=0

�=↑,↓

Nb

��c��
† c�� −

g

2 �
�,j=0

Nb

c�↓
† c�↑

† cj↑cj↓ �25�

with the doubly degenerate single-particle levels �� and the
pairing amplitude g=1 /h0.34

Hamiltonian �25� describes M pairs of fermionic particles
interacting via an attractive pairing potential thus affecting
the N doubly degenerate energy levels � j. In a series of pa-
pers, Richardson35–40 used it to describe pairing in nuclei. In
the more recent past, the exact solution of this model has
been rediscovered to study ultrasmall metallic grains in their
superconducting phase.41 In the thermodynamic limit, the so-
lution of the model in Eq. �23�, yields the mean-field BCS
solution;42 we will come back to this point in Sec. III.

From Eqs. �14� and �23� it follows that the occupation
probability �nj�ª �cj↑

† cj↑+cj↓
† cj↓� /2 of the single-particle

level � j reads40,43

�nj� = ��j
�HBCS� =

1

2
− �Sj

z� , �26�

which is consistent with Eq. �21�. Thus the single-particle
occupation numbers in the pairing model are directly related
to the local polarization of nuclear spins in the central spin
model.

We will compute two-point correlation functions and the
magnetization profile for different parameter regimes in the
following sections. For illustrative purposes, let us first
check the extreme limits h0→0,� in Eq. �26� for the ground
state in the sector Stot

z =0 �this implies that we take N to be
even here�. In the BCS model, this corresponds to the case of
half filling, where the number of electrons 2M equals the
number of free-particle levels N. For h0→0, the model in
Eq. �3�, is SU�2� invariant so �Sj

z� 
h0=0=0. Since g=1 /h0, the
pairing potential is infinitely strong in this limit, such that all
levels are occupied and only ideal Cooper pairs exist, where
each level is occupied by half a pair.

In the opposite limit, h0→�, the central spin is frozen
along the z direction. The directions of the bath spins are
simply given by the competition of the antiferromagnetic
exchange in Eq. �3� with the magnetic field ht. Therefore, all
outer bath spins with coupling Aj 	2ht are aligned with the
field and the central spin while the inner ones point in the
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opposite direction. The resulting magnetization profile is
sketched schematically in the left panel of Fig. 1, where we
chose A�Nb+1�/2
2ht
A�Nb+1�/2+1, such that Stot

z =0 for illus-
trative purposes.

For the BCS model in Eq. �25�, this means that the high-
est states where � j is largest �i.e., Aj =1 /� j is smallest� are
unoccupied. This is the filled Fermi sea for the noninteract-
ing Fermi gas. The level �0=0 is special in the sense that it is
unoccupied in the ground state of the central spin model,
which is an excited state in terms of the BCS Hamiltonian.
From this we conclude that the ground state of the central
spin model for Stot

z =0 corresponds to an excited state of the
BCS model where the energetically lowest pair is shifted to
the top of the filled Fermi sea. This is illustrated in the right
panel of Fig. 1 and will be further discussed in Sec. IV C.

III. THE SCREENING CLOUD FROM A
CLASSICAL POINT OF VIEW

In this section, we develop a classical picture for the en-
ergy and the magnetization profile of the model in Eq. �3�,
for finite magnetic fields, which turns out to be closely re-
lated to the mean-field BCS solution42 of the pairing Hamil-
tonian �25�.

It is reasonable to expect that for large coordination num-
ber Nb�1, a classical approach to the Hamiltonian �3� yields
valuable insights into the physics of the model.44 The classi-
cal approach consists of replacing quantum-mechanical spin
operators S j by classical vectors �m j�. Especially, for states
with the same quantum number Stot

z , an expectation value
�Sj

x��0 implies that in this limit, the Hamiltonian symmetry
Eq. �4� is spontaneously broken. This mechanism is analo-
gous to the superconducting phase transition in which
particle-number conservation is broken, �cj↑

† cj�↓
† ��0.

A. Magnetization pattern in the central spin model

Let us begin by parameterizing each spin in polar coordi-
nates, m j =

1
2 �cos � j sin  j , sin � j sin  j , cos  j� such that


m j
2= 1
4 for j=0, . . . ,Nb. Our aim is to derive the ground-

state configuration described by the angles � j , j for a given
total magnetization Stot

z and fixed central field h0.
The classical energy as a function of the azimuthal angles

� j is always minimized by choosing �0−� j =�, correspond-
ing to antiferromagnetic alignment in the xy plane. The re-
sulting classical model for the polar angles analogous to
Eq. �3� is then given by

Hcl =
1

4�
j=1

Nb

Aj cos�0 +  j� −
h0

2
cos 0 −

ht

2 �
j=0

Nb

cos  j

�27�

and the total magnetization can be determined from

2Stot
z = �

j=0

Nb

cos  j . �28�

The first antiferromagnetic term in Eq. �27� is minimized by
large polar angles 0+ j =�, i.e., spins lying in the xy plane
while the field tends to keep the polar angles small, analo-
gous to the situation in a two-dimensional Heisenberg anti-
ferromagnet with a central impurity.45 For finite fields the
central spin typically acquires a relatively small but finite
polar angle while the bath spins cant into the opposite direc-
tion out of the plane with polar angles that are closer to � /2.
Depending on the overall magnetic field this results in a
characteristic magnetization profile: those bath spins which
are coupled strongly are aligned antiferrogmagnetically to
the central spin �i.e., against the field� while the more loosely
bound bath spins at the edge of the dot are aligned ferromag-
netically. Depending on the parameters the total magnetiza-
tion Stot

z is often quite small or even negative. A typical re-
sulting magnetization profile is sketched in Fig. 2.

The optimum values of the angles are most easily found
by requiring that the total value of the torque 
�0
 experi-
enced by the central spin from the central field and the bath
spins has to vanish


�0
 = �0
Hcl = 0, �29�

0 5 10 15j
0

0.5

1

<n
j
>

0 5 10 15j
0

1

2

3

4

5

A
j

0 5 10 15j

-0.5

0

0.5

<S
j

z
>

0 5 10 15j
0

2

4

6

8

10

12

ε
j

FIG. 1. �Color online� Left panel: magnetization profile in a
quantum dot with Nb=15, infinite central magnetic field, h0→�,
and total field A8
2ht
A9. The black crosses denote the coupling
constants chosen according to Eq. �2� with x1=2, B=2. Right
panel: corresponding electronic occupation probability according to
Eq. �26� for free Fermions with �black crosses� the single-particle
levels � j, j=1, . . . ,Nb, according to Eqs. �2� and �11�. The system is
in a two-particle excited state, where the pair occupying the lowest
energy level �0=0 is shifted to the energetically lowest state above
the Fermi level.

ϑ0 ϑ1
ϑNb

FIG. 2. �Color online� Schematic orientation of the classical
spins according to Eqs. �36� and �37�. The fat leftmost spin is the
center of the dot. The central field leads to a canting of the central
spin, which, due to the antiferromagnetic exchange, leads to an
opposite canting of the neighboring spins. Since an overall mag-
netic field is included which fixes the total magnetization, a non-
trivial magnetization profile results.
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⇒h0 sin 0 =
1

2�
j=1

Nb

Aj sin� j + 0� − ht sin 0. �30�

Equally well, the torque on each individual bath spin is zero
in equilibrium


� j
 = �j
Hcl = 0 �31�

⇒ht sin  j =
Aj

2
sin� j + 0� �j � 0� . �32�

Obviously, Eqs. �30� and �32� are trivially fulfilled when
 j=0,. . .,Nb

are integer multiples of �. We exclude these solu-
tions here because generally they do not correspond to
minima of the energy as can be seen from the Hesse matrix
of second derivatives of Hcl.

We now insert Eqs. �30� and �32� into Eq. �27� and obtain

Hcl = −
1

4�
j=1

Nb

Aj
sin  j

sin 0
−

1

4�
j=1

Nb

Aj cot  j sin�0 +  j� .

�33�

From Eqs. �30� and �32� it follows that if the fields h0,t are
given, then we can solve for the angles  j, which are given
by

tan  j =
�Aj

� − Aj
, �34�

where

� = tan 0, � = 2ht/cos 0. �35�

The angles in Eq. �34� show the generic behavior described
above unless extreme values of the parameters are assumed:
the magnetization changes from alignment with the field for
the outermost bath spins �Aj→0� through the xy plane
�Aj ��� to near antiferromagnetic alignment for the most
strongly coupled spins near the center �Aj 
��.

The components of the magnetization along the field mz

and in the plane m� can be found explicitly by using

tan 0 = m0
�/m0

z = � , �36�

tan  j = mj
�/mj

z =
�Aj

� − Aj
for j = 1, . . . ,Nb �37�

from which it follows that

m0
z =

1

2�1 + �2
, m0

� =
�

2�1 + �2
, �38�

mj
z =

� − Aj

2��� − Aj�2 + �Aj��2
, mj

� =
�Aj

2��� − Aj�2 + �Aj��2
.

�39�

Similar equations were obtained using methods of classical
integrability in Ref. 44. In order to determine the parameters
� and � we obtain from Eqs. �38� and �39� for the total
magnetization along the field

2Stot
z =

1
�1 + �2

+ �
j=1

Nb � − Aj

��� − Aj�2 + �Aj��2
� 2N − M .

�40�

Equation �30� for the central field now reads

h0 = �
j=1

Nb �Aj

2��� − Aj�2 + �Aj��2
−

�

2�1 + �2
. �41�

Equations �40� and �41� fix � and � uniquely for a given Stot
z

and h0 so that all classical vectors are known, which is the
central result of this section.

Finally, one obtains the corresponding expression for the
energy from Eq. �33� without the trivial ht term

Hcl = −
1

4�
j=1

Nb � 1 + �2

�� − Aj�2 + �Aj��21/2

Aj
2. �42�

This parametrization of the ground-state energy in terms of
� ,� and the Aj will be helpful in separating classical from
pure quantum contributions in the exact solution later on in
Sec. IV C.

It is interesting to note that an alternative derivation of
Eq. �41� is obtained by considering the magnetic fields h0,t
as canonically conjugate to m0

z and Stot
z so that

h0=�m0
z� j=1

Nb m0 ·m j and ht=�Stot
z � j=1

Nb m0 ·m j.
The classical spin-spin correlation function between the

electron and nuclear spins can be obtained from Eqs. �38�
and �39�, namely,

m0 · m j = −
�1 + �2�Aj − �

4�1 + �2��� − Aj�2 + �Aj��2
. �43�

B. Connection with the BCS model

Very similar relations were derived22,40,42 for the thermo-
dynamic limit of the BCS-pairing model Eq. �25�

HBCS
�cl� =

�2

g
+ �

j=1

Nb

� j − ��N − 2M� − �
j=0

Nb

��� j − ��2 + �2,

�44�

2

g
= �

j=0

Nb 1
��� j − ��2 + �2

, �45�

N − 2M = �
j=0

Nb � j − �

��� j − ��2 + �2
. �46�

Here � is the superconducting gap, � is the chemical poten-
tial, and HBCS

�cl� is the ground-state energy of Eq. �25� in the
thermodynamic limit. Equations �45� and �46� are equivalent
to Eqs. �40� and �41�, if Eq. �11� and the following relations
hold

� = �/�, � = 1/�, h0 = 1/g �47�

and if furthermore, the sign of the j=0 term in Eqs. �45� and
�46� is changed. The latter condition reflects the fact that the
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ground state of the central spin model corresponds to a spe-
cial single-pair excited state of the BCS model. This point
will be discussed quantitatively in Sec. IV.

The mechanism of spontaneous symmetry breaking in the
classical/mean-field approach is completely equivalent in
both the BCS and central spin models. In order to see this,
we use the pseudospin representation in Eqs. �21� and �22�,
to write the BCS gap in the pair-excited state corresponding
to the ground state of the central spin model as

� = g�
j=1

Nb

mj
�. �48�

Inserting the last of relations in Eq. �39� and substituting
Eq. �11� and the first two equations from Eq. �47�, one reob-
tains the gap equation �45�.

An important difference to the BCS solution consists in
the order of magnitude of h0=1 /g. To obtain a well-defined
energy per particle in the thermodynamic limit, 1 /g=O�N�
scales with the number of particles. In the quantum dot, how-
ever, the experimental situation corresponds to h0=O�1� thus
not scaling with any extensive parameter. It is instructive
though to consider the limit of infinite central magnetic field,
shown in Fig. 1. Then �→0 and from Eq. �41�,
h0�� j=1

Nb 
2�� j −��
−1�1. Furthermore, Eq. �40� yields
AN/2	�	AN/2+1 so that Eqs. �38� and �39� reproduce the
magnetization profile shown in Fig. 1. In this extreme limit,
quantum fluctuations are suppressed completely and the clas-
sical picture is exact. Accordingly, the classical mean-field
approximation is generally better justified for the BCS
model. However, for general fields h0=O�1�, apart from the
classical contribution discussed in this section, important
quantum fluctuations will occur as well as will be shown in
the next section.

C. Analytical results: Small field limit

Equations �40� and �41� can be solved numerically to de-
termine the parameters � and � from which the magnetiza-
tion profile Eq. �39� and the two-point function Eq. �43� are
obtained. However, in the physically most relevant limit of
small central fields and large particle numbers it is useful to
derive approximate analytical expressions for the one- and
two-point correlators. Therefore, we will first calculate the
parameters � and � from Eqs. �40� and �41� to leading order
in h0, before inserting these results into Eqs. �39� and �43�
for the correlation functions.

According to Eq. �41�, a small central magnetic field cor-
responds to

h0 =
Nb�

2��1� , ��1� =
Nb�

2h0
, �49�

where the index ��1� is the leading term of � in a small-field
expansion of �. Since we derived Eqs. �40� and �41� for a
large number of nuclei, we restrict ourselves to the terms
leading in Nb here. Equation �49� is consistent with Eq. �47�:
both imply that a diverging pairing strength in the BCS-
pairing model leads to a diverging superconducting gap.

In the same limit, Eq. �40� leads to

2��1�Stot
z = N − �Nbx−1, �50�

where we defined the moments x�

Nbx� ª �
j=1

Nb

Aj
�. �51�

The moments with negative �positive� integers � are deter-
mined predominately by the smallest �largest� coupling con-
stants.

We consider here a sample which is not macroscopically
polarized, i.e., Stot

z =O�1�. The case of macroscopic polariza-
tion will be dealt with in Sec. IV. Together with Eq. �49�, we
then obtain for the leading term of � for small fields, ��1�

1

��1� = x−1 +
Stot

z

h0
. �52�

Making the same approximations in the expression for the
classical ground-state energy, Eq. �42�, and inserting
Eqs. �49� and �52�, we obtain the leading term for small h0

Hcl
�1� = −

Nbx1

4
− h0

Stot
z

N
−

h0
2

2N
x−1. �53�

For small central fields, this yields the following expressions
for the leading terms in a large-N expansion of classical one-
and two-point correlation functions in the ground state:

m0 · m j = −
1

4
+

1

2

h0
2

�AjN�2 , �54�

m0
z =

Stot
z

N
+

h0x−1
�0�

N
, �55�

mj
z = − m0

z +
h0

NAj
, �56�

where x−1
�0� is the leading term in an asymptotic expansion of

x−1 in the inverse particle number, x−1
�0�
ª�0

11 /A�xNb�dx, and
A�xNb��Aj is treated as a continuous function of x.

D. Quantitative comparison with numerical results

We illustrate the classical results in Fig. 3, where magne-
tization profiles mj=0,. . .,Nb

z are shown, after solving Eqs. �40�
and �41� numerically for Stot

z =0 and different h0. The small-
field asymptotes from Eqs. �55� and �56� are depicted as
well. We now discuss the question to what extent these clas-
sical expressions can be identified with the quantum-
mechanical expectation values for large particle number and
small central field.

In order to do so, we first compare our results with a
complete diagonalization study for a system with N=16 sites
as an additional independent check. The coupling constants
in this system were chosen according to Eq. �2� with
x1=2 , B=2. In the next section, we will see that the com-
plete diagonalization study also enables us to classify low-
lying excited states according to the distribution of the cor-
responding BA roots, which is not possible a priori.
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In Fig. 4 we compare the diagonalization results with the
full classical expressions, Eqs. �38� and �39�, and with the
approximate results, Eqs. �55� and �56�, for three different
values of h0. The small-field expansion in Eq. �56� deviates
from the exact data essentially at large distances from the
center of the dot, where the more weakly bound spins are
located. On the other hand, Eq. �39� with values for � ,�
obtained by solving Eqs. �40� and �41� numerically deviates
from the exact solution only by a few percent or less. Com-
paring the classical expression for the two-point function
Eq. �43� with the diagonalization results, one notices consid-
erable differences, see Fig. 5.

IV. CORRELATION FUNCTIONS FROM THE EXACT
QUANTUM-MECHANICAL SOLUTION

Whereas in the previous section a classical picture of the
central spin model was sketched, this section contains a sys-
tematic study of the exact quantum-mechanical solution,
where the contribution of quantum fluctuations to the corre-
lation functions will be emphasized. We will first obtain ap-
proximate analytical expressions for correlation functions in
the regimes of zero and weak central magnetic fields, before
recovering the classical picture from the previous section in
the appropriate limit.

A. No field

For vanishing magnetic field, the Hamiltonian �1� is
SU�2� invariant and commutes with all components of the
total spin, �H 
h=0 ,Stot�=0. In other words, all states within
one spin multiplet, obtained by acting with Stot

� on highest
weight states, are energetically degenerate. In the expression
for the eigenstates Eq. �7�, application of Stot

− corresponds to
fixing one of the Bethe-Ansatz numbers at �k=0. Indeed, for
h0=0, it is easy to see that if ��1 , . . . ,�M	 is a solution of the
coupled set of Eqs. �6�, then ��1 , . . . ,�M ,0	 is a solution as
well. Both these solutions are energetically degenerate, ac-
cording to Eq. �5�. This situation is analogous to the Heisen-
berg chain, where sets of only finite Bethe roots encode the
highest weight states.46,47 Here and in the following, the
ground-state energy and expectation values in the ground
state will be labeled by the subscript 0.

1. Ground state

The ground state maximizes �k=0
Mb �k. It turns out that

the corresponding highest weight state has Mb=0 so that
only one Bethe number �0 has to be determined from
1−� j=1

Nb
Aj

�0−Aj
=0. We are interested in the energy levels for

large particle numbers. In the ground state, �0=O�N�, which
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FIG. 3. �Color online� Magnetization profiles as a function of
the site j and the central field h0 for Stot

z =0 with the couplings,
Eq. �2�, where x1=2 and B=2, obtained by inserting the numerical
solution of Eqs. �41� and �40� for � ,� into Eqs. �38� and �39� for mj

z.
The short heavy �blue� lines in the foreground denote the leading
contribution for small fields and large particle number, Eqs. �55�
and �56�.
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FIG. 4. �Color online� The local magnetization �Sj
z�0 obtained

for a N=16-spin system with couplings as in Fig. 1. The central
field assumes values h0=0.5, 1, and 2, as indicated in the figure.
The total polarization is fixed at Stot

z =0. Data from complete diago-
nalization �red crosses� are compared to the small-field expressions
Eqs. �55� and �56� �green diamonds� and the mean-field result
Eq. �39� �blue circles�, where � ,� were obtained by numerically
solving Eqs. �40� and �41�.
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FIG. 5. �Color online� Two-point function �S0 ·S j�0 in the
ground state for the model with the same exchange couplings cho-
sen as in Fig. 1 and central field values h0=0,0.5,1.0,2.0 �bottom
to top�. Black crosses were computed from a complete diagonaliza-
tion. Red diamonds stem from the purely classical solution,
Eq. �43�. In later sections, quantum contributions are calculated.
Green squares were obtained from Eq. �94�, where the leading
finite-size quantum effects are included. Blue circles are based on
Eq. �111�, where classical and quantum contributions are summed.
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allows us to rewrite the single BAE in terms of the moments
xn defined in Eq. �51�

1 − Nb�
n=1

�
xn

�0
n = 0. �57�

We define �0¬ �̃0Nb, such that both xn and �̃0 are O�1�.
Then, according to Eq. �5�, the ground-state energy reads

E0 = −
Nb

2
��̃0 −

x1

2
� �58�

and successive orders of �̃0 in an asymptotic expansion for
large particle numbers can be obtained by inverting Eq. �57�
order by order. Let �̃0

�n� be the expansion of �̃0 in powers of
Nb

−1 up to order n, i.e., limNb→���̃0− �̃0
�n��Nb

n+1=O�1�. For
n=3, with dª �Nbx1�−1 and ynªxn+1 /x1, we obtain

�̃0
�3�

x1
= 1 + y1d + �− y1

2 + y2�d2 + �2y1
3 − 3y1y2 + y3�d3.

�59�

This leads us to conjecture that the coefficient of dn in the
expansion of ��̃0 /x1−1� is given by the nth coefficient in a
Taylor expansion of n ! ln���d� /x1� in the variable d, where
the generating function is ��d�=� j=1

Nb Aj exp�dAj� /Nb.
Before continuing, let us make two comments on

Eq. �59�: to begin with the leading term, when plugged into
Eq. �58�, yields the overall ground-state energy of the clas-
sical model in Eq. �27� with no fields, where the central spin
is pointing in the direction opposite to the nuclear bath spins.
Finite-size corrections, given by the subleading terms in
Eq. �59� therefore represent quantum effects. Secondly, for
the homogeneous model Aj �A∀ j, all but the first two terms
on the right-hand side of Eq. �59� vanish.

It is now straight forward to evaluate the moments for a
given distribution of the coupling constants Aj. For the par-
ticular case of the choice in Eq. �2� it is possible to use the
Euler MacLaurin summation formula to find an expansion of
the moments in the parameter d. Writing y1=y1

�0�+dy1
�1�, we

find

y1
�0� = 2x1

B Erf��2B�
�2� Erf2�B�

, �60�

y1
�1� = −

2x1
2B2

�Erf2�2�
+ 4B2 Erf��2B�

��2Erf3�B�
. �61�

Therefore, the coefficient of d2 in Eq. �59� becomes

�− �y1
�0��2 + y2

�0�� =
2x1

2B2

�Erf3�2�
�− Erf2��2B�/Erf�B�

+ 2Erf��3B�/�3� . �62�

As expected, this latter expression tends to zero for B→0,
which is the homogeneous limit in the couplings in Eq. �2�.

From Eq. �58�, one then obtains for the ground-state en-
ergy

E0 = −
1

4d
−

y1
�0�

2
−

d

2
�y1

�1� − �y1
�0��2 + y2

�0�� . �63�

The first term is the classical result, where the central spin is
aligned antiferromagnetically with respect to the bath spins.
The second and third terms constitute quantum corrections.

In order to calculate the two-point correlation function
�S0 ·S j�0 in the ground state, one combines Eq. �8� with
Eq. �63�. This yields up to order d

�S0 · S j�0 = −
1

4
+

d

2
y1

�0� − dAj . �64�

Again, the leading contribution reflects the classical picture
of antiferromagnetically aligned spins. For zero central field,
quantum fluctuations lead to a nontrivial dependence on the
distance j between the bath and the central spins. This is a
pure quantum effect as can be seen by comparison with
Eq. �54�. Especially, quantum fluctuations decrease �S0 ·S j�0
below the classical result −1 /4 if Aj 
y1

�0� /2, i.e., for the
strongly coupled bath spins. In Fig. 6 the result in Eq. �64� is
compared to complete diagonalization data. In the homoge-
neous case Aj =A∀ j, Eq. �64� reduces to the result found in
Refs. 48 and 49.

To calculate the magnetization profile �Sj
z�0, we can em-

ploy Eq. �20� together with Eq. �59�. Let us first consider the
case of a fully polarized bath. For Stot

z =N /2−1, in leading
order this leads to

�Sj
z�0 =

1

2
− d2Aj

2, j = 1, . . . ,Nb, �65�

�S0
z�0 = −

1

2
+ dy1

�0�. �66�

At smaller values for Stot
z , we can still use Eq. �20�, keeping

in mind that it has been derived at finite h0. We thus have to
perform the derivative in Eq. �20� before taking the limit

h0→0. In this limit, the eigenvalues �̃ in Eq. �19� were
given in Ref. 50, Eq. �39�. Using that result we obtain the
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FIG. 6. �Color online� The two-point function �S0 ·S j� for zero
magnetic field in the gs and the lowest ten excited levels �couplings
as in Fig. 4�, obtained from complete diagonalization. The circles in
the left panel are the analytical result Eq. �64� for the ground state.
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expectation values in the respective ground state of each sec-
tor Stot

z

�Sj
z�0 =

Stot
z

N − 2
�1 − 2d2Aj

2�, j = 1, . . . ,Nb, �67�

�S0
z�0 =

Stot
z

N − 2
�− 1 + 2dy1

�0�� . �68�

For Stot
z =N /2−1, Eqs. �65� and �66� are recovered. In the

opposite limit, S0
z =0, the polarization vanishes, as expected

from the SU�2� invariance in this case. In Fig. 7, we compare
the analytical results, Eqs. �67� and �68�, with complete di-
agonalization data. These illustrate the fact that the magneti-
zation profiles are different for energetically degenerate
states.

2. Excited states

In the classical picture, the lowest excitations at h0=0
above the Néel-type ground state are created by flipping the
spins in the outer region where the exchange with the central
spin is weakest. In the exact solution of the quantum-
mechanical problem, Eqs. �5� and �6�, excitations can be of
two types: �i� spin excitations with a change in M, i.e., the
number of roots. �ii� Particle-hole excitations, where the lo-
cation of roots is changed with respect to the ground state but
the number of roots is kept fixed.

For h0=0, both types of excitations are energetically
equivalent: adding a root �k�0 is equivalent to moving a
root �k=0 to a finite value. Let us consider an excited state
with Mb+1 nonzero roots. We focus on low-lying excitations
here, so Mb�N. The ground state with the same Mb value,
i.e., with 2Stot

z =N−2�Mb+1�, has one nonzero root and Mb
roots at zero. Moving these roots away from zero leads to the
excited state of interest here. In the Bethe-Ansatz Eq. �6�,

there is one root which scales like the particle number; we
denote it by �0, i.e. �0=O�N�. The Mb additional roots are
smaller, �k=O�1�.

We define the moments of the additional nonzero roots as
�nª�k=1

Mb �k
n. Performing an expansion analogous to Eq. �57�,

one obtains for the root �0=O�N� the equation

1 − Nb�
n=1

�
xn

�0
n + 2�

n=1

�
�n

�0
n = 0, �69�

which again can be inverted order by order. Including terms
of order O�1 /Nb�

�0 =
1

d
− 2�1 + y1 + 2dy1�1 − 2d�2 + d�y2 − y1

2� . �70�

This leads to an expression for the energy in terms of the �n

Eex = −
1

4d
+ �1 −

y1
�0�

2

−
d

2
�2y1

�0��1 + 2�2 + y1
�1� − �y1

�0��2 + y2
�0�� . �71�

Let us look at the simplest case, Mb=1. The corresponding
equation for the additional root �1 reads

1 − �
j=1

Nb Aj

Aj − �1
+ 2

�1

�0
+ 2

�1
2

�0
2 = 0. �72�

By sketching the lhs of this equation, one sees that �1 is
located between two couplings. Indeed, for the lowest exci-
tation, we can set �1=ANb

+�Nb
. Thus �1 lies between the

two smallest couplings ANb
and ANb−1, and the most weakly

coupled spin is flipped. In leading order, we then obtain
�Nb

=ANb
/ �� j=1

Nb−1Aj / �Aj −ANb
�−1�=O�1 /Nb� and �Nb


0.
One can generalize this result to �1=A�+�� as long as
��=O�1 /Nb� and ��
0, i.e., for ��1. Then Eq. �64� is
modified according to

�S0 · S j�ex = �−
1

4
+

d

2
y1

�0� − dAj , j � � ,

1

4
−

d

2
y1

�0� + dAj , j = � . � �73�

This corresponds to the classical picture of a single spin flip
with respect to the ground state close to the outer edges of
the quantum dot where the coupling is smallest. That result
generalizes further to the case of more than one excitation,
Mb
1. If more than one BA root is present, different root
patterns are possible. Let us call the distance Aj −Aj+1 the jth
coupling interval. We call an interval occupied if one root is
located within this interval.

One type of root configurations consists of only real roots
and occupied intervals with no consecutive occupied inter-
vals. Another type of root configurations involves consecu-
tive occupied intervals. However, depending on the special
choice of the coupling constants and the central magnetic
field, roots in such a configuration can be driven into the
complex plane, thus forming complex-conjugate pairs.39,51,52
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FIG. 7. �Color online� The local magnetization �Sj
z� for Nb=15

bath spins with the couplings, Eq. �2�, where x1=2 and B=2. Black
crosses stem from a complete diagonalization, blue circles �mostly
containing crosses� from Eq. �67�. For the central spin, �S0

z� was
determined such that Stot

z is fixed, which in leading order is given by
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z =7,6 ,5 ,4 ,1.
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From these observations we conclude that the two-point
function �S0 ·S j�ex yields significant insight into the underly-
ing root configuration of a low-lying excited state. Vice
versa, if the root configuration for low-lying excitations is
known, the corresponding two-point function can be pre-
dicted at least qualitatively. This prediction confirms nicely
the physical expectation.

In Fig. 6, we depict �S0 ·S j�ex for the lowest nine excited
states for N=16 particles with the couplings chosen accord-
ing to Eq. �2� with x1=2 and B=2. The data have been ob-
tained from complete diagonalization. The analytical result,
Eq. �64�, for the ground state is given as well, from which
the analytical predictions for excited states are obtained
straightforwardly by changing the sign of the corresponding
spins, like in Eq. �73�.

It is instructive to consider the corresponding root con-
figurations of those lowest nine excited levels. These are
shown in Fig. 8 for the highest weight states, i.e., without
roots in the origin. The physical interpretation of the root
locations as spin flips with respect to the ground state is
revealed when comparing the root pattern level by level with
the j dependence of the two-point function.

This interpretation carries over to the magnetization pro-
file. We show those magnetization profiles corresponding to
the lowest nine excited levels in Fig. 9. However, as in the
ground state, an important difference consists in the degen-
eracy of �S0 ·S j�ex for all states within one multiplet. Whereas
the two-point function is independent of the total magnetiza-
tion Stot

z , the local magnetization �Sj
z�ex does depend on that

quantity. In Fig. 9, we only give the magnetization profiles
for the highest weight states parametrized by the roots
sketched in Fig. 8. By adding additional roots in the origin,
i.e., by lowering Stot

z , the two-point function is not altered but
�Sj

z�ex is changed by an overall prefactor like in Eqs. �67� and
�68�. Namely, proceeding similarly as in the derivation of
Eqs. �67� and �68�, one obtains the leading terms of the mag-
netization profile in low-lying excited states

�Sj
z�ex = �

Stot
z

N − 2n
�1 − 2d2Aj

2� , j � �1, . . . ,�n,

−
Stot

z

N − 2n
�1 − 2d2Aj

2� , j = 0,�1, . . . ,�n.�
�74�

Here n�1 is the number of nonzero roots and the indices
�1 . . .�n denote their locations relative to the couplings. For
low-lying states, the roots are located close to the couplings
A�1

, . . . ,A�n
, as can be seen from Fig. 8. All states with the

same n but different Stot
z are energetically degenerate, i.e.,

have identical two-point functions �S0 ·S j�ex but different
magnetization profiles �Sj

z�ex. For the highest weight states
we have Stot

z =N /2−n, which is also the case for the root
configurations depicted in Fig. 8. According to Eq. �74� the
magnetization profile therefore can be read off from the
number and location of Bethe roots. This is confirmed by
complete diagonalization data shown in Fig. 9. Deviations
from Eq. �74� are due to interactions between the excitations,
which were neglected in the derivation of Eq. �74�.

B. Weak field

A finite magnetic field couples to both the electronic and
nuclear spins. As described after Eq. �4�, the coupling to the
nuclear spins is trivial and can be accounted for at the end of
the calculation. Let us thus first focus on h0�0 and ht=0. As
stated in the previous section, for h0=0, the eigenvalues of a
given multiplet are degenerate, which in the root pattern is
encoded by roots in the origin. For h0�0, this degeneracy is
lifted due to the broken SU�2� invariance. Thus it is reason-
able to assume that the zero roots are driven away from the
origin by a finite magnetic field h0. In the weak-field limit,
this is confirmed by the large-g expansion of the Bethe
roots50 of the BCS Hamiltonian �25�, which are related to the
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FIG. 8. �Color online� The location of the additional BA num-
bers which are O�1� �red crosses� for the lowest nine excitations
�top left: level 1 and bottom left: level 5� with Nb=15, x1=2, and
B=2 in Eq. �2� for the couplings. The six smallest couplings are
shown here �blue dots�. Not shown is �0=O�Nb�.
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FIG. 9. �Color online� The magnetization profile �Sj
z�ex in the

ground state and the lowest nine excited levels corresponding to the
root configurations of Fig. 8, obtained from complete diagonaliza-
tion. The circles for the ground state in the left panel are the ana-
lytical results from Eq. �67�. The analogous excited-state result
Eq. �74� is not shown since it can be obtained by simply changing
the sign of �Sj

z� for j=�1 , . . . ,�n where �1 , . . . ,�n are the quantum
numbers of the excited state.
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Bethe roots of the central spin model via Eq. �16�. In this
section, we will derive the energy eigenvalues and expres-
sions for the screening cloud and magnetization profile for
small but finite central field.

1. Ground state

Starting from Eq. �6�, we include a finite field h0 in
Eq. �69�. We then arrive at the following equations for
�k=0,. . .,Nb

:

1 − Nb�
n=1

�
xn

�0
n + 2�

n=1

�
�n

�0
n +

2h0

�0
= 0, �75�

1 + �
j=1

Nb Aj

Aj − �k
− 2�

n=0

� ��k

�0
�n

− 2 �
k�=1

k�k�

Mb �k�

�k� − �k
+

2h0

�k
= 0.

�76�

Thus the only effect of h0 in Eq. �75� compared to Eq. �69� is
to add a term −2h0 to Nbx1, i.e., up to order O�1 /Nb� we
have

�0 = Nbx1 − 2h0 − 2�1�1 − dy1� + y1�1 + 2h0d�

− 2�2d + d�y2 − y1
2� . �77�

One then obtains for the ground-state energy an expression
which still involves the Mb nonzero roots

E0 = −
1

4d
+

h0

2
+

�1

2
−

y1

2
−

d

2
�y2 − y1

2 + h0y1 + y1�1 − �2� .

�78�

Let us now multiply Eq. �76� by �k and sum all terms
k=1, . . . ,Mb. We assume that h0 is sufficiently small so that
max�
�k
		ANb

and find

�1 + 2�
j=2

�
� j

�0
j−1 = Nb�

j=1

�

x−j� j+1 �79�

with x0�1. Here, we aim at calculating the energy up to
O�h0

2�. In analogy to Ref. 50, we therefore make the Ansatz

�1 = c1h0 + c2h0
2 + O�h0

3� , �80�

�2 = d1h0
2 + O�h0

3� . �81�

Then, including terms O�h0
2�, the coefficients c1,2 are found

by inserting that Ansatz into Eq. �79�

c1 = −
2Mb

Nb − 1
, �82�

c2 =
1

Nb − 1
�2d − x−1�d1 = −

x−1

Nb − 1
d1 + O�d2� , �83�

where we only keep the leading finite-size terms.
An additional equation is thus needed to determine d1.

This is obtained by adapting the techniques used in Ref. 50

to our problem. We then find that in leading order in h0, the
roots �k=1,. . .,Mb

are related to the zeros of associated Leg-
endre polynomials

LMb

−Nb�2h0

�k
� = 0. �84�

This is a polynomial of degree Mb, i.e., LMb

−Nb�x��c�k=1
Mb �x

−2h0 /�k�, where the constant c is determined by the asymp-
totes. Consequently, the logarithmic derivative at x=0 is

�ln LMb

−Nb�x���
x=0 = −
�1

2h0
. �85�

On the other hand, �ln LMb

−Nb�x��� 
x=0=Mb / �Nb−1�, which in
combination with Eq. �85� confirms Eq. �82�. Analogously,
the second logarithmic derivative �ln LMb

−Nb�x��� 
x=0=Mb�Mb

+1−Nb� / ��Nb−2��Nb−1�2�, which leads to

Mb�Mb + 1 − Nb�
�Nb − 2��Nb − 1�2 = −

�2

�2h0�2 . �86�

Combining this equation with Eq. �81�, one finds in terms
of Stot

z

d1 =
�Nb − 1�2 − 4�Stot

z �2

�Nb − 2��Nb − 1�2 , �87�

c2 = − x−1
�Nb − 1�2 − 4�Stot

z �2

�Nb − 2��Nb − 1�3 Nb, �88�

where the latter relation follows from Eq. �83�. Then the
ground-state energy reads

E0 = −
1

4d
−

y1

2
+

Stot
z

Nb − 1
h0 − 2

Stot
z

Nb − 1
dy1h0

+
c2

2
h0

2 −
d

2
�y2 − y1

2� + O�d2� �89�

=−
1

4d
−

y1
�0�

2
−

d

2
�y1

�1� − �y1
�0��2 + y2

�0��

+ stot
z h0�1 − 2dy1� −

1 − 4�stot
z �2

2Nb
x−1

�0�h0
2 + O�d2�

�90�

where we have defined the total magnetization density
stot

z
ªStot

z / �Nb−1�. In the last equation, the leading orders in a
finite-size and small-h0 expansion are given. For Stot

z =0, the
central magnetic field does not enter linearly but due to
second-order spin-exchange processes only quadratically.

We now take into account the total field term −htStot
z from

Eq. �3�. Adding that term to Eq. �90� and temporarily treating
the fields h0 and ht as independent parameters creates an
interesting pattern: for fixed ht the lowest levels E0�Stot

z ,h0�
display a pattern which is strongly reminiscent of light rays
forming a caustic in optics. Figure 10 demonstrates that for a
finite total magnetic field ht, a small but finite range of values
for h0 exists where the state with Stot

z =0 is the ground state.
Or, coming back to the original Hamiltonian �1�, this means
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that for any finite ratio gn /ge and given ht one can adjust the
central field h0 such that the ground state has a given mag-
netization Stot

z . For the example shown in Fig. 10, the ground
state has zero magnetization for ht=−0.035, h0�−0.61,
which corresponds to gn /ge�0.054 with hgn=ht.

To find the relation between h0 and ht for the lowest en-
ergy level with a given Stot

z we have to study the function
E0�ht ,Stot

z �=E0�Stot
z �−htStot

z , where E0�Stot
z � is given by

Eq. �90�. Since E0�ht ,Stot
z � is the Legendre transform of

E0�Stot
z �, ht can be calculated as ht=�Stot

z E0�Stot
z � which leads to

ht =
h0

Nb − 1
�1 − 2dy1� + 4Stot

z x−1
�0�� h0

Nb − 1
�2

�91�

up to higher order corrections. For Stot
z =0, this is inverted to

h0 = �Nb − 1��1 + 2dy1�ht = �Nb +
2x2

�0�

x1
2 − 1�ht + O�d� ,

�92�

which for the numerical values chosen in Fig. 10 yields
h0�−0.60, in good agreement with the exact numerical data
from the Bethe Ansatz. From the classical Hamiltonian �53�,
only the leading contribution in the particle number in
Eq. �92� is recovered. From Eq. �92�, the ratio of g factors in
the Stot

z =0 sector is deduced �setting hgn=ht�

ge

gn
= Nb +

2x2
�0�

x1
2 + O�d� . �93�

This means that when the ratio of electronic to nuclear g
factors equals the number of nuclear bath spins then an over-
all magnetic field drives the system into the nondegenerate
Stot

z =0 state.
Let us now consider correlation functions. From Eq. �8�,

we obtain for large particle numbers

�S0 · S j�0 = −
1

4
+

d

2
y1 − dAj −

d2

2
�− 2y2 + 3y1

2 + 3Aj
2 − 4y1Aj�

+
c2

�0�

2

h0
2

Aj
2 + O�d3� �94�

with c2
�0�= �1−4�stot

z �2� /Nb
2. If one is interested in the coeffi-

cients of the asymptotic 1 /Nb expansion one should again
apply the Euler-MacLaurin formula as in Eq. �63�. We do not
want to dwell into these technical but straightforward details
here but rather compare the analytical prediction with exact
results from complete diagonalization. Such a comparison is
shown in Fig. 5 in Sec. III D.

As expected, the approximation, Eq. �94�, is reliable
quantitatively only for small fields, according to our weak-
field assumption max�
�k
		ANb

. From Eq. �80�, one esti-
mates 
�k
�2h0 /Nb, which means that Eqs. �90� and �94� are
valid for 
h0
�ANb

Nb /2. For our choice of parameters
Nb=15 and x1=B=2 in the complete diagonalization of
Eq. �2�, this means 
h0
�0.7. But even for larger values of
h0, Eq. �94� is qualitatively correct: a finite central magnetic
field leads to an enhanced ferromagnetic correlation between
the central spin and the rather loosely bound bath spins at
larger distances from the center of the dot, and to an en-
hanced antiferromagnetic correlation between the central
spin and the bath spins closer to the center of the dot, which
is also consistent with the classical magnetization profile in
Fig. 3.

We also want to compare Eq. �94� with Eq. �54�, obtained
within the classical picture for Stot

z =0 for h0�0. In that ap-
proximation, the equations differ from each other by field-
independent terms proportional to d. This is understandable:
we have seen in Eq. �64� that these terms constitute finite-
size corrections which stem from quantum fluctuations and
are thus not present within the classical approach. These lead
to an increase in the amplitude of two-point functions. Espe-
cially, for the stronger couplings, values smaller than the
classical bound −1 /4 are reached, a clear sign of entangle-
ment and noncommutativity of the quantum spin operators.

In order to determine quantum fluctuations to �Sj
z� in the

small-field limit, one has to solve the set of Eqs. �18� for the
Ej in order to determine the eigenvalue in Eq. �19�. From
this, the local magnetization is obtained via Eq. �20�.

The small-field expansion of the set of Eqs. �18� has been
studied in detail in Ref. 50. From that work, it follows that
for the ground state of the central spin model at fixed Nb and
Mb

�
k=1

Nb

Ek = Egr�Mb,Nb − 1,�x−p − 2E0
p/Nb	� , �95�

where the integer p
0 and with

Egr�Mb,Nb − 1,�x−p	� = −
Mb�Nb − Mb�

2h0
+

MbNbx−1

Nb − 1
− 2h0�x−2

− x−1
2 �

NbMb�Nb − 1 − Mb�
�Nb − 1�2�Nb − 2�

+ O�h0
2� .

�96�

From Eq. �77� one computes
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FIG. 10. �Color online� Lowest levels in the sectors
M =7, . . . ,−7 for Nb=15 and couplings as in Eq. �2� with
x1=B=2, obtained from a numerical solution of Eq. �6�. Black lines
intersecting at h0=0 �the fat black line is the energy for Stot

z =0� and
blue lines forming a caustic near h0=−0.6. The inset is a zoom into
the region around the caustic. The red arrows mark h0 values such
that the state with Stot

z =0 is the ground state.
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E0 = d�1 + 2dh0 + 2d�1 + dy1� + O�h0
2,d3� �97�

and �1 follows from combining Eqs. �80� and �82�. In linear
order in h0 and including orders O�d3�, one then obtains the
magnetization profile

�Sj
z� = stot

z �1 − 2Aj
2d2 − 16h0Aj

2d3stot
z + Aj

2d3�3y1 − 2Aj�� + �Aj
−1

− x−1�1 − 2d2Aj
2� + 2d2x1�1 − 2d2Aj

2��
1 − 4�stot

z �2

Nb − 2
h0

�98�

with stot
z
ªStot

z / �Nb−1�. The polarization of the central spin,
�S0

z�, is fixed by the sum rule Stot
z =� j=0

Nb �Sj
z�. Comparing

Eq. �98� with Eqs. �55� and �56�, one again recognizes the
effect of quantum fluctuations which are now subleading
with respect to the classical contributions. As expected, these
reduce the amplitude of the magnetization profile, signaling
the effects of entanglement.

2. Excited states

In Sec. IV A 2, we found excitations for h0=0. We can
proceed similarly for h0�0. The expression �78� for the en-
ergy is still valid but the �1,2 are different now. Let us first
consider single-particle excitations, parametrized by a single
root �1 located on the real axis between Aj+1 and Aj. Instead
of Eq. �76� for k=1, . . . ,Mb, the corresponding set of equa-
tions now reads

1 + �
j=1

Nb Aj

Aj − �1
− 2�

j=0

� ��1

�0
� j

− 2�
j=1

�
� j

�1
j +

2h0

�1
= 0, �99�

1 + Nb�
j=0

�

�k
jx−j − 2�

j=0

� ��k

�0
� j

− 2�
j=0

� ��k

�1
� j

− 2 �
k�=2

Mb �k�

�k� − �k
+

2h0

�k
= 0, k = 2, . . . ,Mb.

�100�

By multiplying the latter equation with �k and taking the
sum k=2, . . . ,Mb, one arrives at an equation similar to
Eq. �79� with Mb→Mb−1, Nb→Nb−2, and x−n→x−n
−2 / �Nb�1

n�, n=0,1 , . . .. Thus the coefficients in Eqs. �80�
and �81� are now

c1
ex = − 2

Mb − 1

Nb − 3
, �101�

c2
ex =

1

Nb − 3
�2d +

2

�1
− Nbx−1�d1

ex

�102�

with d1
ex=d1�Nb→Nb−2,Stot

z →Stot
z � as defined in Eq. �87�.

A small field does not change the root pattern of the low-
est excited states qualitatively. Very similar to the discussion
after Eq. �72�, one can still make the Ansatz ��=A�+�� for
single-particle excitations. Then for small h0 and ��1, one
again finds that ��=O�1 /Nb�. This picture carries over to

multiparticle excitations, except that a finite field h0 can lead
to complex-conjugate pairs of roots.39,51,52 Thus the low-
energy excitations are still given by approximately indepen-
dent spin flips of the outer bath spins. This is best seen when
comparing the correlation functions �S0 ·S j�ex and �S0

z�ex with
the root patterns corresponding to the excited states. In
Fig. 11, the two-point function �S0 ·S j�ex is shown for the
ground state and the lowest nine levels with a central field
h0=1 in the sector Stot

z =0. The corresponding magnetization
profile, �Sj

z�ex is sketched in Fig. 12, and Fig. 13 shows the
underlying root patterns.

Although qualitatively, the results are similar to those
shown in Figs. 4 and 8, there are two important differences.
First, the degeneracy between states within one multiplet is
lifted so that both the one- and two-point functions depend
on the total magnetization �in Figs. 11 and 12, we have cho-
sen Stot

z =0�. Second, the ordering of root configurations ac-
cording to their energies is different. For example, the third
excited level for h0=0 is given by a two-particle excitation
�two flipped spins� as shown in Fig. 8 whereas for h0=1.0,
such a configuration yields the fourth excited level, cf.
Fig. 13.
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FIG. 11. �Color online� The two-point function �S0 ·S j�ex for
h0=1.0 for the ground state and the lowest nine excited states, ob-
tained from complete diagonalization with Nb=15, and the cou-
plings according to Eq. �2� with x1=B=2.
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FIG. 12. �Color online� The magnetization profile for h0=1.0 for
the ground state and the lowest nine excited states, obtained from
complete diagonalization with Nb=15, and the couplings according
to Eq. �2� with x1=B=2.
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C. From the exact solution to the classical picture

In this section, we want to make contact with the classical
picture presented in Sec. III, starting from the exact solution
for large N and small polarization, i.e., M =O�N�, and finite
central field. In this situation, the question arises whether the
Bethe roots form a dense distribution in the complex plane,
which would permit a continuum description. In Fig. 14, we
show both the roots �k and their inverses Ek=1 /�k for
N=16, M =8, i.e., Stot

z =0, parametrized by h0. One can
show40 that for g−1=O�N�, the distribution of the Ek can be
described by a cut in the complex plane in the thermody-
namic limit M ,N→�, M /N fixed. However, for the central
spin model, we are interested in g−1�h0=O�1�. Figure 14

suggests that such a continuum description still is possible in
this case. To see this, we first review Richardson’s40 line of
arguments for g−1�O�N�.

Consider the function

F�z� = �
k=0

Mb 1

z − Ek
−

1

2�
j=0

Nb 1

z − � j
− g−1, �103�

where � j ,Ek are related to Aj ,�k according to Eqs. �11� and
�16� and �0=0−. Then for g−1=O�N�, the function F is ex-
panded as F=F0+F1+¯, where F�=O�N−�+1�. Such an ex-
pansion is justified rigorously by showing that F obeys a
differential equation which can be solved order by order. We
first consider the case where in the leading order, all Ek
merge to form a cut in the complex plane along an arc which
is symmetric with respect to the real axis. The endpoints of
the arc, a and a�, are parametrized by two real quantities,
a=�+ i�, where � and � are the chemical potential and the
superconducting gap of the BCS model, Eq. �25�. This situ-
ation corresponds to the ground state of the BCS model.
Then

F0�z� = − �
j=0

Nb ��z − ��2 + �2

2�z − � j���� j − ��2 + �2
. �104�

The ground state of the central spin model corresponds to a
particle-hole excited state of the BCS model, where one root
E0 is taken away from the arc and instead is located on the
positive real axis, close to �0=0−, namely, E0=1 /�0
=O�1 /N�. This is shown in the right panel of Fig. 14. Let us

thus define F��z�= F̄��z�+1 / �z−E0�, where F̄��z� contains
the roots on the arc. Taking only one root away from the arc
does not modify the arc in leading order,40 such that

F̄0��z�=F0�z�. This means that in leading order, the roots on
the arc are decoupled from E0.

Let us now focus on the ground state of the central spin
model with h0=O�1�. If we assume that the roots Ek=1,. . .,Mb
in the ground state of the central spin model are still de-
scribed by an arc in the complex plane for large particle

number, we have �1=−F̄��0�+ 1
2d +

A0

2 −h0. This implies for
the leading order �1

�0�

�1
�0� = − F0�0� +

1

2d
+

A0

2
− h0 �105�

=− �
j=1

Nb �1 + �2Aj
2

2��� − Aj�2 + �Aj��2
+

1

2d
− h0, �106�

where we have used the correspondence between BCS and
central spin parameters in Eqs. �11� and �47�. Note that
A0=1 /�0 drops out in the first line.

The two parameters � ,� are now determined by the as-
ymptotes of F0�z�

h0 = − lim
z→�

F0�z� =
1

2�
j=1

Nb �Aj

��� − Aj�2 + �Aj��2
−

�

2�1 + �2
,

�107�
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FIG. 13. �Color online� The location of those BA numbers
which are O�1� �red crosses� in the complex plane for the ground
state and the lowest nine excitations in the sector with Stot

z =0 �top
left: ground state and bottom left: level 4� with Nb=15, x1=2, and
B=2 in Eq. �2� for the couplings. The smallest six couplings are
shown here �blue dots�. Not shown is �0=O�Nb�.
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FIG. 14. �a� Bethe roots �k=O�1� and k=1, . . . ,7 for 0	h0

�1.0. The field drives the roots away from the origin and the real
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larger real values.
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2Stot
z = − lim

z→�
z�F0�z� + h0�

=
1

�1 + �2
+ �

j=1

Nb � − Aj

��� − Aj�2 + �Aj��2
, �108�

where we have set �0=0−. The first of these equations coin-
cides with Eq. �41�. The second Eq. �108� is identical to
Eq. �40�.

We have verified numerically that �1
�0�+h0=O�1 /Nb� for

fields h0=O�1�. More generally, for Stot
z =O�1�, the quantity

�1
�0�+h0 is of the order O�h0

2 /Nb� as can be seen from a
simple physical argument: since the central spin is coupled to
Nb bath spins, for Stot

z =O�1� it experiences an effective field
h0 /Nb and so does each bath spin. Thus the leading
h0-dependent part of the spin-spin correlation function scales
as �h0

2 /Nb
2, which yields a contribution �h0

2 /Nb to the en-
ergy. For Stot

z =O�1� this is just the leading contribution from
�1

�0�+h0. For a small central field, this has been demonstrated
in Eqs. �80�, �82�, and �88�.

Since �1 is small compared to �0=O�Nb�, we can still use
Eq. �69� to determine �0 iteratively. Thus Eq. �78� is still
applicable for the energy, resulting now in

E0 = −
1

4d
+

h0

2
+

�1
�0�

2
−

y1
�0�

2
−

d

2
�y1

�1� − �y1
�0��2 + y2

�0� + h0y1
�0��

+ O�d2� , �109�

=− �
j=1

Nb �1 + �2Aj
2

4��� − Aj�2 + �Aj��2
−

y1
�0�

2

−
d

2
�y1

�1� − �y1
�0��2 + y2

�0� + h0y1
�0�� . �110�

In the small-field limit, the results of the previous section are
recovered.

Comparing Eq. �110� with Eq. �42�, one identifies the
leading classical contribution due to h0 from Eq. �42� stem-
ming from the roots on the arc, i.e., �1

�0�. The root �0 encodes
additional quantum-mechanical fluctuations which are of the
same order of magnitude as the classical h0 terms.

In analogy to the energy, quantum fluctuations are also
present in the correlation functions. In leading order, �Sj

z� is
given by the classical expressions �38� and �39�. Fluctuations
are due to �0, which would yield a contribution �d2 to �Sj

z�,
as in Eq. �67�. However, the situation is different for the
two-point function �S0 ·S j�: the quantum fluctuations in the
energy lead to contributions of order O�d� in the two-point
function, cf. Eq. �64�. Taking together Eqs. �43� and �64�,
one obtains

�S0 · S j�0 = −
�1 + �2�Aj − �

4�1 + �2��� − Aj�2 + Aj
2�2

+
d

2
y1

�0� − dAj .

�111�

Whereas Eq. �94� is valid in the weak-field regime h0	d
only, Eq. �111� gives the field dependence and the leading
finite-size effects also for stronger fields h0
d. This result is
compared to numerical data from complete diagonalization

in Fig. 5, showing very good agreement. Moreover, from
Eq. �111�, it is clear how to separate classical from quantum
fluctuations, giving nice insight into the essential physics of
the model.

V. CONCLUSION

We have studied the exact solution of the central spin
model, focussing on spectral properties and static correlators.
In particular, it is possible to analyze the magnetization pro-
file and the two-point correlation function using a classical
approximation, exact diagonalization, and the Bethe-Ansatz
solution as three independent methods.

The exact magnetization profile of the quantum model
follows the classical approximation very well already for
small system sizes. For a given distribution of coupling pa-
rameters an increasing central field typically enhances the
antiparallel alignment between the central spin and the more
strongly coupled bath spins nearby, while it favors parallel
alignment with the bath spins further away. The total mag-
netization of the system is typically small.

For the two-point correlation function a similar tendency
can be observed but the classical solution must be signifi-
cantly corrected by quantum fluctuation terms as given in
Eq. �111�. Only for the outermost spins the classical solution
tends to become exact. The reason for this is that in all cases
we considered, classical contributions are encoded by the
moments x−� of the couplings whereas quantum fluctuations
are expressed in terms of the moments x�, �
0. This means
that the outer region of the quantum dot, where the nuclear
spins are coupled weakly to the electron spin, are governed
by classical physics, whereas the inner region experiences
stronger quantum fluctuations, due to the larger spin ex-
change.

The classical approach is analogous to the original BCS
mean-field solution of the superconducting state. Typically
the classical approximation works better for the BCS-model
since quantum, i.e., finite-size contributions are subleading
compared to the mean-field solution whereas in the central
spin model both can be of the same order, depending on the
quantity under consideration. The reason for this is that the
pairing amplitude g=O�1 /N� in the BCS model whereas the
analogous parameter h0�g−1=O�1� in the central spin
model. In view of tunable interactions in ultracold gases, this
could lead to the possibility of a new pairing phase for at-
tractive electrons with fixed particle number, when the attrac-
tion g is of order 1.

After having demonstrated how to obtain the classical
contributions from the exact quantum-mechanical solution,
we must emphasize that if h0�0, the expectation value
��
Sj

x,y
�� vanishes for all eigenstates �. This is necessarily
so since � must have a definite magnetization Stot

z unless
there is an accidental degeneracy in the system. For the
equivalent BCS model this means that the BCS order param-
eter �cj↓

† cj↑
† � is identically zero for finite quantum systems.

Technically, the well-known spontaneous symmetry breaking
can therefore only be realized in the thermodynamic limit in
the BCS model, despite the fact that a description in terms of
the mean-field solution (i.e., classical vectors m j) also gives
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quantitatively good results for finite systems. This is in con-
trast to the prototypical example for symmetry breaking in
ferromagnets, where the ground state and excited states ge-
nerically already carry a nonzero expectation value of the
order parameter for finite system sizes.

Our results are of direct importance for the study of non-
equilibrium dynamics: the understanding of the magnetiza-
tion profile of eigenstates allows us to estimate overlaps of
eigenstates with those noneigenstates which are realistic ini-
tial states in the time evolution of the electron coupled to the
nuclear spins. The computation of those overlaps is crucial in
order to estimate the decoherence time. We leave this as a
promising route for future research here. More generally, the

study of classical and quantum contributions during the time
evolution of nonequilibrium dynamics remains an important
open question for future research.
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