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Electron-Phonon Interactions on a Single-Branch Quantum Hall Edge
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We consider the effect of electron-phonon interactions on edge states in quantum Hall systems
with a single edge branch. The presence of electron-phonon interactions modifies the single-particle
propagator for general quantum Hall edges, and, in particular, destroys the Fermi liquid at integer filling.
The effect of the electron-phonon interactions may be detected experimentally in the ac conductance or
in the tunneling conductance between integer quantum Hall edges. [S0031-9007(96)00563-7]

PACS numbers: 73.40.Hm

A two-dimensional electron gas subjected to a strongystems with bulk filling factor = 1/(2m + 1) with a
perpendicular magnetic field may exhibit the quantunmsingle branch of edge excitations on each edge. Electron-
Hall (QH) effect [1]. The effect occurs because thephonon interactions in regular Luttinger liquids have been
electron gas is incompressible at certain densities, whichonsidered previously [11-13]. Martin and Loss [12]
is due to an energy gap to bulk excitations. In the integeshowed that coupling the electron system to acoustic
QH effect this gap is the kinetic energy gap (the cyclotronphonons destroys the Fermi surface, even in the absence of
energy Zw.) in a magnetic field, and in the fractional electron-electron interactions. However, this effect is only
QH effect (FQHE) the gap arises because of the electrorappreciable if the Fermi velocityr is of the same order as
electron interactions. As a result of the bulk energy gapthe renormalized sound velocity, [14]. This condition
gapless excitations in the system can only exist at thean be met in QH systems, where is determined by the
edges. Such edge excitations are density modulatiorstiffness of the confining potential and the electron density,
localized at the edges of the system, and all the lowboth of which may be tuned electrostatically by gates.
energy properties of a QH system are determined by th&/e will show here that the electron-phonon interactions
edge excitations. will modify the single-particle propagator even irchiral

As was first demonstrated by Wen [2], the density op-Luttinger liquid. As a consequence, even the integer
erators for edge excitations obey a Kac-Moody algebraguantum Hall edge states will not be Fermi liquids in the
similar in structure to that obeyed by Luttinger liquids [3]. presence of electron-phonon interactions.

Because time-reversal invariance is broken by the mag- The modification of the single-particle propagator by
netic field, the excitations on one edge can only propagatthe electron-phonon interactions may be detected experi-
in one direction [4] corresponding to “chiral Luttinger lig- mentally, and we will discuss two possibilities. First,
uids” [2]. Wen calculated the single-particle propagatorthe ac conductance will have resonances at (longitudinal)
for the electron on the edge of a quantum Hall systenwave vectors; and frequencies related byg = w/v,,

at filling factor » = 1/(2m + 1) and showed that it is ¢ = w/vg, andg = —w/v,, wherev,, vg, andv, are
given by [2] G(x, 1) = (x — vpt)'/”. Here,x is a coor- renormalized edge and sound velocities, which may in
dinate along the edge, ang- is the edge velocity deter- principle be resolved and detected in an experiment. On
mined by the details of the potential confining the electrorthe other hand, the dc Hall conductanced$ modified by

gas at the edge. the electron-phonon interactions. Second, the anomalous

The appearance of the anomalous exponent in the singlexponents in the single-particle propagator will modify the
particle propagator has important experimental implicatunneling conductance and can in principle be measured,
tions. It was shown by Wen [5] and by Kane and Fisherfor example, in tunneling between two= 1 edges in a
[6] that the tunneling conductance between two counterbilayer system [15] with an overall filling af,,, = 2. In
propagating edges of an FQHE system at bulk filling facthe absence of electron-phonon interactions the edges of
torv = 1/(2m + 1) depends on temperature&8!/*~D.  such a system are (chiral) Fermi liquids which propagate
The resonant tunneling conductance was calculated by the same direction. Coulomb interactions alone cannot
Moon et al. [7], and Fendley, Ludwig, and Saleur [8], and change the temperature dependence [16] of the tunneling
measured by Milliken, Umbach, and Webb [9]. The ex-conductance frorf®. Therefore anytemperature behav-
perimentally measured tunneling conductance does indeedr of the tunneling conductance at sufficiently low tem-
exhibit a72(1/»=1 dependence, except for at the very low- peratures must be due to the electron-phonon interactions.
est temperatures, where Coulomb interactions between tfiéhe electron-phonon interaction also modifies the tempera-
edges may modify the conductance [10]. ture dependence of the tunneling conductance between

In this Letter, we consider the effect of electron-phononcounterpropagating edge states at very low temperatures
interactions on the QH edge states of spin-polarized QHhivhich has been measured by Millikenal. [9].
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The edge excitations in a quantum Hall system with fill- d(x) = Z i(2Lpvsk) 2™ (b + bik), (5)
ing fractiony = 1/(2m + 1) can be described by density k
modulations of an effectively one-dimensional system [2]where p is the linear mass density of the crystal and
5 k a wave vector along the edge. The electron-phonon
T v i i
_ 2T VF ZJkak, 1) interaction then becomes

H, 7

14
o Hep = D f dx p(x)9.d(x)
where the densitief, obey commutation relations depend-
ing on the filling fractionv: [Ji, Ji] = —Lvk&i /2. + +
Here, k is the wave vector along the edge. This the- = vc]dk k(axby + apby), (6)

ory represents a single U(1) Kac-Moody algebra and it is ] ) ]
well known how to “bosonize” it in terms of a chiral bo- WhereD is the deformation potential constant and the cou-

songx(x). The current density(x) is written asj(x) =  Plingv. = Dy/v/mpv, is independent of. For specific
b Using J. — [ dx ¢ j(x), we can immediatel values of these parameters, we consider a QH edge in a
7 oox - 9Jk = Jdxe™ jix), mediately dGaAs heterojunction. We assume that the edge is along
express the Hamiltonian in terms of the annihilation an f1h bi fGaA hat the pi lectri
creation operators of the boson mode expansion: one ofthe cubic axes o S SO that the piezoelectric cou-
' pling vanishes and can be ignored. For electrostatic con-
; o o finement by an electrode with potentid}, vr is of the
ap = ka, ap = ml—k (2)  order of w.€3/¢, where¢y = (lic/eB)? is the magnetic
length and’ = V,€/4m*nye is the length scale of the elec-

electron field can also be written in terms of the chiralconstant andk is the two-dimensional electron density).
boson and has been identified as [2] For a magnetic field strength of about 5 T and a density of

no = 10> m~2, this gives a Fermi velocity approximately
L 3 i
(x) = exp(iv/1/4v bg) 3) equal to the average sound velocity~ 5 X 10° m/sin
v Hiv1/ Ox ®) GaAs. Thus, it should be possible to optimize the effects
(this is not to be confused with the quasiparticle figld ©Of €lectron-phonon interactions in GaAs heterojunctions
which can also be defined in terms of the chiral bosorfnder ordinary conditions. The deformation potential con-
y o AN %« but carries fractional charge). stantD is appr(_)X|mater 7.4_1e4V [1_82]. Assuming an effec-
We now consider the interaction of such a system witH'Ve cros_s-sectl_onal.areaw m of the GaAs phonon
phonons system in the direction perpendicular to the electron propa-
gation, we then arrive at a coupling velocity/v, ~ 0.1.
" At this point it is straightforward to diagonalize the
Hpy = vs D |Klbyby . (4)  complete Hamiltonian
K

One normal mode of the phonons is assumed to be along ~ H = > Huraiae + vlbibe + b'bi]

the quantum Hall edge. For phonon wavelengths much k=0 + +

greater than the cross section of the electron edge branch +vlap(be + boy) + Help 7)
(which is of the order of 100 A) the normal modes perpen-by using a generalized Bogoliubov transformation
dicular to the edge contribute in the adiabatic approxima- ay
tion only an overall constant, w_hlch can be |gnored_. For (az, by, bik) 7| B |, (8)
the relevant part of the interaction we can then write the t

crystal displacement(x) along this edge as Yok

| whereT is given in terms of three variables, 6, 7:

cosp cosh¥  sing costv coshy + sinkg sinhp —sing cosk sinhy — sinhg coshy
T = —sing COsp coshy —CO0sp sinhmy . (9)
—Ccosp sinhkd  —sing sinhg coshy — coslg sinhy  sing sinh¥ sinhm — cosl coshy
The Hamiltonian is now written as
.r

g
H =Y kaw By DAl g |. (10)
k>0 Y-k

where the coupling matriA is given by

A=TM v, v, 0 |T. (11)
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For the Hamiltonian to become diagonal, the off-diagonal 2.0

elements ofA are required to vanish, which determines the
three angleg, 0, n and in turn also the diagonal elements v N
of A (i.e., the renormalized Fermi and sound velocities). g 15 oS |
Moreover, the boson representing the electron density nowg = | --—---- V.V
becomes according to Eq. (8) 2 p7s
>
ar = Trax + Ty + Tisyly. (12) B 1.0 premmmmee T ]
Therefore, the electron field in Eqg. (3) must now be ex- E 100 .
pressed in terms of three independent boson fields, namel g N
a right moving “charge” bosor;, and one right and one é 05 | v
left moving “sound” bosor3;, yx. The electron propa-
gator then becomes a product of three factors according tc 06 L
Egs. (3) and (12) 0.0 ‘ 00 05 10 15 20
G(x, l) = <¢T(x, t)l//(o, 0)> 0.0 0.5 1.0 1.5 2.0
1 1 1 velVs
* (x — v t)lel/y (x — vﬁt)rfz/y (x + v t)TIZ?/V ’ FIG. 1. The renormalized velocitiag, and vz as a function
a Y 7

of the Fermi velocityvr. The sound velocity, sets the overall
(13) scale and the coupling has been chosen tovpér, = 0.1.

. . . . The inset shows the renormalized velocity of the counterpropa-
wherev, = Aj; is the renormalized Fermi velocity and y prop

. -~ gating mode.

vg = An, v, = Az are the renormalized sound veloci-
ties. In Fig. 1 we have plotted the renormalized velocities
v; vs vp (i = a, B,y) for a coupling ofv./v, = 0.1.  tized valuee?v/h, which is indeed the case according
The total “momentum’v, + vg — v, = vp of the elec- to Eq. (15) since the matrix elements obey the sum rule
tron is conserved by the transformatidh The right T121 + T122 - T123 = 1. On the other hand, the ac con-
propagating velocities, andvg show a discontinuity at ductance will exhibit resonance structures when—=
the resonance, = v, of equal magnitude which appears v,q, @ = vgg, and w = —v,q in response to a po-
to be quadratic in the coupling./v,. The left propagat- tential ¢(x,y). Provided at least two of the “spectral
ing velocityv,, is only slightly modified of the order of 1% weights” T, TS, and T3, are not too small, and the
from its original valuev,. corresponding renormalized velocities are not too close,

The fact that the electron propagator breaks up into threthese resonances can then in principle be resolved and de-
pieces, corresponding to the normal modes of the Hamiltected. In Fig. 2 we see that near/v, ~ 1, both T121
tonian Eq. (10), will have experimental consequences foand 7% are close to 0.5, whiles, and vg are on op-
transport properties. We first calculate the linear reposite sides ob, (Fig. 1). With an experimentally rea-

sponse to a scalar potentialx,y) = —Ey codgx — wt),  sonable value of ~ 10° m™!' andv, ~ vy ~ 10’ m/s,
where we takey, w > 0. This potential gives an elec- this gives a resonance at abd0t Hz, well within experi-
tric field E(x,y) = E[—qysin(gx — wt)X + codgx —  mentally accessible range. Figure 2 also shows that the

wt)¥], wherey can be taken to be constant. The perturbedtotal spectral weight” of the electron consists mostly of
charge density in response to the potential is then obtainetie forward propagating modes, which contribute almost

as equally at resonancer = v,. This means that only very
e’Ey little charge is transported in the counterpropagating direc-
Sp(x,1) = V4 cosgx — wi) tion which was to be expected.

2 ) ) Since the single-particle propagator is changed by the
x[ Ty + Tz + Tis } electron-phonon interaction according to Eq. (13), the
Vo — @ vpqg — Vyq T @ single-particle density of states and properties depending

(14)  on it such as the tunneling conductance will also be

By using the continuity equatiodp /9t + 9j(x)/0x = 0, affected by the coupling to the phonons. In particular,
we can then obtain the current response function to theve consider the interlayer tunneling conductance between

applied potential as two edges of a bilayer system with integer filling in each
~ ey T121 layer, and a total filling factor of,,, = 2. This can in
olqg, ») = T w[vq—_w principle be measured by attaching probes to the different
“ ’ ’ layers separately in a system with large enough separation
+ Ti + Tis } (15) between the layers that the bulk tunneling probability
Vg — @ vyq T o vanishes. A gate at the edge can then be used to adjust the
Experiments dictate that the dc Hall conductamge =  tunneling probability between the edges. At low enough

lim,—o lim,—o (g, @) must not be altered from its quan- voltage across the tunneling junction, tunneling through
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0.000 , , . of the quantum Hall bar and the temperature dependence
of the tunneling conductance.
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