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Electron-Phonon Interactions on a Single-Branch Quantum Hall Edge
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We consider the effect of electron-phonon interactions on edge states in quantum Hall systems
with a single edge branch. The presence of electron-phonon interactions modifies the single-particle
propagator for general quantum Hall edges, and, in particular, destroys the Fermi liquid at integer filling.
The effect of the electron-phonon interactions may be detected experimentally in the ac conductance or
in the tunneling conductance between integer quantum Hall edges. [S0031-9007(96)00563-7]
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A two-dimensional electron gas subjected to a strong
perpendicular magnetic field may exhibit the quantum
Hall (QH) effect [1]. The effect occurs because the
electron gas is incompressible at certain densities, which
is due to an energy gap to bulk excitations. In the integer
QH effect this gap is the kinetic energy gap (the cyclotron
energy h̄vc) in a magnetic field, and in the fractional
QH effect (FQHE) the gap arises because of the electron-
electron interactions. As a result of the bulk energy gap,
gapless excitations in the system can only exist at the
edges. Such edge excitations are density modulations
localized at the edges of the system, and all the low-
energy properties of a QH system are determined by the
edge excitations.

As was first demonstrated by Wen [2], the density op-
erators for edge excitations obey a Kac-Moody algebra,
similar in structure to that obeyed by Luttinger liquids [3].
Because time-reversal invariance is broken by the mag-
netic field, the excitations on one edge can only propagate
in one direction [4] corresponding to “chiral Luttinger liq-
uids” [2]. Wen calculated the single-particle propagator
for the electron on the edge of a quantum Hall system
at filling factor n ­ 1ys2m 1 1d and showed that it is
given by [2] Gsx, td ~ sx 2 yFtd1yn. Here,x is a coor-
dinate along the edge, andyF is the edge velocity deter-
mined by the details of the potential confining the electron
gas at the edge.

The appearance of the anomalous exponent in the single-
particle propagator has important experimental implica-
tions. It was shown by Wen [5] and by Kane and Fisher
[6] that the tunneling conductance between two counter-
propagating edges of an FQHE system at bulk filling fac-
tor n ­ 1ys2m 1 1d depends on temperature asT2s1yn21d.
The resonant tunneling conductance was calculated by
Moon et al. [7], and Fendley, Ludwig, and Saleur [8], and
measured by Milliken, Umbach, and Webb [9]. The ex-
perimentally measured tunneling conductance does indeed
exhibit aT 2s1yn21d dependence, except for at the very low-
est temperatures, where Coulomb interactions between the
edges may modify the conductance [10].

In this Letter, we consider the effect of electron-phonon
interactions on the QH edge states of spin-polarized QH

systems with bulk filling factorn ­ 1ys2m 1 1d with a
single branch of edge excitations on each edge. Electron-
phonon interactions in regular Luttinger liquids have been
considered previously [11–13]. Martin and Loss [12]
showed that coupling the electron system to acoustic
phonons destroys the Fermi surface, even in the absence of
electron-electron interactions. However, this effect is only
appreciable if the Fermi velocityyF is of the same order as
the renormalized sound velocityys [14]. This condition
can be met in QH systems, whereyF is determined by the
stiffness of the confining potential and the electron density,
both of which may be tuned electrostatically by gates.
We will show here that the electron-phonon interactions
will modify the single-particle propagator even in achiral
Luttinger liquid. As a consequence, even the integer
quantum Hall edge states will not be Fermi liquids in the
presence of electron-phonon interactions.

The modification of the single-particle propagator by
the electron-phonon interactions may be detected experi-
mentally, and we will discuss two possibilities. First,
the ac conductance will have resonances at (longitudinal)
wave vectorsq and frequenciesv related byq ­ vyya ,
q ­ vyyb , andq ­ 2vyyg , whereya, yb, andyg are
renormalized edge and sound velocities, which may in
principle be resolved and detected in an experiment. On
the other hand, the dc Hall conductance isnot modified by
the electron-phonon interactions. Second, the anomalous
exponents in the single-particle propagator will modify the
tunneling conductance and can in principle be measured,
for example, in tunneling between twon ­ 1 edges in a
bilayer system [15] with an overall filling ofntot ­ 2. In
the absence of electron-phonon interactions the edges of
such a system are (chiral) Fermi liquids which propagate
in the same direction. Coulomb interactions alone cannot
change the temperature dependence [16] of the tunneling
conductance fromT 0. Therefore,any temperature behav-
ior of the tunneling conductance at sufficiently low tem-
peratures must be due to the electron-phonon interactions.
The electron-phonon interaction also modifies the tempera-
ture dependence of the tunneling conductance between
counterpropagating edge states at very low temperatures
which has been measured by Millikenet al. [9].
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The edge excitations in a quantum Hall system with fill-
ing fractionn ­ 1ys2m 1 1d can be described by density
modulations of an effectively one-dimensional system [2]

He ;
2p

L
yF

n

X
k.0

JkJ2k , (1)

where the densitiesJk obey commutation relations depend-
ing on the filling fractionn: fJk , Jk0g ­ 2Lnkdk,2k0y2p.
Here, k is the wave vector along the edge. This the-
ory represents a single U(1) Kac-Moody algebra and it is
well known how to “bosonize” it in terms of a chiral bo-
sonfRsxd. The current densityjsxd is written asjsxd ­q

n

p

≠fR

≠x . Using Jk ­
R

dx eikxjsxd, we can immediately
express the Hamiltonian in terms of the annihilation and
creation operators of the boson mode expansion:
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(the zero modes are omitted). The full (spin-polarized)
electron field can also be written in terms of the chiral
boson and has been identified as [2]

csxd ~ expsi
p

1y4np fRd (3)

(this is not to be confused with the quasiparticle fieldx

which can also be defined in terms of the chiral boson
x ~ ei

p
ny4p fR , but carries fractional charge).

We now consider the interaction of such a system with
phonons

Hph ­ ys

X
k

jkjb
y
kbk . (4)

One normal mode of the phonons is assumed to be along
the quantum Hall edge. For phonon wavelengths much
greater than the cross section of the electron edge branch
(which is of the order of 100 Å) the normal modes perpen-
dicular to the edge contribute in the adiabatic approxima-
tion only an overall constant, which can be ignored. For
the relevant part of the interaction we can then write the
crystal displacementdsxd along this edge as

dsxd ­
X

k

is2Lryskd21y2eikxsbk 1 b
y
2kd , (5)

where r is the linear mass density of the crystal and
k a wave vector along the edge. The electron-phonon
interaction then becomes
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dx rsxd≠xdsxd

­ yc
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dk ksakb

y
k 1 a

y
k bkd , (6)

whereD is the deformation potential constant and the cou-
pling yc ­ D

p
nyprys is independent ofk. For specific

values of these parameters, we consider a QH edge in a
GaAs heterojunction. We assume that the edge is along
one of the cubic axes of GaAs so that the piezoelectric cou-
pling vanishes and can be ignored. For electrostatic con-
finement by an electrode with potentialVg, yF is of the
order of vc,2

By,, where,B ­ sh̄cyeBd2 is the magnetic
length and, ­ Vgey4p2n0e is the length scale of the elec-
trostatic confining potential [17] (e is the static dielectric
constant andn0 is the two-dimensional electron density).
For a magnetic field strength of about 5 T and a density of
n0 ­ 1015 m22, this gives a Fermi velocity approximately
equal to the average sound velocityys ø 5 3 103 mys in
GaAs. Thus, it should be possible to optimize the effects
of electron-phonon interactions in GaAs heterojunctions
under ordinary conditions. The deformation potential con-
stantD is approximately 7.4 eV [18]. Assuming an effec-
tive cross-sectional area of10214 m22 of the GaAs phonon
system in the direction perpendicular to the electron propa-
gation, we then arrive at a coupling velocityycyys , 0.1.

At this point it is straightforward to diagonalize the
complete Hamiltonian
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khyFa
y
k ak 1 ysfby

k bk 1 b
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1 ycfay
k sbk 1 b

y
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by using a generalized Bogoliubov transformationT
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y
2kd ­ T
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g
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1CA , (8)

whereT is given in terms of three variablesf, u, h:

T ­

0B@ cosf coshu sinf coshu coshh 1 sinhu sinhh 2sinf coshu sinhh 2 sinhu coshh
2sinf cosf coshh 2cosf sinhh
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The Hamiltonian is now written as

H ­
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where the coupling matrixA is given by

A ; Ty

0B@ yF yc yc

yc ys 0
yc 0 ys

1CAT . (11)

359



VOLUME 77, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 8 JULY 1996

For the Hamiltonian to become diagonal, the off-diagonal
elements ofA are required to vanish, which determines the
three anglesf, u, h and in turn also the diagonal elements
of A (i.e., the renormalized Fermi and sound velocities).
Moreover, the boson representing the electron density now
becomes according to Eq. (8)

ak ­ T11ak 1 T12bk 1 T13g
y
2k . (12)

Therefore, the electron field in Eq. (3) must now be ex-
pressed in terms of three independent boson fields, namely
a right moving “charge” bosonak and one right and one
left moving “sound” bosonbk, gk. The electron propa-
gator then becomes a product of three factors according to
Eqs. (3) and (12)

Gsx, td ; kcysx, tdcs0, 0dl

~
1

sx 2 yatdT2
11yn

1

sx 2 ybtdT2
12yn

1

sx 1 ygtdT2
13yn

,

(13)

whereya ­ A11 is the renormalized Fermi velocity and
yb ­ A22, yg ­ A33 are the renormalized sound veloci-
ties. In Fig. 1 we have plotted the renormalized velocities
yi vs yF si ­ a, b, gd for a coupling ofycyys ­ 0.1.
The total “momentum”ya 1 yb 2 yg ­ yF of the elec-
tron is conserved by the transformationT . The right
propagating velocitiesya andyb show a discontinuity at
the resonanceyF ­ ys of equal magnitude which appears
to be quadratic in the couplingycyys. The left propagat-
ing velocityyg is only slightly modified of the order of 1%
from its original valueys.

The fact that the electron propagator breaks up into three
pieces, corresponding to the normal modes of the Hamil-
tonian Eq. (10), will have experimental consequences for
transport properties. We first calculate the linear re-
sponse to a scalar potentialfsx, yd ­ 2Ey cossqx 2 vtd,
where we takeq, v . 0. This potential gives an elec-
tric field Esx, yd ­ Ef2qy sinsqx 2 vtdx̂ 1 cossqx 2

vtdŷg, wherey can be taken to be constant. The perturbed
charge density in response to the potential is then obtained
as

drsx, td ­
e2Ey

h
nq cossqx 2 vtd

3

∑
T2

11

yaq 2 v
1

T2
12

ybq 2 v
1

T 2
13

ygq 1 v

∏
.

(14)
By using the continuity equation≠ry≠t 1 ≠jsxdy≠x ­ 0,
we can then obtain the current response function to the
applied potential as

essq, vd ­
e2n

h
v

∑
T 2

11

yaq 2 v

1
T2

12

ybq 2 v
1

T 2
13

ygq 1 v

∏
. (15)

Experiments dictate that the dc Hall conductancesH ­
limv!0 limq!0 essq, vd must not be altered from its quan-

FIG. 1. The renormalized velocitiesya and yb as a function
of the Fermi velocityyF . The sound velocityys sets the overall
scale and the coupling has been chosen to beycyys ­ 0.1.
The inset shows the renormalized velocity of the counterpropa-
gating mode.

tized valuee2nyh, which is indeed the case according
to Eq. (15) since the matrix elements obey the sum rule
T2

11 1 T 2
12 2 T2

13 ­ 1. On the other hand, the ac con-
ductance will exhibit resonance structures whenv ­
yaq, v ­ ybq, and v ­ 2ygq in response to a po-
tential fsx, yd. Provided at least two of the “spectral
weights” T2

11, T2
12, and T 3

13 are not too small, and the
corresponding renormalized velocities are not too close,
these resonances can then in principle be resolved and de-
tected. In Fig. 2 we see that nearyFyys , 1, both T 2

11
and T 2

12 are close to 0.5, whileya and yb are on op-
posite sides ofys (Fig. 1). With an experimentally rea-
sonable value ofq , 105 m21 andys , yF , 103 mys,
this gives a resonance at about108 Hz, well within experi-
mentally accessible range. Figure 2 also shows that the
“total spectral weight” of the electron consists mostly of
the forward propagating modes, which contribute almost
equally at resonanceyF ­ ys. This means that only very
little charge is transported in the counterpropagating direc-
tion which was to be expected.

Since the single-particle propagator is changed by the
electron-phonon interaction according to Eq. (13), the
single-particle density of states and properties depending
on it such as the tunneling conductance will also be
affected by the coupling to the phonons. In particular,
we consider the interlayer tunneling conductance between
two edges of a bilayer system with integer filling in each
layer, and a total filling factor ofntot ­ 2. This can in
principle be measured by attaching probes to the different
layers separately in a system with large enough separation
between the layers that the bulk tunneling probability
vanishes. A gate at the edge can then be used to adjust the
tunneling probability between the edges. At low enough
voltage across the tunneling junction, tunneling through
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FIG. 2. The exponent of the temperature dependence of the
tunneling conductance as a function of the Fermi velocity
yFyys for a coupling of ycyys ­ 0.1. The inset shows the
spectral weights of the forward propagating modes.

the bulk will be suppressed, and only the edge tunneling
current appreciable. Note that in this arrangement the two
edges propagate in the same direction.

The tunneling current is determined by the retarded re-
sponse function [5]Xretstd ­ 2iustd kfAstd, Ays0dgl, where
GA ­ Gc1sx ­ 0dcy

2 sx ­ 0d 1 H.c. is the tunneling op-
erator, withG the tunneling amplitude, andcisxd, i ­ 1, 2,
the electron field operator on the two edges. From Eq. (13)
and following Wen [5] it is a straightforward exercise to
determine the temperature dependence of the tunneling dif-
ferential conductance, with the result that

dIt

dVt

Ç
Vt­0

~ T 2sT2
111T2

121T2
13d22 ­ T24T2

13 . (16)

Because of the fact thatT 2
13 fi 0 in the presence of

electron-phonon interactions, the differential tunneling
conductance will now depend on temperature, in funda-
mental contrast to the tunneling between two chiral Fermi
liquids propagating in the same direction, which is tem-
perature independentat low temperatures, even in the
presence of electron-electron interactions between the two
edges. From Fig. 2 we see that the magnitude of the
exponent24T2

13 for the parameters chosen here is of the
order of1022, which is small (the exponent appears to be
quadratic in the coupling constantycyys). However, the
main point is that any measured temperature dependence
at all will be due to the electron-phonon interactions.

In conclusion, we have shown that the electron-phonon
interaction modifies the chiral Luttinger liquid on the
quantum Hall edge. The single-particle propagator be-
comes a product of three separate modes, one of which is
always counterpropagating. From this we have predicted
direct experimental consequences for the ac conductivity

of the quantum Hall bar and the temperature dependence
of the tunneling conductance.
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