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We study the properties of interacting electrons in a one-dimensional conduction band coupled to bulk
noncollinear ferromagnetic order. The specific form of noncollinearity we consider is that of an extended domain

wall. The presence of ferromagnetic order breaks spin-charge separation and the domain wall introduces a
spin-dependent scatterer active over the length of the wall A. Both forward and backward scattering off the
domain wall can be relevant perturbations of the Luttinger liquid and we discuss the possible low-temperature
phases. Our main finding is that backward scattering, while determining the ultimate low-temperature physics,
only becomes important at temperatures 7/J < exp(—A/A.), with J being the magnetic exchange and A, the
backward scattering length scale. In physical realizations, A 3> A, and the physics will be dominated by forward
scattering, which can lead to a charge-conducting but spin-insulating phase. In a perturbative regime at higher
temperatures we furthermore calculate the spin and charge densities around the domain wall and quantitatively

discuss the interaction-induced changes.
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I. INTRODUCTION

In a one-dimensional electron system, particlelike excita-
tions cannot survive in the presence of interactions leading to
a breakdown of Fermi liquid theory. Instead, the excitations
are of a collective, bosonic nature and can be described
by a universal low-energy effective theory, the Luttinger
liquid (LL).'-* Impurities are expected to play a particularly
important role in one dimension, because electrons are not
able to circumvent them. Studies have indeed revealed that
impurities in many cases are relevant perturbations effectively
cutting the chain and therefore impeding transport at low
temperatures.*~'° More surprisingly, however, there are also
situations where the low-temperature behavior in the presence
of multiple impurities corresponds to “healing,” i.e., to perfect
transmission.>

One of the hallmarks of the LL is spin-charge separation.
This means that the normal modes of the Luttinger model have
either spin or charge character and are completely decoupled.
Spin-charge separation, however, only holds in the case of spin
degeneracy. In the presence of a magnetic field—which leads
to spin-split bands—the normal modes of the Luttinger model
acquire a mixed character. This situation was first studied in
Refs. 11 and 12 using the Hubbard model in a magnetic field as
a starting point. One obvious question to ask is how impurities
affect the low-temperature properties in such a system. Since
spin and charge are no longer decoupled, we might expect new
low-energy fixed points which are not covered by the standard
Kane and Fisher picture.’

Of experimental relevance is, in particular, the case of
electrons in a quasi-one-dimensional wire coupled to bulk
ferromagnetic order. Domain walls in the ferromagnet then
act as spatially extended magnetic impurities for the elec-
trons in the wire. Such systems of coupled electronic and
magnetic degrees of freedom have received considerable
interest,'® spurred, in particular, by possible applications as
magnetic domain-wall racetrack memories.!* However, the
focus has principally been on how the transport properties
of free electrons behave in a ferromagnetic wire with a
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domain wall and how these spin-polarized currents set the
domain wall itself into motion. An interesting question
to ask then is whether electron-electron interactions can
become important in such cases. Aside from some work
on mean-field"”® and Hartree-Fock!'®!7 interactions, there is
little consideration in the literature of how the electronic
and magnetic behavior of quasi-one-dimensional ferromag-
netic systems is modified in a strongly correlated sys-
tem.

In particular, the case of a ferromagnetic LL with a domain
wall present has not yet been fully addressed. In the limit of
an infinitely sharp domain wall, Pereira and Miranda'® have
considered an effective low-temperature model containing
only a spin-flip backscattering term. Based on this model, they
have argued that the domain-wall scattering in the ultimate
low-temperature limit is the magnetic analog of the Kane-
Fisher problem.>®!! In other words, at low temperatures either
a spin-charge insulator or a LL is found. In addition to the spin-
flip backscattering process considered in Ref. 18, however,
also a pure potential (spin-independent) backscattering term
is allowed by symmetry.'®!” By starting from a model for an
extended domain wall we show that such a term is indeed
present and can be important for the physics at very low
temperatures. Our main focus, however, is what happens in
the more physically relevant regime of longer domain walls
and higher temperatures. The behavior of the system in this
case remains unknown, and it is that question we wish to
address here.

There are three possible temperature regimes in this
problem and it is convenient to introduce here some notation
for them. At high temperatures we have a “perturbative
regime,” where the domain-wall scattering can be treated as
a small perturbation. As we consider lower temperatures the
perturbative treatment will break down due to the presence
of relevant operators. At first we may still consider the
domain wall as an extended region and we refer to this as
the “extended regime.” This regime is the focus of our study.
At even lower temperatures in the renormalization group flow
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the domain wall will become effectively §-function-like and
we can treat the relevant operators as boundary terms. This
regime we refer to as the “sharp regime” and is the regime
which has been previously discussed in the literature.'®"'® In
the sharp regime, the spin-flip and the potential backscattering
terms with scattering length A, are the possible relevant
perturbations determining the low-temperature physics. We
show, however, that if we start from a system with an
extended domain wall with length A > A, then temperatures
T/J <exp(—A/Ay), with J being the magnetic exchange,
are required to enter this regime. This regime, therefore,
is only accessible if one already starts with a very sharp
domain wall, a situation which can possibly be realized by
nanoconstrictions."”

Experimentally, the construction of ferromagnetic chains
of single magnetic atoms is already possible.’’ In such
systems the ferromagnetic order is observed to extend over
small distances separated by regions of noncollinearity.?’->*
It is important to note that these chains are assembled on
some substrate and therefore cannot be considered as fully
isolated one-dimensional systems. Therefore, the Mermin-
Wagner theorem,” which forbids long-range ferromagnetic
order at finite temperatures in a strictly one-dimensional
system with sufficiently short-range interactions, does not
apply. Furthermore, the substrate has consequences for the
effective spin exchange between the atoms. The spin exchange
tensor can quite generally be decomposed into a symmetric
and an antisymmetric part. In spin chains which are part of
a regular three-dimensional crystal the antisymmetric part is
often forbidden by inversion symmetry. For chains of single
magnetic atoms on a substrate, on the other hand, both terms
are expected to be present so that noncollinear spin order
is a generic property of such systems. The presence of the
substrate might also disguise the LL properties of the atomic
wire and our model system might therefore be too simplistic
to directly apply to this situation. Nevertheless, it might serve
as a starting point for the investigation of more realistic
models.

Other possible candidates to which our model might
apply include dilute magnetic semiconductors’® and low-
temperature ferromagnetic metals.>’-?® Systems where the
magnetic and electronic degrees of freedom belong to different
layers would also be a possible realization. Furthermore,
we want to point out that our analysis is also valid for
a quantum wire with a nonuniform external magnetic field
applied.

Our paper is organized as follows. In Sec. II we introduce
the model and derive the low-energy effective theory by
linearizing the excitation spectrum followed by bosonization.
In Sec. III we consider the first-order renormalization group
(RG) equations for the various scattering processes and
discuss the fixed points of the RG flow in the extended
and sharp regimes. In Sec. IV we study an experimentally
accessible temperature regime where the relevant scattering
terms can be treated perturbatively. We discuss different cases
depending on the hierarchy of the different length scales
present in the problem and calculate the spin and charge
densities around the domain wall. In the final section we
present a brief summary of our results and some additional
conclusions.
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FIG. 1. A schematic view of the magnetization orientation in the
wire. A is the length of the domain wall.

II. THE MODEL

We will consider an “s-d”-like model in which the
bulk magnetization and the conduction electrons are treated
separately (though, of course, still coupled). We assume two
time scales in the problem, a fast electronic one and a slow
magnetic one. This allows us to answer the question of how
the presence of the domain wall affects the LL, forgetting
the effect the motion of the domain wall will have on the
conduction electrons. For the already mentioned dilute mag-
netic semiconductors and, in particular, ferromagnetic metals
this model with separate electronic and magnetic degrees of
freedom, active on different time scales, is a realistic starting
point.

The direction of the bulk magnetization of the wire can be
described by a unit vector 7i(z) = cos[©(z)]Z + sin[O(z)]§ and
we consider, in particular, the case cos[®(z)] = — tanh[z/A]
describing the spatial profile of a domain wall of length A
situated at z = 0; this is plotted schematically in Fig. 1. The
magnetization is coupled to the conduction band electrons with
a strength given by the exchange coupling J. We consider
a screened, and hence short-range, interaction V(z — z'). To
simplify the presentation we consider here a spin-independent,
SU(2) symmetric interaction. We want to point out, however,
that the low-energy theory [Egs. (3) and (4)] obtained after
linearizing the excitation spectrum remains valid for a spin-
dependent interaction V,4/(z — z’) as long as the interaction is
spin conserving.

We start from the following standard s-d Hamiltonian,?
H=Hy+ Hy + H;:

9

- . 1 ~
Hy = / dz w;(z)[— 2—83 —/L}%(z),
m
- J ~ ~ N o
Hy =-3 f dz Ul (Ve (2)0r - (2), (1)
1 - - . .
Hy = / dz dZ LTIV = W (Y (2).

Here lﬁ(z) is the creation operator for an electron of spin
o at a position z, p is the chemical potential, m is the
electron mass, and summation over the spin indices {o,0'}
is implied. Due to the incommensurate nature of the spin-split
Fermi points we gain no advantage from explicitly considering
half or full filling and the filling factor is left general. We do
exclude, however, the case of very small filling where the Fermi
energy ¢ would become so small that a linearization of the
spectrum would only be appropriate at very low temperatures.
Furthermore, we only want to consider the case where the
filling in both bands is nonzero; i.e., we are not interested in
the fully spin-polarized “half-metallic” case,** which would
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bring us back to an effective spinless fermion model. In the
following we seth = 1 and kp = 1.

In order to be able to linearize the system our first
step must be to remove the spatially dependent, and in
principle perhaps very large, magnetization. This is achiev-
able by rotating the spin direction around the x axis
to a collinear ferromagnetic alignment via the follow-
ing gauge transformation:3'*> H = Uf(x)HU(z), ¥y (z) =
U ;U,(Z)I/NIU/(Z), and U(z) = ¢29®@7" The interaction is left un-
affected as it is SU(2) invariant, the magnetization is locally ro-
tated to a Zeeman term Hy; — H),, and a gauge potential is in-
troduced: Hy — Hy + Hg.Thus, H = Hy + Hg + H; + Hy
and

1
Hy = Zf dz w;w[ - 500 = /L}%(Z),
1
Ho = - Z / A2y § (DO @) 8000 (2)

—ﬁ;/ dz[¥](2)i®' ()0}, 0¥ (x)  (2)

—(0, ¥ (2))i0 ()0 Yo (2)],
Hy = —g Z / Az ()0, s (2).

with ®'(z) = [A cosh(z/A)]~'. The gauge potential has been
written in a manifestly Hermitian form. The first term of
Hg is a pure potential scatterer, the next two terms describe
spin-flip scattering. Without Hg this is simply a spin-split
band model'' (see Fig. 2). In our model the gauge potential
introduces extended scattering terms, active over the length
of the domain wall, which have to be included and are
important for the low-energy physics. The amplitudes of the
spin-flip scattering and the potential term are proportional
to A/Ap and (A/Ap)?, respectively, where A is the Fermi
wavelength. We are here mainly interested in the case A > Ap.
Except for very low temperatures the potential scattering
term can then be safely neglected. On the other hand, in the
limit of a sharp domain wall A — 0, then ®'(z) — 73(z),
the scattering terms become boundary operators, and both
the spin-flip and the potential scatterer have to be taken
into account. We discuss these issues in greater depth in
Sec. III.

FIG. 2. A schematic view of the spin-split bands. One of the g,
processes is shown, which involve spin-flip scattering between left-
and right-moving electrons.
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The Hamiltonian (2) is now amenable to the usual bosoniza-
tion procedure,’ the first step of which is linearization via the
ansatz Y, (2) = 7Yy, (z) + e "2y, _(2), where kpo =
2m(u £ J/2). The + and — indices denote the right- and
left-moving electrons, respectively. Note that if the Zeeman
term is large we must linearize around the spin-split Fermi
points, leading to the breakdown of spin-charge separation.
After linearization we have Hy + Hy — Hoy + Hoy, with the
linearized Hamiltonians

Hyy = UFJ/dZ[wJ—(Z)iazI//U—(Z) - ¢i+(2)i311//a+(1)], (3)
where mvr, = krg.

The interaction H; can be decomposed into spin-parallel
and spin-perpendicular components and written as

5 [ &2 821
H2 = Z / dz o PorPo—r + _)Oo*rpéri|7

2 2

o,r==% =

[ g4 84L
Hy = Z / dz ZHU PorPor + Tloarp&rj| P and
o,r==% =

- “

81
H = Z /dZ - 2“0parpa—r

o,r==% =

8110 2iz(kps—
+—20621Z(k” kF“)lﬂ;,Wl—rwarWar]

Here we have suppressed the spatial indices and defined the
local density p,+ = ‘ﬁii V¥, +. Note that the “g-ology” given
here refers to the already rotated model, not the original
physical picture. The chiral electrons of this linearized model,
physically speaking, have a noncollinear spin orientation
throughout the wire. Umklapp processes scattering two left
movers into right movers and vice versa are always neglected
here due to the noncommensurate nature of the Fermi wave
vectors. We can rescale the g, term to include the gy,
process by redefining g>j, = 820 — &1 With H, — H,.The
final g1, process, schematically shown in Fig. 2, cannot be
formulated as a density-density interaction.

Finally, we have our model to be bosonized. We introduce
the chiral bosonic fields ¢,,(z).> The vertex operator is

1 )
war(z) = z_em@%r(z), 3)
T

where « is a short distance cutoff. This leads to the following
expression for the densities:

1
Por(2) = _Eaz¢ni‘~ (6)
Thus, we can write the quadratic part of the bosonic
Hamiltonian, H,, which is composed from Hy, Hy, H>, H; as
a matrix equation,

H, = / dz[3,9(2)) M, ®(2); ™
(D)) = (P1+,P4—,%,+,¢,-). The bosonization procedure

is thus sufficient to reexpress all but H;, and Hg in terms of
a diagonalizable quadratic bosonic Hamiltonian. The matrix,
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M, is
Amvpy + 2844 gt 841 &1
M 1 2201 4 vpy + 28451 821 841
87 841 821 dmvrp, + 284 8204
821 841 82|14 drvr, + 284
M is areal symmetric matrix and, as such, has real eigenvalues. b 1 I
We can now diagonalize M and we do so in several steps to He, = — 8Tm Z dz8ps[©'(2)]
fully show the comparison with more standard expressions. In 7
order for our final normal modes to have positive velocities x ¢c08[2zkpe + 24/ T s (2)]. 9

there is a condition on this diagonalization procedure, given in
the Appendix. However, for any realistic microscopic model
this condition should always be met, which can be shown
explicitly in the case of the Hubbard model in a magnetic
field."!

We can now make two unitary transformations. The first
iS ¢ot+ = (Ps F 90)/«/5. Note that 6, is the adjoint of ¢,
and they satisfy [¢,(2),I1,(z")] = i8(z — '), where [1,(z) =
0;05(z). This first rotation has the effect of uncoupling
the two adjoint fields. The second transformation is to
rotate to the spin-charge representation: ¢./s(z) = [¢4(z) £
¢, ()] /\/5 [and similar for the 6(z) fields]. The effect of
these two rotations can be summarized as M = U/ ~' U/~ "MUU,
with [®(2)]7 = [®(2)]"UU [see Eqgs. (A3) and (A4) in the
Appendix]. If [®(2)]" = (¢s.Pc.6;.6:), then our rotated
Hamiltonian is defined by the matrix

% Up 0 0
- 1lv L 0 0
M=-| " & @®)
210 0 uK; Vg
0 0 Vg v K,

Here K, and K, are the spin and charge Luttinger parameters,
vy and v, are the spin and charge velocities, and v, and v,
describe the coupling between the spin and charge sectors.
These parameters are functions of the interaction strengths and
Fermi velocities and to lowest order can be calculated directly
[see Eq. (A1) in the Appendix]. At the noninteracting SU(2)
symmetric point K; = K, = 1. In the case of spin degeneracy
we find, as expected, v, = v, = 0 and the spin and charge
modes decouple.

The nonquadratic contributions from Hg in this represen-
tation are

- g o
Hésf = 27T:;ux / dz®'(z) sin[v/276,(2)]
x sinfz(kpy — k) + V27 ,(2)],
Hisy = 5o / dz0/(2) sin[v276,(2)]

x sin[—z(kps +kp)) + m@(@],

; 1 2 -
Hly= g [ @10 @Fag . and

The first term, H(’;S , describes a forward-scattering (upper
index “f”) spin-flip (lower index “sf”) process where a
fermion is exchanged between the spin up and spin down
bands but stays on the same side of the Fermi surface. The
second term, Hgsf, is a backward-scattering spin-flip term
where a fermion 1s exchanged between the bands and also
moves from one side of the Fermi surface to the other.
The third contribution H(’;p is a potential (lower index “p”)
spin-conserving forward-scattering process. The final term,
ng, is a spin-conserving backward-scattering process. This
is the scatterer considered by Kane and Fisher which gives rise
to the usual insulating fixed point.> All scattering processes
are only active over the length of the domain wall (or,
more generally speaking, the region of noncollinear spin
order), where ©'(z) # 0. The scattering coupling constants
for forward and backward spin-flip scattering from the
domain wall are given by g, = kpy £ kpy. We have also
introduced the bare potential scattering values g,, = 1/« for
convenience.
The nonquadratic interaction term Hp, is then

2
Hy, = m/ dz cos [2v/27,(2)]

x [glj_q*e_ZiZ(kFT_kH) + gllleZiz(kFT—km)]‘ (10)

This last term also corresponds to a backward-scattering
process. It stems, however, from the interaction H; and
therefore involves two fermions being scattered between the
different bands and from one side of the Fermi surface to the
other. These contributions have their simplest interpretation in
terms of the spin and charge modes. However, the spin and
charge modes are not eigenmodes of the model, see Eq. (8),
and we also require Egs. (9) and (10) in the appropriately
rotated basis.

The diagonalization of M introduces new velocities, u;,
for H, and a set of {Tie"z’} parameters. It can be summarized

as
(mz)): T 1y X(qsl(z)) and
$s(2) A $2(2)

(GL(Z)> _ TIO T20 % (91(2))
0z))  \1¢ T¢ 6,(2))°

Y
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with the parameters {Tig"”} as given in Eq. (A6) of the
Appendix. They are all known in terms of the previously
mentioned Luttinger parameters. We have also simultaneously
rescaled the fields to obtain two distinct eigenvalues rather

than four. The final Hamiltonianis H = H, + H + Hgsf +

H(b;sf + ng + ng, where

H, = uz / dz [(0.¢1 ()" + (I;(2))"] (12)

and, with summation over i and j implied,

8s oA
Hf = — / dz ©'(z)sin [V 27 T6(2)]
x sin [z(kpy — kpy) + vznT]?’qu(z)],

8b , .
H, = T~ / dz ©'(z)sin [vV2r T76;(2)]

x sin[ — z(kpy +kpy) + V22T 9;(2)]. (13)
HY, = _Sim\/g / d2[0'@)PT!3:4i(2).  and

1
3 / 285 [0/ ()

x cos [2zkp, + \/ZJT(TZ-¢ +0Z, Ti¢)¢i(z)]

for the scattering terms and, finally,

2
Hy, = W/ dz cos [2«/ET,-¢¢1'(Z)]

x [gripeeErimhrd g e krimhe)],

The appropriate excitations of such an SU(2) asymmetric
model have no obvious physical interpretation. This effective
bosonic field theory lays the foundation of our further analysis.
A similar model is found by Braunecker et al.>>3* in a different
situation, and, of course, by Pereira and Miranda'® but without
the Hésf and H;, terms which do not play any role for very
sharp domain walls where the length scale A is no longer
present. However, they also neglect H’ »» Which does play
a role in the sharp wall limit. Indeed, it is this term which,
when dominant, leads to the Kane and Fisher insulating fixed
point. This will become clear in Sec. III where the case of a
sharp domain wall is obtained as a specific limit in our general
analysis.

III. LOW-ENERGY PHYSICS

In the generic case, we have three natural length scales
present in the problem: A ~ (kpy + kp i)’l related to spin-
flip backward scattering, A ~ (ks — kr)~! related to spin-
flip forward scattering, and the domain-wall length A. In the
limit of weak magnetization A_ — oo and 21, — A while,
on the other hand, the limit of large magnetization, when one
spin channel becomes frozen out, gives Ay ~ A_ =~ Ap. It is
crucial for the further analysis to observe that the relative
importance of the forward and backward-scattering terms is
now not only determined by their scaling dimensions but
also by the hierarchy of the three different length scales.
Furthermore, in the RG flow we must distinguish between the
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extended and sharp regimes. In the beginning of the RG flow
we have an extended domain wall and the scattering terms can
be treated as bulk terms of dimension d = 2. However, when
the ultraviolet momentum cutoff A during the RG process
becomes of the order 1/, then the extended domain wall will
begin to look effectively pointlike, i.e., of dimension d = 1.
The scattering terms then become boundary operators. At this
stage the direction and rate of the flow of all of the operators
can change, leading to the final low-temperature fixed points.
For this effective d =1 flow we must take the result of
the d = 2 flow as the “zeroth-order” coupling constants. In
physical terms, the domain wall starts to look pointlike if the
electrons are correlated spatially over lengths much larger than
the domain-wall length, i.e.,if J/T > A/a.

Another important point to note is that for an extended
domain wall we usually have A > A.; i.e., the backward-
scattering terms are strongly oscillating over the length of
the domain wall. This leads to very small bare effective
backward-scattering couplings which can be estimated as
follows: The derivative of the domain-wall profile, ®'(z), can
be Fourier transformed leading to ®'(k) = 7/ cosh(wkx/2).
The nonoscillating component of the backward-scattering am-
plitude is then proportional to g,®’(k = +1/4.). Since ®'(k)
is a function which is sharply peaked at k = O for long domain
walls, we have |g,®'(k = £1/A)| ~ |gpexp(—A/14)| K 1.
If backward scattering is relevant, then the effective coupling
constant will grow under the RG flow as

" TO d—yp
g ~ gpexp(—r/Ay) <7> , (14)

where Tp is an energy scale of order J. Backward scattering
will only have an appreciable effect if the initially small
bare coupling has again become of order 1 under the RG
flow. This requires temperatures 7/J < exp(—A/A;) which
are extremely small for many realistic situations. We therefore
expect that forward scattering—ignored in previous investi-
gations of the domain-wall problem—will play the dominant
role in these cases.

Before discussing the various regimes any further, we want
to derive the first-order RG equations for the forward- and
backward-scattering terms. We start by writing a functional
integral partition function®

z - / Dy DT, e Ji 47lf del=iTi@dcgi 1+ HIT (.41 ]

as)

with periodic boundary conditions in imaginary time t.
Following the standard procedure we split the fields into
fast, ¢~, and slow, ¢=, fields. Our fast fields are defined
for A’ < |k|,|w|/u; < A, and the slow for |k|,|w|/u; < A/,
with A an ultraviolet cutoff. Expanding the exponent in terms
of Hy,, Hé’sl;, and ng and performing the averaging over
the fast modes we then reexponentiate the expression to find
the appropriate scaling equations. The flow is parametrized in
terms of [, defined as A = Age ' and A’ = Age %,
We find for the H; term to first order that

dgiio
% = 8110 [z —2[(17)* + (19)°] } (16)
— ——
=V
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This term is an irrelevant perturbation (y; > 2) for any
realistic situation we are here interested in. In the limit of
weak magnetization we can simplify the expression to find
y1 = 2K;. In this limit K; > 1 and it becomes clear that the
term is irrelevant.

The same analysis is performed on the domain-wall
scattering terms. For spin-flip back scattering we find

9 a1y @7 s @ e @] o

=Yb

As already mentioned d is the dimension of the wall, for
spatially extended walls this is 2, whereas it is 1 in the limit of
an infinitely sharp wall. As usual, the perturbation is relevant
(irrelevant) if y, < d (y» > d). In the limit of J — 0 we can
simplify this expression to y, = [(Ks)~! + K.]/2, consistent
with Refs. 18 and 36. If we consider the Luttinger parameters
for the Hubbard model in the zero magnetization limit we see
that this term is always relevant for repulsive interactions both
for d = 1 and d = 2 but can also become irrelevant in both
cases for attractive interactions. In the general case described
by Eq. (17) the relevance or irrelevance of backward scattering
depends on the set of rotation parameters Ti9,¢ and no general
conclusions are possible.

Similarly, the spin-flip forward-scattering equation stands
as

% =gs [d — (TP + (1) + (17) + (1)] } (18)

=yy

In the limit of J — O this simplifies to y; = (K™ + K1/2.
Since K > 1, in this limit it follows that yy > 1. For the case
of a sharp wall (d = 1) forward scattering is therefore always
irrelevant.'®3¢ In the case of an extended wall (d = 2), on
the other hand, forward scattering is relevant in this limit if
K, < 2+ /3. The generic case described by Eq. (18) is again
very complicated to analyze. However, at least for simple
microscopic models and in the limit of weak interactions
where the rotation parameters can be calculated explicitly [see
Egs. (A7) and (A8) in the Appendix], we find that forward
scattering is always relevant for d = 2.

The potential backscattering equations are, for the two spin
channels,

dgba
dl

= g |:d — M@ 1)+ (T) £ 1Y)’ ] (19)

=Ybo

with the plus (minus) sign applying for 0 =1 (o =J). In the
limit of J/ — 0 we find y», = [K. + K;]/2. In the isotropic
limit, K; — 1, this term is always relevant for repulsive
interactions. In general, however, it can be either relevant or
irrelevant. Indeed, it is also possible that potential backward
scattering is relevant for one spin channel and irrelevant for
the other.

The potential forward-scattering term has scaling dimen-
sionx = 1. It will therefore be relevant for an extended domain
wall and marginal in the limit of a sharp wall.

As an example, we present in Fig. 3 the two scaling
dimensions for forward and backward spin-flip scattering
off an extended wall as a function of & = J/2ep calculated
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FIG. 3. (Color online) yy; and y,, for forward and backward,
spin flip, and potential, scattering from an extended domain wall
obtained for a specific U-V model (see text for details) as a function of
& = J/2ep. The regions where the operators are relevant or irrelevant
for d = 1 are marked. The condition K; = 1 has been imposed by
hand at the SU(2) symmetric point (J = 0) (see Appendix).

for a U-V model with an on-site interaction U/t = 1.10
and nearest-neighbor interaction V/t = 0.11, where ¢ is the
hopping amplitude. Here the parameters of our low-energy
effective model are determined in a lowest-order expansion
in the interaction parameters. We want to remind the reader
that by rotating back to the original physical model one finds
that “spin-flip forward scattering” refers to an electron which
passes through the wall without changing its spin.

A. RG flow in the extended-domain-wall regime

At first we focus on the d = 2 case. For extended domain
walls (A > Ar) the bare potential scattering terms ~(1/Ar)?
are much smaller than the spin-flip scattering terms ~(1/Af).
In the temperature range where it is appropriate to use the
RG flow with d = 2 we can therefore neglect the potential
scattering terms. They will, however, become important for
the RG flow with d = 1 at even lower temperatures discussed
in the next section.

Though with the physical parameters we consider in Sec. IV
we find both g to be relevant, by varying the v.;, K. s, and
v,» parameters we can find regimes where forward scattering
remains relevant but backscattering becomes irrelevant.

We can now identify several regimes. We focus here first
on the small magnetization limit close to half filling, where
A_ > Ay. For the backward-scattering Hamiltonian, ngf
[Eq. (9)], this means that we take the limit where
kpy ~ kpy — kg ~ /2. We can then simplify (9) and find

Hg,r =

_& / dz@'(z) sin [v276,(2)]
2nma

x cos[2zkr] sin [V27.(2)]. (20)

We now consider the case that this term is relevant; i.e.,
g» becomes large at low temperatures. First, for “narrow
enough” walls, i.e., for domain walls of the order of the Fermi
wavelength A r when the 2k oscillations do not cancel out the
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contributions, then in order to minimize the energy the fields
become locked over the length of the domain wall in the values
{pe = V2m(m + .0, = V21 (n + ) or {pe = V2 (m +
i),@s = «/E(n + %)} for integer m,n. Therefore, the domain
wall becomes an impenetrable barrier for both charge and spin
excitations and we find a spin-charge insulator.'®3’

If we consider longer domain walls then, as already
discussed previously, the effective bare coupling for backward
scattering will be close to zero. Hence, for extended domain
walls, A > Ap, forward scattering is always the more impor-
tant because Ay < A_.

Therefore, there is also a regime in which only forward
scattering is relevant: Either the long-domain-wall case or the
case of irrelevant backward scattering (y, > 2). Considering
again the limit of small magnetization and a system close to
half filling, the forward-scattering term in Eq. (9) simplifies to

f 8f
H =
O ™ 2rma

x coslz(kpy — kp )l sin[v27 ()] (21)

In order to minimize the energy in this case the fields become
locked over the length of the domain wall in the values {¢; =
V2r(m + $).6, = V2r(n + Pl or (¢ = V2 (m + 7).6, =
V2r(n + %)} for integer m,n. In this scenario only the spin
sector is frozen out and we find a C1S0O phase where the
spin mode is gapped but charge excitations remain gapless.
In the physical reference frame this is a state in which the
incoming spin current does not scatter from the domain wall
and, after traversing the domain wall, ends in the antiparallel
spin configuration with respect to the bulk. This means that
the domain-wall profile can no longer be taken as adiabatic.

From the above considerations we have several possibili-
ties. First, we can have backward scattering as either relevant or
irrelevant. Second, we must consider the relative length scales.
If A1 < A then the backward-scattering terms are small due to
averaging over their oscillations. A similar case holds for the
forward scattering with A, — A_ in the preceding. For the
case in which both the forward- and the backward-scattering
length scales are shorter than the domain-wall length we end
up in the completely adiabatic limit, as one would expect, and
the system shows LL properties (“adiabatic LL”). Again we
note that at extremely low temperatures we have to switch to a
d = 1 RG flow and backward-scattering processes will begin
to dominate and can lead to insulating regimes. In principle,
we can also be in the opposite regime when both forward-
and backward-scattering length scales are longer than the
domain-wall length, in which case the scaling dimensions of
the forward- and backward-scattering terms alone determine
what the low-energy fixed point is. Note that this is possible
without requiring a very sharp §-function-like domain-wall
profile. In general, however, the low-temperature phase the
system ends up in in the extended regime depends not only
on the relevance of the operators, but also on the hierarchy of
length scales.

The different behaviors in the extended regime which could
be identified from the first-order RG equations are summarized
in Table I. Finally, let us also comment on the case of a generic
magnetization and arbitrary filling. In this case the analysis
above stays valid, the spin and charge modes, however, get

/ dz0'(z) sin[v/276,(2)]
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TABLE I. The different phases of the ferromagnetic LL with an
extended domain wall (d = 2, relevant spin-flip forward scattering)
depending on the scaling dimensions of the spin-flip backward
scattering operator and the hierarchy of the three length scales present
in the problem.

A< Al Ae <A< A_ Ay < A
2—y >0 Spin and charge C1S0 Adiabatic LL
insulator
2—y <0 C1S0 C1S0 Adiabatic LL

locked into more complicated spin- and charge-density wave
states over the length of the domain wall.

B. Fixed points of the d = 1 sharp-domain-wall regime

For the case of a very sharp domain wall (d = 1) we have
shown that forward spin-flip scattering is always irrelevant.
The forward potential scattering term is marginal and we
ignore it as well. In this case the possible phases are
therefore determined by the scaling dimensions of the two
backward-scattering terms alone. (Naturally, for a sharp wall
the length scales can play no further role.) Formally, one can
find the sharp domain-wall limit from Eq. (2) by taking the
limit A — 0, which requires ®’(z) — m38(z). This leads to
an effective model where all the boundary scattering terms
allowed by symmetry are present. A full description of the
phase space for this model with different relevant perturbations
present requires the solution to the second-order RG equations
to find the separatrix between the different low-temperature
fixed points. The second-order equation for our model is
more complicated than for the standard sine-Gordon model.
A diagonal equation in the ¢;’s is not recovered and to
perform any further analysis we would have to rediagonalize
the problem and then renormalize the model once again,
repeating these steps until we reached the fixed point.>® This
is perhaps not totally unexpected as the scattering terms we
are dealing with explicitly couple the normal modes. We
leave the more involved second-order RG analysis to a future
work and focus here on what the first-order equations can tell
us. The flow of a similar model has already been analyzed
by Aratjo et al.'®!” using poor man’s scaling. In that work
they consider both spin-flip and pure potential backscattering
from a sharp domain wall, treating the interaction only
perturbatively. They find phases dominated by the spin-flip
and pure potential backscattering processes. In contrast Pereira
and Miranda'® consider only the spin-flip backscattering
term and hence cannot recover all possible low-energy
phases.

There are three possible fixed points of the RG flow
depending on the relative relevance of the three backscattering
channels, g3, gp1, and g . The system can flow to a spin
and charge insulator, an effectively spinless LL, or a spin-full
LL. Furthermore, the spin and charge insulator itself can
show different physical behavior in the region of the domain
wall depending on the relative relevance of the backscattering
operators. This behavior will be confined to some region
around the boundary. First, let us discuss the spin- and charge-
insulating phase. If the pure potential backscattering for both
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TABLE II. The different phases of the ferromagnetic LL with an
effectively sharp domain wall (d = 1, irrelevant forward scattering)
depending on the relevance or irrelevance of the backward-scattering
operators. The physics of the system surrounding the domain wall
for the spin- and charge-insulating phase depends upon the relative
relevance of the backward-scattering operators and is discussed fully
in the text.

v <1 Voo < 1 v > 1
and/or ypy, ¥, < 1 Vb Vbs > 1 Vot Ve, > 1
Spin and charge insulator Effective spinless LL LL

spin channels is relevant and dominates, 5, < V5, then the
system will flow to the spin- and charge-insulating fixed point
already studied by Kane and Fisher’ with the spin part of
the system remaining completely unaffected. If the spin-flip
backscattering term is relevant and dominates, y, < ¥, then
we have the fixed point analyzed by Pereira and Miranda.'®
The spin-flip back scattering will tend to equilibriate the
number of up and down spins. This fixed point must therefore
correspond physically to a spin and charge insulator with a
region of reduced spin polarization around the boundary. It is
also possible to have the situation where yp, < ¥ < Vps With
Vbo» Vs < 1. In this case as the system approaches the fixed
point first one spin channel will become insulating; however,
before the second spin channel also becomes insulating the
spin-flip backscattering term will tend to align the spins into
the first channel. Once the spins are scattered into the first
channel they are more likely to be scattered without a spin flip
than back into the other spin channel. Therefore, the final fixed
point will likely be an insulator with a region of increased spin
polarization around the domain wall. Second, if potential back
scattering is relevant for one channel but irrelevant for the other
and spin-flip scattering is irrelevant as well, then we are left
with an effective spinless LL; i.e., we have one insulating
and one conducting channel. Finally, if all back-scattering
operators are irrelevant, then the system remains a LL.
These results are summarized in Table II.

IV. SPIN AND CHARGE DENSITY
IN THE PERTURBATIVE REGIME

We now return to the case of an extended domain wall,
A > Ap, where the potential scattering terms can be ignored
and consider a perturbative temperature regime where the
spin-flip scattering terms can be treated perturbatively. This
allows us to calculate the spin and charge densities around
the domain wall. Spin- and charge-density oscillations around
impurities are not only experimentally relevant, but also
provide a useful theoretical tool to analyze the dominant
physical scattering processes in general low-dimensional
strongly correlated systems.**** As we are interested in the
case where both forward and backward scattering are relevant
perturbations, a perturbative treatment of the scattering terms
will break down at low-enough temperatures. We indeed find
that the perturbative corrections increase as a power law in
inverse temperature. In order for perturbation theory to be
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valid, we find that the following conditions, for forward- and
backward-scattering terms respectively, have to be held:

< T )a' ( T >a2 < 4aamT 22)
Iy Ty 8r [T1¢ T + T2¢ Ty ]

( T )ﬂl ( T )ﬁz < 47 )mT @3
T Ty [TV T + 19T
Here T* ~u;/(2ma) is a cutoff scale and the exponents
are given by «o; = [(Ti‘ﬁ)2 + (7}9)2]/4 and B; = [(Tz‘ﬁ)2 +
(T7)*1/4. Note that @y + oz = y;/2 and Bi + B2 = /2 so
that the scaling dimensions show up in Egs. (22) and (23) in
the expected way.

We want to present our results in the physical unrotated
frame. The perturbative results are, however, obtained in the

rotated frame so that we have to use the gauge transformation
U(z) once more. The spin density, in the physical frame, is

5) = 9@ ¥ @) = W UGUYE), (4

o

and

where the gauge rotated Pauli matrices are given explicitly by

o . =0",
a’y = cos[O(z)]o” — sin[O(z)]o %, (25)
o’ =sin[O(z)]o” + cos[O(z)]o".

Using these relations, the spin densities in the physical frame
S (z) can now be constructed from the spin densities §0(z) =
%1/”(1)31/1(1) in the rotated frame. The corrections to the bulk
in first order in forward and backward scattering off the domain
wall are given by

1
(AS(2)) = — (cos[v2m,(2)]
(o514

x[cos[(kpy — kpy)z + V21 hy(2)]
+cosl(kry + kr))z + V21 (D)1),  (26)

(AS3(2)) = —— (sin[v/276,(2)]
[0 %1%

x[cos[(kpy — krp )z + V21 hy(2)]
+cosl(kpy + kry)z + V27¢.(2)1), and (27)

1
ASi(2)) = — —0.¢,
(AS§(2) < —=0:45(2)

2am
o

Oy COS[2xkFo — 2ﬁ¢a(1)]>~ (28)

Note that in the linearization procedure, strictly speak-
ing, we should write ¥, (2) = Yo, (2) + e o Y, 4 () +
e kreZy_ (z). These wg(z)&/ro(z) terms missing from the
above spin densities give the bulk values. We can also use a
description where we absorb the effective magnetic field by
a shift in the bosonic fields instead of linearizing around the
spin-split Fermi points. In this case, however, we must take
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into account curvature terms.** This would reintroduce the
bulk spin-density terms explicitly in Egs. (26) to (28).

In the following, we want to consider two examples.
Example (a) corresponds to a case where Ay < A < A_ SO
that only forward scattering contributes. In example (b), on the
other hand, we consider the case Ay < A_ < A so that forward
scattering is again dominant but is oscillating over the length
of the domain wall. More specifically, we consider values
which are appropriate for Fe, Ay = 0.367 nm, and a lattice
cutoff « = A p. We plot results for two sets of parameters: (a)
2 =0.112eV,A = 10Ap,and T = 25K;and (b) £ = 2.23¢V,
A =10Ap, and T = 50 K. These parameters give us the
following scaling terms: (a) yy = 1.12 and y;, = 0.923; and
(b) yr =1.09 and y, = 0.937. In both cases the conditions
(22) and (23) are fulfilled with the ratio of the right-hand side
divided by the left-hand side being of the order 10~3 for the
condition on backward scattering [Eq. (23)] and of the order
10! for forward scattering [Eq. (22)].

Figures 4 and and 5 show the spin density around the
domain wall, normalized to the average value per conduction
electron, § = % For the situation where the length scale of the
forward-scattering oscillations is larger than the domain-wall
length, case (a), the spin-density profile is significantly altered
[see Figs. 4(a) and 5(a)]. Such a shift will affect how the domain
wall itself behaves in the effective magnetic field applied by

(a)15 T | T | T | T
- |
1lF==="=~o_ N | \\
~< Q \
r “\ o LN ]
L o5 \ o
> of e
- Z/}\.r_
0.5
1 1 | 1 | |\‘~-I_
-40 -20 0 20 40
Z/?LF
(b) T | T | T | T

S,(2)/S

FIG. 4. (Color online) The spin density S,(z)/S, showing the
zeroth-order (dashed line) term and the total value (blue solid line).
The inset shows a comparison of the the zeroth-order (dashed line)
and first-order (red solid line) terms. Zeroth and first order refer
to an expansion in the scattering potential. All the spin figures are
normalized to the average value per conduction electron, S = % The
domain-wall lengthis A = 104 with (a) é =0.112eVandT = 25K
and (b) 2 =223eVand T =50 K.
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~

a

~—~

S (2)/S

—~
o
=~

S (2)/S

Z/)\.F

FIG. 5. (Color online) Same as Fig. 4 but for the spin density
Sy(2)/S.

the conduction electrons and therefore will strongly affect the
domain-wall dynamics. As expected, the backward scattering
plays no role in the considered temperature range.

The asymmetric distortion of the spin density clearly visible
in Figs. 4(a) and 5(a) is due to the addition of antisymmetric
and symmetric combinations of the spin densities. In contrast
to Figs. 4(b) and 5(b), where the Friedel oscillations are rapid
when compared to the domain-wall length, here the Friedel
oscillations from forward scattering are on a longer length
scale than A. Hence, the changes in the spin density they cause
can be seen as an overall distortion in its profile.

When both A, and A_ are smaller than the domain-wall
length [see Figs. 4(b) and 5(b)], oscillations within the
overall domain-wall profile are clearly visible. Here the long
wavelength oscillations are caused by forward scattering while
the much faster oscillating backward-scattering term causes
the small “wiggles” on top of the oscillations. In this case the
overall spin-density profile is not shifted.

The first-order charge-density correction, derived similarly,
is given by

2
(Ap(2)) = e< =/ £ 9:9:(2)
T

—{—L Zcos[szpa — 2ﬁ¢a(2)]>- (29)
am 4

The main contribution to the charge density can be calculated
analytically and can be found in the Appendix [Eq. (A11)].
Results for cases (a) and (b) are shown in Fig. 6. In case
(a) we do see a charge buildup, and respectively depletion,
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(a) 0.3 [
0.2

0.1
0

Ap(2)/p,

-0.1
-0.2

z/?uF

FIG. 6. The charge-density correction, Ap(z), per electron per
unit cell: py = 2¢/aCm~'. The domain-wall length is A = 10X with
parameters for panels (a) and (b) as given in Fig. 4.

antisymmetric with respect to the center of the domain wall.
The small “wiggles” on top of the overall charge rearrangement
are caused by backward scattering. In case (b) we see strong
oscillations of the charge density caused by forward scattering
which are largest at the center of the domain wall. The very
fast oscillations, which can be seen in more detail in Fig. 7,
originate from backscattering. Finally, we note that the overall
charge in the model is conserved; i.e., f dzAp(z) = 0. The
total spin (S?) in the system is also conserved and is related to
the charge density: (S%(z)) = %(p(z)). Therefore, the total
spin is redistributed throughout the wire in precisely the

0
z/?x.F

FIG. 7. Same as Fig. 6(b) where we have zoomed in on a shorter
length making the oscillations due to backscattering clearly visible.
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same way as the charge. However, none of S*, $”, or S¢ are
themselves conserved.

If we compare Fig. 6 to the results found by Dugaev
et al.,"”® the most striking difference is the presence of strong
Friedel oscillations. Such oscillations are well known and
are already present in the noninteracting case. However, we
also see that depending on parameters the amplitude of the
Friedel oscillations can be quite small [see, e.g., Fig. 6(a)]
and might be easily overlooked if one mainly concentrates
on the overall shape. Compared to the noninteracting case*’
the spin-density corrections have a different profile around the
domain wall in the transverse direction. We want to stress that
our model offers a method of calculating nonperturbatively the
full effect of short-range electron-electron interactions on any
physical property we are interested in. Provided, of course,
that one is in the regime of sufficiently high temperatures
such that the perturbative analysis of the gauge potential
remains valid. This includes, in particular, the physically
important regime for quantum wires in ferromagnetic materials
discussed above. In such systems, however, the phases of the
extended domain-wall regime (see Table I) should also be
accessible.

‘We now want to briefly discuss consequences of the strong
correlations in the electronic systems for the dynamics of the
domain wall. The magnetization dynamics are described by
the Landau-Lifschitz-Gilbert (LLG) equation, or some suitable
generalization thereof.*6~*® There are two different aspects to
this we must consider. One is the straightforward point that the
dynamics, over the length of the wall, will be affected by the
different spin density of the LL compared to the Fermi liquid
or noninteracting case. The second, more interesting, point is
whether the derivation of the nonadiabatic terms in the LLG
equation are valid for a LL.

Following Zhang and Li*® one can derive contributions
to the magnetization dynamics which allow for the fact that
the electrons do not instantaneously follow the magnetization
profile. One first writes a continuity equation for the spins,
assuming part of it to be always parallel to the bulk mag-
netization and allowing a small deviation from this. In order
to derive the current-dependent (so-called B-) terms, those
which drive the domain wall along the wire, one assumes
that j%(z,1) = —up Pji > (z.n"3(z,1)Je. ju(z.t) is the
charge current and P is the magnitude of the polarization,
while ]1 (z,t) is the spin current. A quite reasonable assumption
in a Fermi liquid, this of course starts to look more dubious in
the case of a LL. In the standard LL model spin and charge are,
of course, uncorrelated and possess different velocities. Thus,
this assumption would completely fail. For us the situation
is not so simple as we do not have spin-charge separation,
nonetheless what is obvious from our model is that spin and
charge are not fully correlated. One is forced to work with
the spin current and not the electric current and, as we have
already seen, the spin degrees of freedom can behave rather
differently for this model.

V. CONCLUSION

We have investigated a LL coupled to a noncollinear
ferromagnetic magnetization profile in the shape of a domain
wall. The domain wall acts as a spatially extended magnetic
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impurity for the electrons and introduces both forward- and
backward-scattering terms, active over the length of the
domain wall. In contrast to the well-studied case of pointlike
impurities in LLs the finite extent of the domain wall introduces
a whole new layer of complexity to the problem. In a RG
treatment of the scattering terms, one has to distinguish
between an extended regime and a sharp regime at low
temperatures where the domain wall effectively becomes a
6 function. In the extended regime the scattering terms are
bulk operators while they become boundary operators in the
sharp regime. An operator relevant in the extended regime can
therefore become irrelevant in the sharp regime.

Simplest to understand is the sharp regime. Here the spin-
flip and potential forward-scattering terms are irrelevant or
marginal, respectively. The low-temperature fixed points are
then determined by the spin-flip and potential backscattering
terms both of which can be either relevant or irrelevant. If
both are irrelevant, then the fixed point is the LL; if potential
back scattering is only relevant for one spin channel with the
other terms being irrelevant, then the fixed point is an effective
spinless LL. In all other cases the fixed-point will be a spin
and charge insulator. Depending on the relative relevance of
the backscattering operators, the region of the insulator in the
vicinity of the domain wall can show a reduced, increased or
unaffected polarization in comparison to the bulk.

If we start with an extended domain wall, however, then the
domain-wall length A will usually be large compared to the
backward-scattering length A ; i.e., the backward-scattering
terms will strongly oscillate over the length of the domain
wall. This means that the effective bare coupling—roughly
proportional to the Fourier mode of the domain-wall potential
commensurate with the backward-scattering oscillations—
will be exponentially small ~ exp(—A/A4). So even if back-
ward scattering is relevant, temperatures 7/J < exp(—A/AL)
are required in order to make this scattering process important.
The sharp regime is therefore only physically relevant if we
already start with a very sharp domain wall (of the order
of a few lattice sites) which could possibly be realized by
a nanoconstriction.

In the extended regime, the low-temperature physics of the
model is not only determined by the relevance or irrelevance
of the various scattering terms but also by the hierarchy
of the three different length scales present in the problem.
Analyzing the first-order RG equations for backward and
forward scattering and taking the hierarchy of the three length
scales into account we could identify three phases. If both
the scattering terms are irrelevant or they are relevant but the
associated length scales are much smaller than the domain-wall
length A, we find an adiabatic Luttinger liquid. In this case the
spins of the electrons follow the magnetization profile and
both charge and spin excitations are gapless. If both scattering
terms are relevant and their respective length scales larger than
A then the first-order RG equations suggest that the system
will become a spin-charge insulator; i.e., the domain wall will
act as a perfectly reflecting barrier. This case corresponds to
the normal Kane-Fisher fixed point. Finally, there is the case
of forward scattering being relevant and the associated length
scale being larger than X, with backward scattering being either
irrelevant or having an associated length scale which is smaller
than A. In this case the charge modes are gapless and charge
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is allowed to pass through the domain-wall barrier. The spin
modes, on the other hand, are locked to a specific value over the
length of the domain wall and the system becomes insulating
with respect to spin transport (C1SO phase). Physically, this
means that electrons no longer undergo a change of spin on
passing through the domain wall. The latter phase has not
been discussed so far in this context and it is this phase
which we believe is most important in possible experimental
realizations.

We also calculated the spin and charge densities around the
domain wall for physically reasonable parameters in a regime
at high-enough temperatures so that even relevant scattering
terms can be treated perturbatively. Here one finds spin and
charge distributions markedly different from the previously
reported mean-field interaction case. Both the overall profile
and the local distribution of spin and charge show different
behavior, including Friedel oscillations. A similar result to ours
for the lateral component of spin is found in the noninteracting
case,® though the transverse components look qualitatively
different. As an outlook, we believe that it will be interesting
to study how the dynamics of the domain wall is changed in this
temperature range where correlation effects dramatically alter
the spin and charge densities compared to the noninteracting
case but where we are still far above the phase transi-
tion temperatures to the low-temperature phases discussed
above.
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APPENDIX: DETAILS OF THE ROATATIONS

The spin and charge Luttinger parameters are, to lowest
orders,

vy + VR G4+ 8apy 2841
Ve = + )
2 4
-2
b = UEL TR sait t gany — 2841
2 4

1 gy + gayy + 2821

K.=1-
2 Uy + VFr| (Al)
K o—1_ L8t ten —281
s — - A )
2 Uy + VF|
v — Vrt —Vr, 8211 — 821 + 84lt — 8414 and
‘ 2 4 4 ’
__Urp —VFy 8211 — 8214 84lt — 8414
Vb= 2 + 4 + 47 '

In order to enforce the condition Ky =1 at the SU(2)
symmetric point (J = 0) we set

1 gy + &2y

Ky=1- :
21 UFT+UF¢

(A2)

canceling the g,; term by hand. It is clear that this J
independent term must cancel when higher-order corrections
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are included. What we do not know in this low-order analysis
is how the J dependence of the Luttinger parameters will be
modified by higher-order terms.

The two rotations we use on the bosonic fields are

G\ (10 =1 0N o
o L0 =1 0 =1]f¢
o | =l 0 1 o ]|e | @Y
0, o 1 o0 -1/ \g._
=y
and
& I =1 0 0\ /¢
be _ 1 1 1 0 0 ¢¢
o |=Alo o 1 1] (A4)
. o 0o 1 1/ \g
7

To diagonalize the matrix M [Eq. (8)], we perform two
steps. The firstis a rotation to make the Hamiltonian diagonal,
characterized by the R terms The second is a rescaling to
leave us with two dlstlnct eigenvalues rather than four; this
introduces the I'’s. Together this gives us

(91(1)): R?\/F? RQ\/F? <9c(z>> ond
92(Z) _Rg\/Fg

/ Os
R? Fg (2)
(AS5)
<¢1(z>> _ [ RIyYT? R ((bc(z))
¢2(Z) _R‘Zﬁ 1'*‘215 R‘f F;P ¢S(Z)
Here the rotation components are
2 vl .
0 a
2(R},) =1+ |:1 + —(ﬂ - m)2:| and
2 2 (A6)

2 r
o w2 |
Gk — 2%

In order for the rotated Hamiltonian to have positive eigen-
values the condition v, v,/ v,% > K. K, > v‘f /vcvs must also be
satisfied. This condition seems to be always fulfilled, at least
if one uses the integrable Hubbard model as the underlying
microscopic lattice model.'!

2(R?,) =1+ [1 -
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The rescaling of the fields requires
(F‘l’{z)2 = (Ff 2)_2 and
2
TS i\/vb 21< — 3 )
%+%’“i¢v3+(%—%’@)2

Note that as the rotation is a unitary transformation we have
the condition [R‘f"’b]2 + [Rg’q’]2 = 1. For our convenience we

finally define
RO /10
R ¢/ I ’

(A7)

(F?,2)2 =

0¢ 9¢/ ¢ T0¢

Tf”‘i’:Rf@/,/rf"”, and Ty? = —RS?/\/TS?. (A8)
Therefore, the inverse of Eq. (AS) is
o\ _ (T} TY ¢1(z>)
(@(z))‘(rf ) \p)
6.2)\ _ (T{ 1)\ [6:(2)
(@(n)‘(ﬁ@ T?)(exz))' (A9)

Finally, the values of the new eigenvalues are

T (U Sy Y TS
127\ 2K, ' 2K, b T \2K, 2K,

. + Vs K + v veKe vk,
X v —_— — .
2 2 ¢ 2 2

(A10)

As expected this reduces directly to the spin and charge
excitation velocities in the absence of spin asymmetry. In
such a case the Hamiltonian is already diagonal and the above
rotation is no longer necessary.
The analytical result for the charge-density correction is
e sech(z/A]
2rmTar

x|: sin[/)\]<T>o‘l(T>w2
g A=\ 75 T
f Tl T2
T B T B2
+gb51n[z/k+]<T*> <T_2*) i| (A11)

(Ap(2)) = [101) + 1, 17]

“sedlmayr @physik.uni-kl.de

'S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).

2J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).

3T. Giamarchi, Quantum Physics in One-Dimension (Oxford
University Press, Oxford, 2003).

4C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220 (1992).
5C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233 (1992).
6S. Eggert and 1. Affleck, Phys. Rev. B 46, 10866 (1992).

’S. Eggert and 1. Affleck, Phys. Rev. Lett. 75, 934 (1995).

8S. Rommer and S. Eggert, Phys. Rev. B 62, 4370 (2000).

°J. Sirker, N. Laflorencie, S. Fujimoto, S. Eggert, and 1. Affleck,
Phys. Rev. Lett. 98, 137205 (2007).

107, Sirker, S. Fujimoto, N. Laflorencie, S. Eggert, and 1. Affleck,
J. Stat. Mech.: Theory Exp. (2008) P02015.

K. Penc and J. Sélyom, Phys. Rev. B 47, 6273 (1993).

2H. Frahm and V. E. Korepin, Phys. Rev. B 43, 5653
(1991).

13C. H. Marrows, Adv. Phys. 54, 585 (2005).

14S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190
(2008).

15V, K. Dugaev, J. Barnas, A. Eusakowski, and L. A. Turski, Phys.
Rev. B 65, 224419 (2002).

M. A. N. Araijo, V. K. Dugaev, V. R. Vieira, J. Berakdar, and
J. Barnas, Phys. Rev. B 74, 224429 (2006).

024424-12


http://dx.doi.org/10.1143/PTP.5.544
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1103/PhysRevLett.68.1220
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.46.10866
http://dx.doi.org/10.1103/PhysRevLett.75.934
http://dx.doi.org/10.1103/PhysRevB.62.4370
http://dx.doi.org/10.1103/PhysRevLett.98.137205
http://dx.doi.org/10.1088/1742-5468/2008/02/P02015
http://dx.doi.org/10.1103/PhysRevB.47.6273
http://dx.doi.org/10.1103/PhysRevB.43.5653
http://dx.doi.org/10.1103/PhysRevB.43.5653
http://dx.doi.org/10.1080/00018730500442209
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1126/science.1145799
http://dx.doi.org/10.1103/PhysRevB.65.224419
http://dx.doi.org/10.1103/PhysRevB.65.224419
http://dx.doi.org/10.1103/PhysRevB.74.224429

ELECTRON SCATTERING FROM DOMAIN WALLS IN ...

7M. A. N. Araijjo, J. Berakdar, V. K. Dugaev, and V. R. Vieira, Phys.
Rev. B 76, 205107 (2007).

R. G. Pereira and E. Miranda, Phys. Rev. B 69, 140402 (2004).

19P. Bruno, Phys. Rev. Lett. 83, 2425 (1999).

20p  Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli,
W. Eberhardt, K. Kern, and C. Carbone, Nature (London) 416,
301 (2002).

21J. Shen, R. Skomski, M. Klaua, H. Jenniches, S. S. Manoharan, and
J. Kirschner, Phys. Rev. B 56, 2340 (1997).

22H. J. Elmers, J. Hauschild, H. Hoche, U. Gradmann, H. Bethge,
D. Heuer, and U. Kohler, Phys. Rev. Lett. 73, 898 (1994).

23]. Hauschild, H. J. Elmers, and U. Gradmann, Phys. Rev. B 57,
R677 (1998).

24R. Wiesendanger, Rev. Mod. Phys. 81, 1495 (2009).

2N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

26T, Jungwirth, J. Sinova, J. Masek, J. Kucera, and A. H. MacDonald,
Rev. Mod. Phys. 78, 809 (2006).

?7D. Natelson, R. L. Willett, K. W. West, and L. N. Pfeiffer, Appl.
Phys. Lett. 77, 1991 (2000).

28P_ Granitzer, K. Rumpf, P. Polt, A. Reichmann, M. Hofmayer, and
H. Krenn, J. Magn. Magn. Mater. 316, 302 (2007).

2S. Blundell, Magnetism in Condensed Matter (Oxford University
Press, Oxford, 2009).

MR, A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J.
Buschow, Phys. Rev. Lett. 50, 2024 (1983).

31G. Tatara and H. Fukuyama, Phys. Rev. Lett. 78, 3773 (1997).

32V. Korenman, J. L. Murray, and R. E. Prange, Phys. Rev. B 16,
4032 (1977).

PHYSICAL REVIEW B 84, 024424 (2011)

3B. Braunecker, P. Simon, and D. Loss, Phys. Rev. Lett. 102, 116403
(2009).

3B. Braunecker, P. Simon, and D. Loss, Phys. Rev. B 80, 165119
(2009).

3]. W. Negele and H. Orland, Quantum Many-Particle Systems
(Westview Press, Boulder, CO, 1998).

%R. G. Pereira, master’s thesis, Universidade Estadual de Campinas
Instituto de Fisica Gleb Wataghin, 2004.

37M. Fabrizio and A. O. Gogolin, Phys. Rev. B 51, 17827 (1995).

38P. Chudzinski, M. Gabay, and T. Giamarchi, Phys. Rev. B 81,
165402 (2010).

¥L. Balents and M. P. A. Fisher, Phys. Rev. B 53, 12133
(1996).

40S. Eggert and S. Rommer, Phys. Rev. Lett. 81, 1690 (1998).

“IF. Anfuso and S. Eggert, Phys. Rev. Lett. 96, 017204 (2006).

423, Eggert, O. F. Syljuasen, F. Anfuso, and M. Andres, Phys. Rev.
Lett. 99, 097204 (2007).

43, Sirker and N. Laflorencie, Europhys. Lett. 86, 57004 (2009).

#R. G. Pereira, J. Sirker, J.-S. Caux, R. Hagemans, J. M. Mail-
let, S. R. White, and 1. Affleck, J. Stat. Mech.: Theory Exp.
(2007) P08022.

43T, Taniguchi, J. Sato, and H. Imamura, Phys. Rev. B 79, 212410
(2009).

4. M. Lifschitz and L. P. Pitaevskii, Statistical Physics Part 2:
Theory of the Condensed State (Butterworth-Heinemann, London,
2002).

47T, Gilbert, IEEE Trans. Magn. 40, 3443 (2004).

485, Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004).

024424-13


http://dx.doi.org/10.1103/PhysRevB.76.205107
http://dx.doi.org/10.1103/PhysRevB.76.205107
http://dx.doi.org/10.1103/PhysRevB.69.140402
http://dx.doi.org/10.1103/PhysRevLett.83.2425
http://dx.doi.org/10.1038/416301a
http://dx.doi.org/10.1038/416301a
http://dx.doi.org/10.1103/PhysRevB.56.2340
http://dx.doi.org/10.1103/PhysRevLett.73.898
http://dx.doi.org/10.1103/PhysRevB.57.R677
http://dx.doi.org/10.1103/PhysRevB.57.R677
http://dx.doi.org/10.1103/RevModPhys.81.1495
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/RevModPhys.78.809
http://dx.doi.org/10.1063/1.1312256
http://dx.doi.org/10.1063/1.1312256
http://dx.doi.org/10.1016/j.jmmm.2007.02.148
http://dx.doi.org/10.1103/PhysRevLett.50.2024
http://dx.doi.org/10.1103/PhysRevLett.78.3773
http://dx.doi.org/10.1103/PhysRevB.16.4032
http://dx.doi.org/10.1103/PhysRevB.16.4032
http://dx.doi.org/10.1103/PhysRevLett.102.116403
http://dx.doi.org/10.1103/PhysRevLett.102.116403
http://dx.doi.org/10.1103/PhysRevB.80.165119
http://dx.doi.org/10.1103/PhysRevB.80.165119
http://dx.doi.org/10.1103/PhysRevB.51.17827
http://dx.doi.org/10.1103/PhysRevB.81.165402
http://dx.doi.org/10.1103/PhysRevB.81.165402
http://dx.doi.org/10.1103/PhysRevB.53.12133
http://dx.doi.org/10.1103/PhysRevB.53.12133
http://dx.doi.org/10.1103/PhysRevLett.81.1690
http://dx.doi.org/10.1103/PhysRevLett.96.017204
http://dx.doi.org/10.1103/PhysRevLett.99.097204
http://dx.doi.org/10.1103/PhysRevLett.99.097204
http://dx.doi.org/10.1209/0295-5075/86/57004
http://dx.doi.org/10.1088/1742-5468/2007/08/P08022
http://dx.doi.org/10.1088/1742-5468/2007/08/P08022
http://dx.doi.org/10.1103/PhysRevB.79.212410
http://dx.doi.org/10.1103/PhysRevB.79.212410
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1103/PhysRevLett.93.127204

